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ABSTRACT
We propose a newmethod for detecting out-of-vocabulary

(OOV) words for large vocabulary continuous speech recog-
nition (LVCSR) systems. Our method is based on perform-
ing a joint alignment between independently generated word
and phone lattices, where the word-lattice is aligned via a
recognition lexicon. Based on a similarity measure between
phones, we can locate highly mis-aligned regions of time, and
then specify those regions as candidate OOVs. This novel
approach is implemented using the framework of graphical
models (GMs), which enable fast flexible integration of dif-
ferent scores from word lattices, phone lattices, and the simi-
larity measures. We evaluate our method on switchboard data
using RT-04 as test set. Experimental results show that our ap-
proach provides a promising and scalable new way to detect
OOV for LVCSR.

Index Terms— out-of-vocabulary, OOV, lattices, graphi-
cal models, Bayesian networks, dynamic Bayesian networks

1. INTRODUCTION

Out-of-vocabulary (OOV) words are a well-known problem
for large vocabulary speech recognition systems, especially
for continuous speech where the presence of OOVs can of-
ten cause a mis-recognition of neighboring words due to the
language model. Indefinitely increasing the vocabulary size
to include still rarer words can indeed help alleviate the prob-
lem, but that will never solve it entirely since as languages
evolve and new types enter the spoken lexicon, new sounds
and thus OOVs constantly appear. Moreover, an increased vo-
cabulary size can sometimes produce a higher word-error rate
(i.e., additional substitutions), potentially leading to a tradeoff
between the recognition accuracy of frequent words and not
declaring rare words as OOVs. Reliable detection of at least
the presence and time location of OOV words, therefore, is a
viable long-term solution to improving real-word applications
of automatic speech recognition (ASR) such as spoken term
detection.
Many approaches have been proposed to detect OOVs

[1, 2, 3, 4, 5, 6, 7, 8, 9]. The most common methods focus on
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explicitly modeling OOVs using either filler or other generic
word models. The goal is for the generic models to “absorb”
the OOVs, either by specifically designed and trained struc-
tures, or by adding various phone loops to the HMM’s state
sequence to allow a wider variation of phonetic sequences.
These approaches, however, need to be carefully (and ideally,
discriminatively) tuned lest the generic models absorb non-
OOV speech. Yet another category identifies OOVs without
modeling OOVs explicitly. For example, in [6] confidence
measures based on multiple and diverse knowledge sources
are employed, in [7] word-level confidence scoring mecha-
nism achieves higher accuracy for the in-vocabulary data with
the same OOV detection rate compared to the filler-model
based approach, in [8] two recognition processes working in
parallel compare the acoustic scores of a phonetic and a lex-
ically constrained recognizer, and in [9] a hybird language
model combning words and sub-word units is used for OOV
detection.
In this paper, we propose a new method for OOV detec-

tion based on the joint alignment of independently generated
word and phone lattices, all expressed using graphical mod-
els. Lattices, as used in ASR, are a concise representation of
a list of hypothesis strings (often an N -best list) along with
their acoustic, language model, and possibly other (such as
posterior) scores. The use of lattices has been crucial to al-
most all modern multi-pass LVCSR systems. We utilize sep-
arate lattices to represent, respectively, a set of word and a set
of phone hypothesis strings for an unknown utterance. A joint
alignment between the lattices therefore provides a phonetic
sequence that best aligns the phone lattice and, via a pronun-
ciation lexicon, the word lattice. Our general idea is simi-
lar to, but was not inspired by, [8] who used only the 1-best
hypotheses. We express the above alignment using graphical
models (GMs). Recent developments on the Graphical Model
Tool Kit (GMTK) enables us to represent multiple heteroge-
neous lattices within the same model [10]. With the powerful
modeling capability and rapid turnaround time of graphical
models, we can easily incorporate both word and phone lat-
tices together and jointly align them using GMTK’s decod-
ing algorithms. We note that DBNs have in the past been
used to produce extensions to standard Levenshtein string-
edit distance [11]. Here, we utilize such an approach, but
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Fig. 1. A graphical model representation of a lattice [10]

for joint alignments. We evaluated our technique on switch-
board data, using word and phone lattices generated from the
SRI RT04 conversational telephone speech (CTS) system. We
have found that our approach offers a promising new way of
detecting OOVs for LVCSR.

2. GRAPHICAL MODELS OF LATTICES

A graphical model (GM) [12] is a visual representation of fac-
torization properties of families of probability distributions.
When instantiated, a GM also includes local score functions
such as conditional probability tables (CPTs) for Bayesian
networks. A dynamic Bayesian network (DBN) [13, 14], one
form of graphical model, consists of a directed acyclic graph
G = (V, E) where V is a set of vertices (corresponding to
random variables) and E is a set of directed edges, and where
there is a fixed size template that can be unrolled to an un-
bounded length in order to represent any given length utter-
ance. A lattice consists of a directed graph D = (N ,L),
whereN is a set of nodes, and L ⊆ N ×N is a set of directed
links between two nodes, so that if (n1, n2) ∈ L then there
is a link from n1 to n2. Nodes typically represent time points
(we use the notation τ(n) to indicate the time point associ-
ated with node n); links represent tokens (words or phones)
along with a number of possible scores (acoustic, language,
posterior, etc).
Graphical model representations of lattices, and their im-

plementation in GMTK, is described in [10] and GMTK-style
DBNs are fully described in [14]. We give here only a brief
outline and refer the reader to [10] for full details. To repre-
sent a lattice using a GM, we utilize two vertices at each time
frame t, a lattice nodeNt and a lattice link Lt (Figure 1). The
two successive values Nt−1 = i,Nt = j determine a lattice
link Lt = l only if (i, j) ∈ L. A third binary variable Tt

indicates node transition. The purpose of Tt is to interface to
the rest of a more complex DBN that uses a lattice (e.g., [10]
and Figure 2).
The time information for each lattice node is represented

by a time-inhomogeneous CPT, meaning the CPT p(Nt =
j|Nt−1 = i, Tt = b) = ft(j, i, b) is a function of time. The
vertex Nt can only transit to value j when the current time
is τ(j) (or within a time region around τ(j)). We note here
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Fig. 2. Graphical model for word/phone lattice alignment

that this graphical construct can appear any number of times
in a DBN that represents lattices, and in fact there is no need
for the lattices to have the same meaning. This is precisely
how we implement our joint word/phone lattice decoder, by
the utilization of multiple separate lattices in a DBN.

3. JOINT WORD/PHONE LATTICE ALIGNMENT

We represent a joint set of word/phone lattices using the DBN
in Figure 2. The word lattice is at the top where the link
variable in this case represents a word. The variables “word
transition”, “pronunciation”, “phone counter”, “phone transi-
tion”, and “phone” are used to explicitly express information
about a pronunciation lexicon. Most of the CPTs between
these variables are deterministic (see [14]). These variables
and their associated CPTs yield the phone sequences for the
word hypotheses contained in the word lattice. The bottom
part of the figure shows the phone lattice, where the link vari-
able is a phone from the phone lattice. To distinguish between
the two phone variables, we denote the phone-lattice phone
variable asHp

t and the phone variable derived from word lat-
tice via the pronunciation lexicon asHw

t .
Given an utterance of length T , the “best alignment” be-

tween the word and phone lattices really means making the
strings (Hw

t )T
t=1 and (Hp

t )T
t=1 as consistent as possible. There-

fore, a binary consistency variable Ct is introduced to en-
able this functionality. We use the notion of a observed child
[15, 16, 17] to link the two lattices together. This consis-
tency variable is always observed with value unity. Its two
parents are Hw

t and Hp
t , and the CPT p(Ct = 1|Hw

t ,Hp
t ) =

f(Hw
t ,Hp

t ) is simply a function of Hw
t and Hp

t . If Hw
t is

identical or similar toHp
t , f(Hw

t ,Hp
t ) should take larger val-

ues, and f(·) should take smaller values otherwise. In other
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words, the consistency variable will have high probability (or
be 1) to be value unity if the phone variables from the word
and phone lattices are similar to each other. Therefore, better
matched phone hypothesis string pairs will likely survive any
pruning stage in decoding, while a hypothesis that produces
less similar phone sequences will either get a low score or be
pruned away.

The function f(Hw
t ,Hp

t ) can be formed in a number of
ways. The simplest approach utilizes a hard “step” function,
i.e., something like f(Hw

t ,Hp
t ) = 0.9 if Hw

t = Hp
t and

f(Hw
t ,Hp

t ) = 0.1 otherwise. Using a 0/1-valued function
(e.g., using a value of 0 whenHw

t �= Hp
t ) would not allow in-

sertions or deletions at all (such hypotheses would get pruned
away). Another potentially more accurate approach utilizes
linguistic/phonetic knowledge. For example, phonetic simi-
larity (confusability) measures can be employed by mapping
the distance or cost between phones into [0, 1]-valued prob-
abilities. Also, f(Hw

t ,Hp
t ) could be learnt given sufficient

availability of both positive and negative training data [17].

4. OOV DETECTION

By combining word and phone lattices together and perform-
ing maximum-likelihood decoding, we can get the best jointly
aligned phone strings h̄w

1:T and h̄p
1:T , along with the word se-

quence w̄1:N , for a T frame utterance when N words have
been decoded. For the OOV detection, our hypotheses is as
follows: regions of time during which there is relatively little
local misalignment between h̄w

1:T and h̄p
1:T correspond to the

case where an OOV has not occurred, while regions where
there is relatively high local misalignment indicate a likely
OOV region. The reason is that during an OOV word, it is
likely that even the best aligned word (and best pronunciation
thereof) in the word-lattice and the best aligned sub-string in
the phone lattice will require additional (or higher cost) edit
operations. Our task, therefore, is to find localized misaligned
regions within h̄w

1:T and h̄p
1:T .

Let st denote a misalignment indicator at time frame t,
with st = 1{h̄w

t �= h̄p
t }. Then (st)T

t=1 is a length-T vec-
tor which we smooth using a length-M Hamming window
(wi)M−1

i=0 to produce �t =
∑M/2

i=−M/2 st+iwi+M/2. Finally, to
detect an OOV in a time region, we introduce two real-valued
thresholds: if regions within �1:T are above a detection thresh-
old α for a time duration longer than the duration threshold β,
we hypothesize an OOV region. If the hypothesized OOV re-
gion overlaps with a true OOV region, we count this as a (true
positive) OOV detection, otherwise we count it as a (negative)
false detection. This approach tends to favor recall at the cost
of some precision. Figure 3 illustrates this process.

Fig. 3. Our OOV detection procedure: (a) a phone sequence
h̄w

1:T is generated from the word lattice jointly with (b) a
phone sequence h̄p

1:T from the phone lattice (different colors
designate different phones); (c) misalignment indicators s1:T ;
(d) smoothed misalignment �1:T degree, where the dashed
(red) line indicates α; (e) the detected OOV region; and lastly
(f) the correct OOV region.

5. EXPERIMENTS

5.1. Experimental Setup

We used 3 hours of conversational telephone speech (CTS) for
our test lattices (both phone and word). The speech-to-text
systems used are based on the SRIs RT04 systems for CTS
[18]. It is using the SRI Decipher(TM) speaker-independent
continuous speech recognition system, a continuous-density,
state-clustered hidden Markov model (HMM). We used a 2-
pass decoding scheme, where the first pass generated 2-gram
lattices, which were then expanded with a bigger LM, and
used for constrained decoding for the second pass lattice gen-
eration. Prosodic phone-in-word duration models were used
for lattice rescoring. In the first pass, a phone-loop MLLR
adapted within-word MFCCmodel is used to generate bigram
lattices, which are rescored with 4-gram word LM, and con-
sensus decoding is applied to generate one-best hypotheses
for SAT and MLLR adaptation of the cross-word PLP model.
The bigram lattices are then expanded to trigram lattices for
constrained decoding using SAT-MLLR adapted cross-word
PLP models to generate the 2nd pass lattices. These lattices
are rescored using prosodic duration models and a 4-gram
LM, and are then used as our “word lattices.” For the phone
lattices, a phone trigram was trained from an aligned phone
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Fig. 4. ROC Curves varying α: (a) Different f(·)s, β = 50ms,W = 200ms, use of AC/LM weights; (b) Varying use of LM/AC
weights, β = 50ms, W = 200ms, phone similarity for f(·); (c) Different window size, β = 0ms, use of AC/LM weights,
phone similarity for f(·); (d) Different duration thresholds β,W = 200ms, use of AC/LM weights, phone similarity for f(·).

transcription of the training data. The phone lattices were then
obtained by this phone trigram with MFCC+ICSI features
front-end and cross-word triphone models. Acoustic training
uses all of Hub5 CTS plus CTRAN Switchboard 2 plus 2000
hours of Fisher data. MFCC and PLP models are trained each
using complementary halves of the Fisher corpus. LM train-
ing uses all CTS, plus UW web data, plus Broadcast News 96
transcripts, interpolated and entropy-pruned.
As the OOV rate for this data was relatively low (only

about 0.5%), we performed two experiments on modified forms
of these lattices which simulated the case where the OOV rate
is much higher.

5.2. Experiment I

In this first case, we mainly tested how the parameter config-
urations affect the results of OOV detection. We simulated
a larger OOV phenomenon by randomly choosing words to
be OOVs, with longer words having a higher probability of
being chosen as an OOV than shorter ones (since OOVs are
less likely to be short). We used simple phone length (based
on canonical pronunciations) to judge a word’s length (so
there are cases where actual short surface realizations of long
canonical words have been removed). Once the set of “OOV
words” were chosen, all associated word lattice links were
removed. This procedure was randomly and independently
repeated 20 times, in each case producing an OOV rate of
2.7%.
We utilize receiver operating characteristic (ROC) curves

to display the tradeoff between OOV true detection and false
detection rates (Figure 4). The standard deviations over the 20
trials are not explicitly shown, however, since they are almost
the same for each parameter setting and would obfuscate the
plots unnecessarily (for the detection rate it is about 1%, and
for the false detection rate, it is about 0.5%). To produce each
ROC curve in each figure, the parameter α is varied while
keeping the other parameters fixed (most of the plots had al-
pha vary from 0.1 to 0.9 in steps of 0.1, while a few of the
curves used an extra value or two to obtain extra points).
Figure 4(a) illustrates the ROC curves for three different

choices of f(h̄w
t , h̄p

t ). The first (red) uses a uniform distribu-

tion as a sanity check, meaning f(h̄w
t , h̄p

t ) = 0.5, which per-
forms poorly as expected. The second (green) uses the step
function f(h̄w

t , h̄p
t ) = 0.9 when h̄w

t = h̄p
t and f(h̄w

t , h̄p
t ) =

0.1 otherwise. The third (blue) uses a simple phone similarity
measure [19]. Here, β = 50ms, W = 200ms, and acous-
tic and language model scaling factors are obtained from the
word and phone lattice. Clearly, the phone similarity mea-
sure, which achieves 95.3% detection rate at a 6.76% false
detection rate, outperforms other two methods. These results
show that the choice of f(h̄w

t , h̄p
t ) is crucial for our approach

to perform well. Figure 4(b) shows the case with and with-
out utilizing the language model (LM) weights, showing that
this also is an important factor (see Section 6). Different win-
dow sizes W were also evaluated (Figure 4(c)) showing that
this parameter did not influence the overall shape of the ROC
curve, but rather where on this curve the various α samples
would span. Finally, changing the duration threshold β can
achieve an OOV detection rate of 92.6% with only a 4.48%
false detection rate.

5.3. Experiment II

In this second case, test lattices were generated by reducing
the recognizer vocabulary. The words were ordered based on
the unigram frequency estimated on the LM training data, and
a cutoff was chosen that resulted in a 3.5% OOV rate.
The ROC curve of our approach is shown in Figure 5,

whereW = 200ms, β = 50ms, and where we used the acous-
tic and language model scaling factors and the phone similar-
ity measure. To further evaluate our method, other approaches
for OOV detection were implemented in this experiment for
comparison, and are described below.

5.3.1. Comparison with the 1-best Approach

Alignment between the 1-best hypotheses from the word and
phone recognizers could also be used for OOV detection (sim-
ilar to previous work [8]). In this part of experiment, the
word/phone lattices were pruned to contain only the 1-best
paths. The alignment between them was performed using the
same graphical model (Figure 2) and the same parameter con-
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figurations (i.e., using language model scaling factors and the
phone similarity measure) as the lattice alignment approach.
Unlike the method where alignments are between all al-

ternative competing lattice hypotheses, the 1-best approach
takes into account only the 1-best hypotheses. Since the 1-
best path is likely to be inaccurate due to speech recognition
errors, it is quite possible that no good alignment between
the 1-best output of the word and phone recognizers exists
even when there are perfectly aligned sub-optimal paths in
the lattice alignment case. This might result in a higher false
detection rate for the 1-best approach, as supported by our
experimental results. The ROC curve (by varying α) of the
1-best approach is shown in Figure 5. It can be seen that the
false detection rate of the 1-best approach is higher than that
of lattice approach for the same OOV detection rate. Over a
large range of false detection values, our approach achieves
10-15% improvement in OOV detection rate over the 1-best
approach.

5.3.2. Comparison with the Confidence Measure Approach

Another approach to OOV detection is to use a confidence
measure to predict whether a recognized word is actually a
substitution of an OOVword. In this experiment, we tried two
kinds of confidence measures both obtained from the lattices.
One is the word log-likelihood score and the second is the
word posterior probability. The word log-likelihood scores
were calculated as the scaled combination of the acoustic and
language model scores. The word posterior probabilities were
estimated from the lattice using the forward-backward algo-
rithm.
We used a threshold on the confidence measures to deter-

mine whether to characterize a hypothesized word as an OOV
or not. The ROC curve can be obtained by varying the thresh-
old, as shown in Figure 5. Generally, posterior word probabil-
ities perform better as confidence measures than other numer-
ous features that can be extracted from the lattices [20], but
they still cannot achieve better performance in OOV detec-
tion than the lattice alignment approach. The reason mainly
lies in the fact that although confidence measures may be a
good indicator of mis-recognized words, they are unable to
tease apart errors due to OOV words from those errors due to
other phenomena such as degraded acoustic conditions.

5.3.3. Comparison with Filler Model Approach

The filler model approach to OOV detection was implemented
here as a comparison, by adding a lexical entry “@reject@”
to the recognizer to represent the OOV word. This word con-
tained a phone loop as pronunciation in order to match any
sequence of phones. The presence of an OOV word in the
output was based on the top recognizer hypothesis: the time
region corresponding to the “@reject@” token in the 1-best
output was marked as an OOV region. The main drawback
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Fig. 5. ROC plot for experiment II.

of this implementation is the fact that the filler model can
potentially absorb parts of the speech corresponding to in-
vocabulary words, and thus cause an large increase in word
deletions in the ASR output. In our experiment with the filler
model we achieved 8% OOV detection rate, with about 10%
increase in word deletions, while with 65.3% detection rate
we had 63.8% word deletions, making the ASR output not
very useful.

6. DISCUSSION AND FUTUREWORK

A potential problem of our approach is that with a bushy
enough word lattice, there might always be an alternate (and
wrong) word path that is phonetically similar enough to the
true phone sequence in the utterance to produce a good align-
ment with the phone lattice. At least in our experiments, how-
ever, we found that alternative word-lattice paths did not tend
to be chosen, primarily due to the language model (evidence
for this is seen in Figure 4(b) which shows that not using a lan-
guage model scale significantly hurts performance) and also
due to these alternative paths not aligning well enough.
In the future, we will focus on supervised training of the

consistency CPT, possibly using the approach of [17]. We
will also obtain lattices from “low-resource” languages and/or
broadcast news style corpora, both of which tend to have higher
true OOV rates. Rather than phone-lattices, we wish also to
employ lattices over multiple streams of articulatory features.
We would also like to apply our approach to a named entity
detection procedure. Ultimately, we wish this work to be inte-
grated into a spoken term detection task, with the goal of find-
ing all occurrences of a given sequence of words in a speech
corpus. Proper OOV detection could significantly facilitate
such a process.
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