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ABSTRACT
This paper introduces our work on mandarin lecture speech 
transcription. In particular, we present our work on a small 
database, which contains only 16 hours of audio data and 
0.16M words of text data. A range of experiments have been 
done to improve the performances of the acoustic model and 
the language model, these include adapting the lecture 
speech data to the reading speech data for acoustic modeling
and the use of lecture conference paper, power points and 
similar domain web data for language modeling. We also 
study the effects of automatic segmentation, unsupervised 
acoustic model adaptation and language model adaptation in 
our recognition system. By using a 3xRT multiple passes 
decoding strategy, we obtain 70.3% accuracy performance 
in our final system. Finally, we apply our speech 
transcription system into a SVM summarizer and obtain a 
ROUGE-L F-measure of 66.5%.

Index Terms— lecture speech transcription, model 
adaptation, multi-pass decoding, speech summarization

1. INTRODUCTION

Large amounts of work have been done for automatic 
transcription of broadcast news and telephone conversations. 
Research for automatic transcription of spontaneous speech 
in the environment of lecture presentation or conference 
presentation, however, has received relatively less attention 
in the field. In [1], [2], [3] and [4], Kawahara et al. 
presented their work on spontaneous Japanese lecture speech
recognition. By using 37.9 hours of lecture speech for 
acoustic modeling and 1.48M words of transcribed text for 
language modeling and by incorporating speaking-rate 
dependent decoding and adaptation, they obtained 69.2% 
word accuracy in their experiments [3]. In [4], they showed
improvement in lecture speech recognition by using more 
training data (60 hours of lecture speech and 3.15M words 
of transcribed text) and by applying unsupervised language 
model adaptation, where word error rate of 28.7% was 

achieved. [5] studied unsupervised language model 
adaptation for Japanese lecture speech transcription and 
showed that improvement in language model perplexity and 
recognition word error rate can be obtained. In [6] and [7], 
the ISL performed lecture transcription on English. As 
Mandarin is one of the most popular languages used in the 
world, it is interesting to study the Mandarin lecture speech 
transcription.

In this paper, we present our initial work on Mandarin 
lecture speech transcription. In particular, we collected a 
database, which contains 16 hours of audio data and 0.16M 
words of text data. Since our database is relatively small, we 
aim to improve our acoustic model and language model by 
using available data from other sources. These include the 
use of reading speech audio data for acoustic modeling and 
the use of lecture conference paper, power points and similar
domain web data for language modeling. As our recognition 
system is performed offline, we aim to achieve the best 
performance by using multiple passes decoding strategy 
together with unsupervised acoustic model adaptation and 
cross system language model adaptation techniques. An 
application of lecture speech transcription for summarization
is also implemented and compared to manual summarization.

The rest of the paper is organized as follows. In Section
2, we describe the audio corpora and the text corpora that 
were used in this work. Then, a baseline system is described 
in section 3. In section 4, model adaptation and multiple 
passes decoding strategy are presented. The application of 
our transcription system for speech summarization is
presented in Section 5. Finally, conclusions are given in 
Section 6.

2. DATABASE

The lecture audio data collected for this work consists of 60 
Mandarin oral presentations given by different speakers in 
the Chinese National Conference on Man-Machine Speech 
Communication (NCMMSC 2005). Each of the presentation 
lasts for 15-20 minutes and is recorded at 22 KHz and 16 bit 
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sampling rate. 55 presentations that amount to 16 hours of 
speech are chosen for training and 5 presentations that 
amount to 1.4 hours of speech are used for testing. All the 
lecture audio data are manually segmented and transcribed 
and down-sampled to 16 KHz.

The 863 Mandarin speech corpus and the HKU Mandarin 
speech corpus are used as the reading speech corpora. These 
corpora compose a total of 170 hours of reading speech 
from 250 speakers.

The text data used for language model training include 
the manual lecture speech transcriptions, the paper and 
power point presentations in the lecture conference, and web 
collected technical articles and conference papers. The total 
size of the text is 1.43M words, in which only 0.16M words 
are contributed from the lecture speech transcriptions and 
0.17M words are contributed from the paper and power 
point presentations respectively.

3. BASELINE SYSTEM

3.1. Language Modeling

Chinese word segmentation is performed on the training 
corpora by using the HIT IR Lab Chinese Segmenter [8]. 
Vocabulary selection based on maximum likelihood [9] is 
then applied to the training data to obtain a wordlist of 6878 
words. A total of 282 words, or 4.1% of the wordlist size, 
are English words. The out-of-vocabulary (OOV) rate of this 
wordlist on the test set is 1.0%. For each training data set, 
we built one language model with a cut-off threshold of two 
for the n-grams. The individual language models are then 
linear interpolated and merged to form a single language 
model. The interpolation weights are computed with the 
cross validation approach by dividing all the lecture speech 
transcription into five portions, and the estimation for each 
portion is done by the SRILM [10] toolkit. 

Table 1: Perplexity for different language models

Language Model Bigram Trigram
(I) Lecture transcription 319 395
(II) Paper and power point 743 834
(III) Web data 1020 1167
Data mixing (I) (II) 231 247
Data mixing (I), (II), (III) 296 301
Interpolate model (I), (II) 222 233
Interpolate model (I), (II), (III) 213 215

Table 1 gives the bigram and trigram perplexities for 
language models under different training set. As can be seen, 
language models trained solely from lecture speech 
transcription gives very large perplexities due to insufficient 
data. By adding the paper and power point presentations 
from the lecture conference, the language models are 
improved. Further use of web collected data gives only little 

improvement. Since the perplexities of the produced bigram 
language models are smaller than trigram language models, 
we used the interpolated bigram language model from all 
training data in our subsequent baseline experiments.

3.2. Acoustic Modeling

Our system uses tied-state cross-word triphone HMMs that 
are constructed by decision tree clustering. The system uses 
up to 3500 tied states in total and each state contains 16 
Gaussian mixture components. For every shift of 10ms, a 
25ms window of input speech is represented by a feature 
vector that includes 13 MFCC cepstral parameters 
(including C0) and their 1st and 2nd order derivatives. 
Cepstral mean normalization (CMN) is applied on each 
speech segment. The number of phones for the system is 67, 
where each of the 27 Mandarin initial phones and silence are 
modeled by three states left-to-right HMM with no state-
skipping, and each of the 37 Mandarin final phones, noise 
and unlabelled English word are modeled by five states left-
to-right HMM. For the Mandarin final HMMs, state 
transitions are added such that a minimum of three frames 
are allowed for matching of short finals. During the training, 
English to Mandarin phone mapping is applied to a
dictionary such that transcribed English words can be trained.
Acoustic model training using ML criterion is done for three 
training sets: read speech only, lecture speech only, read 
speech and lecture speech.

Table 2: Character accuracy for different acoustic models

Acoustic model (# tied states) Data Size
(hrs)

Acc (%)

Reading speech (3.5k) 170 47.7
Lecture speech (2k) 16 65.5
Mixed Reading and Lecture 
speech (3.5k)

186 65.0

Lecture speech adapt mixed 
data model (3.5k)

186 66.6

Table 2 shows the performance of the acoustic models tested 
under the supervision of the interpolated bigram language 
model. As can be seen, the model trained purely from 170 
hours of reading speech gives very poor performance due to 
speaking style mismatch between read speech and lecture 
speech. By using 16 hours of lecture speech only, we 
obtained 65.5% character accuracy. The results also show 
that mixing large amounts of reading speech data to lecture
speech data performs 0.5% worse than the acoustic model 
trained merely from lecture speech data. We obtain the best 
model by adapting the lecture speech data to the mixed data 
acoustic model. This is done by using the maximum 
likelihood linear regression (MLLR) [11] follows by the 
maximum a posteriori (MAP) [12] criterion, where a 1.1% 
absolute improvement is obtained compare to the model 
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trained from lecture speech only. This model is used for 
testing in our later experiments.

3.3. Decoding and Automatic Segmentation

The baseline system uses a single pass decoder. The decoder 
performs time-synchronous Viterbi beam search through a 
lexical tree and runs in a total of 1xRT for Chinese word 
bigram decoding by using a 1.86GHz dual core processor 
and 1GB memory. Automatic segmentation for the lecture 
audio is also performed and compared to manual 
segmentation. We used all the lecture speech training data to 
train five events: silence, noise, Mandarin initial, Mandarin 
final and unlabelled English word. For each event, we 
trained a GMM with 256 components. The silence and noise 
events are modeled by three-state HMMs while the 
Mandarin initial, Mandarin final and unlabelled English 
word events are modeled by seven-state HMMs. A grammar 
based Viterbi decoder is used to produce the GMM 
sequences for the audio. The GMM sequences are then 
relabeled to speech/non-speech labels and post-processed 
with the BBN approach [13]. Several combinations of the 
gap-bridging parameter g for non-speech regions and silence 
padding P at either end of each created speech segment are 
tried. Table 3 gives the comparison between the automatic 
segmentation and the manual segmentation. Using our 
chosen parameters, the automatic segmentation gives more 
segments in total but shorter average length. We observed 
1.0%-1.1% absolute degrade in accuracy performance by 
using automatic segmentation. But the degradation is 
eliminated after acoustic model adaptation (section 4).

Table 3: Comparison for different segmentations

Seg (g, P) # Segment Average
length

Acc (%)

v1 (0.1, 0.1) 2339 1.8s 65.46
v2 (0.2, 0.1) 1916 2.19s 65.51
v3 (0.3, 0.2) 1331 3.14s 65.59
Manual 1254 3.91s 66.60

4. ADAPTATION AND MULTI-PASS DECODING

4.1. Unsupervised Language Model Adaptation

Since our recognition system runs in offline, it allows us to 
perform language model adaptation by using all recognized 
text. We first built a language model from the recognized 
text of the ASR system and then merged this language model 
with individual language models in our baseline system. To 
estimate the interpolation weights, we divided all the correct 
lecture speech transcriptions from the training data into five 
portions and then used the cross-validation method. Table 4 
gives the perplexities of the adapted language models by 
using different automatic recognized text for adaptation and 

the corresponding character accuracy performances on the 
speech segments from manual segmentation. As can be seen, 
significant perplexity reductions are obtained by using the 
adapted models, and trigram language models now give 
smaller perplexities and higher recognition accuracies than 
bigram language models. The results also show that cross 
system language model adaptation gives better performance.  
For bigram testing, the language model adapted from the 
trigram recognized text gives better accuracy performance 
than the language model adapted from the bigram 
recognized text and vice versa for the trigram testing. The 
best adapted language models are obtained by adapting
mixed recognized text from a bigram system and a trigram 
system, both using the acoustic models with MLLR 
adaptation. Compare with the un-adapted language models, 
we obtained 31% and 37.8% perplexity reductions from the 
adapted bigram language model and the adapted trigram 
language model respectively. The absolute character 
accuracy improvement by using the adapted bigram 
language model and the adapted trigram language model are 
1.0% and 1.4% respectively.

Table 4: Perplexity and character accuracy for unsupervised LM 
adaptation with manual segmentation (a) bigram LM testing, (b) 
trigram LM testing.

(a)
Language model Perplexity Acc (%)
unadapted LM 213 66.6
adapt asr bg transcript 156 66.7
adapt asr tg transcript 155 67.0
adapt asr mllr transcript 147 67.6

(b)
Language model Perplexity Acc (%)
unadapted LM 215 66.5
adapt asr bg transcript 144 67.2
adapt asr tg transcript 144 67.1
adapt asr mllr transcript 135 68.0

4.2. Unsupervised Acoustic Model Adaptation

We also implemented unsupervised acoustic model 
adaptation and ran it offline with an iterative approach [14]. 
For each lecture presentation, a global maximum likelihood 
linear regression (MLLR) transform [11] is first estimated 
with the speech segments. The MLLR adaptation is then 
repeated by estimating four transforms, where a regression 
class tree is used to cluster the Gaussian components into 
four sets. Table 5 gives the character accuracy of our system 
under different stage of adaptation. By applying acoustic 
model adaptation only, we got a maximum of 2.4% and 
3.6% absolute character error rate reduction for the manual 
segmentation system and the automatic segmentation system 
respectively. Moreover, we can see that after performing 
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acoustic model adaptation, the automatic segmentation 
system gives better performances than the manual 
segmentation system. After applying language model 
adaptation with the mixed recognized text from the bigram 
system and the trigram system which used the adapted 
acoustic models, we further improve our systems, where 
1.0% and 1.5% absolute character error rate reductions are 
obtained for the bigram system and the trigram system 
respectively.

Table 5: Character accuracy under different stage of 
adaptation (a) bigram LM testing, (b) trigram LM testing

(a)
Model Manual Seg Auto Seg
Unadapted 66.7 65.6
Adapt AM 68.9 69.2
Adapt AM+LM 69.6 70.2

(b)
Model Manual Seg Auto Seg
Unadapted 66.5 65.7
Adapt AM 68.9 69.0
Adapt AM+LM 69.9 70.5

4.3. Multi-pass decoding strategy

All of the experiments described before were run by full 
decoding. In order to speed up the overall recognition 
process, we make use of the lattice during the multi-pass 
decoding. The decoding strategy of the final system is 
similar to [15]. In the first pass, a full decoding with un-
adapted bigram language model and acoustic model is 
applied to produce 1-best result and a lattice. Lattice
rescoring is then performed on trigram language model to 
obtain another 1-best result. Then, a bigram branch and a 
trigram branch are created and acoustic model adaptation 
with the MLLR approach is applied on each branch. Lattice 
rescoring is then performed on each branch with the adapted 
acoustic models, and produces 1-best recognition results. 
The recognized texts from the braches are mixed and then
unsupervised trigram language model adaptation is 
performed. A final re-decoding is done by using the adapted 
acoustic model and the adapted trigram language model. By 
using this multi-pass decoding strategy, our final recognition 
system runs in a total of 3xRT. The character accuracy
performances on the manual segmentation system and the 
automatic segmentation system are 69.7% and 70.3% 
respectively.

5. SPEECH SUMMARIZATION

We consider the extractive summarization as a binary 
classification problem; that is to say, we predict whether 
each sentence of the lecture transcription should be in a 

summary or not. We built the SVM classifier as our 
summarizer on acoustic features, lexical features and 
Poisson Noun as discourse feature [16][17]. We used a total 
of 6049 sentences from 34 presentations in the lecture 
speech training data to train our SVM classifier. We
evaluate the summarizer’s performance by ROUGE-L 
(summary-level Longest Common Subsequence) F-measure. 
Three sets of transcriptions are evaluated: manual 
transcriptions based on manual segmentation, ASR 
transcriptions based on manual segmentation and ASR 
transcriptions based on automatic segmentation. For the 
manually segmented system, the best summarization results 
are obtained by using a combination of acoustic and lexical 
features. For the automatically segmented system, the best 
result is obtained by using lexical features. The result is 
shown in Table 6. From the table, we can see that our 
summarizer yields good performance by using ASR
transcriptions with automatic segmentation: a ROUGE-L F-
measure of 0.665 is obtained, which is the same as the result
produced by ASR transcriptions with manual segmentation 
and only 0.6% less than the result produced by manual 
transcriptions with manual segmentation.

Table 6: The Summarizer’s Performance Evaluation

Manual Seg & 
trans

Manual Seg 
& ASR trans

Auto Seg &
ASR trans

0.671 0.665 0.665

6. CONCLUSION

This paper presents our initial work on Mandarin lecture 
speech transcription. We collected a relatively small 
database with only 16 hours of lecture speech data. A range 
of experiments have been done for improving acoustic 
model and language model. In a 3xRT multiple passes 
decoding architecture, we obtain 70.3% character accuracy
in our transcription system. The recognized results are
further applied to lecture speech summarization in a SVR 
summarizer and produce a ROUGE-L F-measure of  66.5%. 
In future work, we will collect more data and perform
discriminative training on the acoustic model. We will also 
investigate system combination from different branches of 
the recognition system.
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