
An Algorithm for Fast Composition of
Weighted Finite-State Transducers

John McDonough1,3, Emilian Stoimenov2 and Dietrich Klakow1

1Spoken Language Systems, Saarland University, Saarbrücken, Germany
2Institute for Theoretical Computer Science, University of Karlsruhe, Karlsruhe, Germany

3Insitute for Intelligent Sensor-Actuator Systems, University of Karlsruhe, Karlsruhe, Germany

Abstract
In automatic speech recognition based on weighted-finite

transducers, a static decoding graph HC ◦ L ◦ G is typically
constructed. In this work, we first show how the size of the de-
coding graph can be reduced and the necessity of determinizing
it can be eliminated by removing the ambiguity associated with
transitions to the backoff state or states inG. We then show how
the static construction can be avoided entirely by performing
fast on-the-fly composition of HC and L ◦ G. We demonstrate
that speech recognition based on this on-the-fly composition
approximately 80% more run-time than recognition based on
the statically-expanded network R, which makes it competitive
compared with other dynamic expansion algorithms that have
appeared in the literature. Moreover, the dynamic algorithm re-
quires a factor of approximately seven less main memory as the
recognition based on the static decoding graph.

1. Introduction
State-of-the-art large vocabulary continuous speech recognition
systems use subword units consisting of phones to model the
words of a language. As coarticulation effects are prevalent in
all speech, a phone must be modeled in its context to achieve
optimal performance. The relevant contexts are most often cho-
sen with a decision tree based on a measure of goodness such
as the likelihood or entropy of a training set.

As originally proposed by Mohri et al [16, 14], a weighted
finite-state transducer (WFST) that translates phone sequences
into word sequences can be obtained by forming the composi-
tion L ◦ G, where L is a lexicon which translates the phonetic
transcription of a word to the word itself, and G is a grammar
or language model (LM) which assigns to valid sequences of
words a weight consisting of the negative log probability of this
sequence. In earlier work [12], we proposed an algorithm for
constructing a transducerHC that translates from sequences of
Gaussian mixture models directly to phone sequences.

TheHC transducer must normally be composed withL◦G
to construct the complete recognition network. The final search
graph, even after optimization, quite typically consists of mil-
lions of states and tens of millions of states. Indeed, the size of
the final recognition network, along with the necessity of deter-
minizing it, typically limit the size of the grammar G that can
be used.

In the recent past, a popular approach for reducing the
amount of random access memory (RAM) required to store
R = HC ◦ L ◦ G during decoding has been to factor R into
the components A and B in one of several ways, then combine

This work was sponsored by the German Ministry of Research
and Technology (BMBF) under the SmartWeb project, grant number
01IMD01A.

the factored pieces on-the-fly during recognition. Such on-the-
fly composition fits readily into the usual Viterbi search imple-
mented as a token passing algorithm; for the on-the-fly compo-
sition ofR = A ◦B it is simply necesseary to store a pointer to
one edge of A and one edge of B in each token, then consider
states of R with the form (nA, nB) where na is a node of A
and nb is a node of B.

There are three primary problems to be solved in such a
on-the-fly composition: Firstly, production of noncoaccessible
states—i.e., states for which there is no successful path to an
end state—must be avoided, as their expansion during decod-
ing represents wasted computation and hence decreases the effi-
ciency of the search. During static composition, such nodes can
simply be purged as a post-processing step. Such an operation
is not feasible for dynamic composition, as the entire network
must be constructed in order to determine which nodes are non-
coaccessible. Caseiro and Trancoso [2] introduced a method
for avoiding the creation of such states during dynamic com-
position of L and G. Their method was recently extended by
Cheng et al [3] for a more general class of WFSTs.

Secondly, weight pushing, whereby the weights introduced
by the grammar G and lexicon L are pushed as far towards the
initial node as possible in order to maximize the efficiency of
the search [15], must be approximated during dynamic compo-
sition. Caseiro and Trancoso [2] introduced a suitable approxi-
mation for weight pushing, which was also extended by Cheng
et al [3]. We consider a further refinement of their technique in
this work.

Thirdly, the factors A and B to be composed on-the-fly
must be defined. Different approaches to this problem have ap-
peared in the literature. In [2], B = G was separated entirely
from the other components. In [5] and [19], G was separated
into an incremental LM B = Gi as well as a smearing LM
Gs which was statically composed with the other components
to formA = HC ◦L◦Gs. Finally, in [9], all components were
dynamically composed during recognition.

In this work, we first show how the size of the static recog-
nition network R = HC ◦L ◦G can be reduced and the neces-
sity of determinizing it can be eliminated by removing the am-
biguity associated with transitions to the backoff state or states
in G. This is in fact similar to the approach suggested in [16].
We then show how the static construction of HC ◦ L ◦ G can
be avoided entirely by performing fast on-the-fly composition
of A = HC and B = L ◦ G. Experiments with our initial
implementation of the on-the-fly composition algorithm indi-
cate it requires approximately 80% more run-time than recogni-
tion based on the statically-expanded network R, which makes
it competitive compared with other dynamic expansion algo-
rithms that have appeared in the literature [9, 2, 3]. As men-
tioned above, the key to achieving this efficiency is eliminating
the expansion of dead end nodes during search; we also present

461978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

an algorithm for the latter that works for the most general class
of WFSTs. Moreover, the loss of efficiency is offset by the fact
that the dynamic algorithm requires a factor of approximately
seven less main memory as the static algorithm.

The balance of this work is organized as follows. In Sec-
tion 2, we briefly review the definition of a weighted finite-state
transducer, then consider conventional static composition and
along with the other similarity transformations typically used
to build a static decoding graph. Section 3 shows how the size
of the decoding graph can be reduced and the necessity of de-
terminizing can be eliminated by explicitly modeling the tran-
sitions to the back-off node or nodes in G. The fast on-the-fly
composition algorithm is discussed in Section 4, along with a
technique for eliminating the expansion of dead-end paths dur-
ing dynamic decoding. Section 5 then shows how weight push-
ing, a standard operation used in constructing a static decoding
graph, can be simulated during dynamic decoding. The results
of a set of timing studies with the static and dynamic decoding
algorithms is presented in Section 6, along with statistics related
to network size. In the final section, we present our conclusions
and plans for future work.

2. Static Network Construction
Let us begin with formal definitions for the semiring and the
weighted finite-state transducer (WFST).

Definition 2 A semiring K = (K,⊕,⊗, 0̄, 1̄) consists of a set
K, an associative and commutative operation ⊕, an associative
operation⊗, the identity 0̄ under⊕, and the identity 1̄ under⊗.
By definition, ⊗ distributes over ⊕ and

0̄ ⊗ a = a ⊗ 0̄ = 0̄

Definition 3 A weighted finite-state transducer (WFST) T =
(Σ, Ω, Q, E, i, F, λ, ρ) on the semiring K consists of an input
alphabet Σ, an output alphabet Ω, a set of states Q, a set of
transitions

E ⊆ Q × (Σ ∪ {ε}) × (Ω ∪ {ε}) × K × Q,

a start state i ∈ Q, a set of end states F ⊆ Q. A transition
t = (p[t], li[t], lo[t], w[t], n[t]) ∈ E consists of a previous state
p[t], a next state n[t], an input symbol li[t], an output symbol
lo[t], and a weight w[t].

When referring the sets of states or arcs of more than one trans-
ducer, we will distinguish among them with suitable subscripts;
e.g., QS and ES are respectively the sets of states and edges of
transducer S.

Next we briefly describe conventional weighted composi-
tion.

Definition 4 Consider a transducer S which maps an input
string u to an output string v with a weight of w1. Consider
also a transducer T which maps input string v to output string
y with weight w2. The composition

R = S ◦ T

of S and T maps string u directly to y with weight

w = w1 ⊗ w2.

In the absence of ε–transitions, the construction of such a
composition is straightforward. It entails simply pairing the out-
put symbols on the transitions of a node nS ∈ ES with the input

1

2

ε1 : ε1

x:x

ε1 : ε1

x:x 3

ε2 : ε1

ε2 : ε2

x:x

ε2 : ε2

Figure 1: Filter used during composition with ε–symbols, after
Pereira and Riley [17].

symbols on the transitions of a node nT ∈ ET , beginning with
the initial nodes iS ∈ QS and iT ∈ QT . Each nR ∈ QR is
uniquely determined by the pair (nS , nT). The pairing of the
transitions of nS with those of nT is local, inasmuch as it only
entails the consideration of two nodes at a time. As R is con-
structed, it can so happen that nodes are created that do not lie
on a successful path; i.e., from such a node, there is no path to
an n ∈ FR. As mentioned in the introduction, such nodes are
typically purged from the graph after static composition. It is
worth noting, however, that this purge step is not a local opera-
tion inasmuch as it is necessary to consider the entire transducer
R in order to determine if any given node is on a successful path.
We will return to this point in Section 4.

When ε–symbols are introduced, composition becomes
more complicated, as it is necessary to specify how and if an ε–
symbol on the output of a transition in nS can be combined with
an ε–symbol on the input of nT . In such a case, a node nR ∈ R
is specified by a triple (nS, nT , f), where f ∈ {0, 1, 2} is an
index indicating the state of the composition filter. This filter is
necessary to ensure that the resulting transducer R = S ◦T sat-
isfies the mathematical definition of composition [17]. Such a
filter is shown in Figure 1. Essentially, the filter ensures that an
ε–transition in A is only paired with an ε–transition in B when
the filter is in State 1. If the filter is in State 2 or 3, then a non–ε
symbol in A must be matched with a non–ε in B in order to
return to State 1 before further ε–symbols from A and B can be
paired together [17].

In prior work, we have constructed a complete recognition
network R through the series of operations

R = min push det(min det(HC) ◦ det(L ◦ G)) (1)

This construction sequence is similar to the approach origi-
nally suggested in [16] as well as those used by others [2, 3].
The principal difference in our approach is that H , the hid-
den Markov model transducer (HMM), and C, the context-
dependency transducer, are not constructed separately. Rather,
as mentioned in the introduction, there is a single sequential
transducer HC that maps from sequences of Gaussian mixture
models (GMMs) directly to sequences of phones.

3. Reducing Static Network Size
Consider now the following definition and related theorem due
to Mohri [13].

Definition 5 A sequential transducer is deterministic and has
no transitions with ε as input.

462

0 1

2

3

4

5

6

7

will/p9

ε(%)/p10<s>

they/p1

we/p3

ε(%)

ε(%)/p2

ε(%)/p4

were/p5

are/p7

ε(%)/p8

ε(%)/p6

. . .

. . .

. . .

Figure 2: Simple grammar G.

0 1 1

2

3

5

4

6 7
<s> </s>

DH:they EY:ε

W:we IY:ε

AXR:ε

W:will XL:ε

AA:are R:ε

W:were

%:%

Figure 3: Lexicon L.

Theorem 6 (Mohri) The composition of two sequential trans-
ducers is sequential.

While simple, Mohri’s theorem has profound theoretical
and practical implications. First of all, consider the network
construction sequence specified in (1). By far, the most re-
source intensive operation in terms of both computation and
main memory is the determinization after the composition of
min det(HC) and det(L ◦ G). According to Mohri’s theo-
rem, if both min det(HC) and det(L ◦ G) were sequential,
this determinization could be eliminated entirely. This poses no
problem for the context dependency transducer min det(HC),
as its construction ensures it is sequential. More problematic is
L ◦ G because ε–transitions in G are typically used to enable
transitions to the back-off node. While the ε–transitions can be
removed with the ε–removal algorithm, this can lead to a mas-
sive increase in the number of transitions in the network.

Consider then the following modifications to the several
transducers. Replace the ε-transitions inG with a back-off sym-
bol %. Then, at the end of each word sequence in L, add a
self-loop with % as input and output. Similarly, to the end of
each three-state sequence inHC, add a self-loop with% as in-
put and output. With these modifications, the L ◦G component
can be constructed according to

B = det(ε–removal(L ◦ G)) (2)

As the ε–transitions have now been removed from G, the ε–
removal operation on L◦G does not cause a massive increase in
the number of transitions in the model, as the only ε–transitions
remaining in L ◦ G before removal stem from the ε–transition
from last state of each word transcription in L to the “branch”
state, from which all word transcriptions begin.

Consider the grammar G and lexicon L shown in Figures 2
and 3, respectively. In G, transitions to the back-off node,
State 4, are labeled either ε or with %. Moreover, State 1 in L
has a self-loop labeled with % on both input and output. Fig-
ures 4 and 5 display the resulting transducer when the %– and
non–%–versions of G are composed with L and ε–removal is
applied to the result. Clearly using the explicit back-off symbol

(0,0) (1,1)
<s>

(2,2)

W:we

(3,3)

DH:we

(1,2)
IY:ε

(1,3)
EY:ε

(1,6)

(1,7)

AA:areW:will

(1,5)
W:were

W:were AA:are

W:will

Figure 4: Result of composing L andG with no explict backoff
symbol.

(0,0) (1,1)

(2,2)

(3,3)

(1,2)

(1,3)

<s>

W:we

IY:ε

DH:they EY:ε

(1,4)

%:ε

%:ε

(1,6)

(1,5)

(1,7)

AA:are

W:were

W:will

Figure 5: Result of composing L and G with an explict backoff
symbol %.

% produces a composition L ◦ G with fewer transitions after
ε–removal.

As before, the HC component can be constructed accord-
ing to

A = min det(HC) (3)
Then the complete recognition network is obtained from

R = min push(A ◦ B) (4)

As a final operation, the word boundary and back-off symbols
are removed from R prior to its use in recognition. Dimensions
for two decoding graphs based on shrunken and full trigram
language models and constructed as described here are given in
Table 1.

4. Fast On-the-Fly Composition
While the algorithm described in the last section is undoubt-
edly beneficial in terms of reducing the size of the final recogni-
tion network, the network obtained using the full WSJ language
model still had nearly 50 million states and over 100 million
edges. Decoding with this network could only be performed
on a 64-bit workstation, and the size of the network in mem-
ory was nearly 7 Gb, which can be prohibitive even for research
purposes, and impossible on platforms having only more mod-
est memory. In this section, we consider a method whereby the
such enormous memory requirements can be reduced by elimi-
nating the static expansion of the final network.

Consider again the composition of A and B as defined
in (4). As B has no ε–symbols on the input side, each node
nR ∈ QA◦B is uniquely defined by the pair (nA, nB), where
nA ∈ QA and nB ∈ QB . This implies that the complexity of
the general composition algorithm introduced by the ε–symbols
has been eliminated; B has no ε–symbols on the input, and an
ε–symbol on the output side of A can always be taken. As R is
typically many times larger than A and B prior to their compo-
sition, and remains so even after determinization, pushing, and
minimization, we are led to consider the following strategy to
reduce memory requirements. First of all, let us redefine B as

B = min push det(ε–removal(L ◦ G)) (5)

Now, instead of statically composing A and B, we perform de-
coding with the on-the-fly-composition algorithm [9]. For the

463

Language G HC ◦ L ◦ G
Model Bigrams Trigrams Nodes Arcs

Shrunken Trigram 431,131 435,420 14,187,005 32,533,593
Full Trigram 1,639,687 2,684,151 49,082,515 114,304,406

Table 1: Sizes of shrunken and full trigram language models and decoding graphs.

sequential A and B transducers considered here, the latter is
a straightforward modification of the token passing algorithm
whereby each token maintains a pointer to an edge in both A
and B, and each active hypothesis is associated with a state
nR = (nA, nB) ∈ QR.

There remains one further problem to be solved. As men-
tioned in Section 2, nodes can be formed during the on-the-fly
composition of A and B that do not lie on a successful path.
During static composition, such nodes are purged. Expanding
the set of active hypotheses across transitions from nodes that
are not on successful paths during on-the-fly composition would
clearly result in wasted computation. Here we propose a novel
solution for eliminating the expansion of such non-coaccessible
nodes.

Definition 7 A node is white iff all of its outgoing transitions
are on successful paths. A node is black iff none of its outgoing
transitions are on successful paths. A node is gray iff it has
at least one transition on a successful path and at least one
transition that is not on a successful path.

We now state a simple theorem with deep implications.

Theorem 8 All paths from the initial node i ∈ R to a black
node must go through a gray node.

Proof: Without loss of generality, the initial node i can be
assumed to be white. Assuming that a path from the initial node
to a black node would never cross a gray node leads immedi-
ately to a contradiction with the definition of a white node. �

Now we state a definition and another theorem.

Definition 9 The fence F is that subset of black nodes that can
be reached by a single transition from a gray node.

Theorem 10 All paths from i to a black node must cross a node
nF ∈ F .

Proof: The claim follows as a corollary of Theorem 8. �
Theorem 10 clearly implies that in order to eliminate, and

not simply avoid, the expansion of any black node during on-
the-fly composition, we need not store the indices of all black
nodes, but rather only the indices of the fence nodes. Then, as
soon as a fence node is encountered, the associated hypothesis
is not expanded further.

The fence can be found as follows. Starting from the ini-
tial node iR = (iA, iB), perform a breadth first search (BFS)
to discover all nodes in the set A that are accessible from iR as
well as the end nodes FR ⊂ A. Now reverse both A and B and
searching backwards from each nF ∈ FR, discover all nodes
in the set C that are both accessible from iR and coaccessible
from FR. Clearly the set of black nodes is then B = A − C.
Now a third BFS can be conducted to discover the gray nodes,
and therewith the fence F . Although all accessible nodes in R
must indeed be visited, it is only necessary to store the pair of
indices (nA, nB) ∈ R in order to identify it uniquely, given

that, as previously mentioned, the composition filter is not re-
quired. Moreover, it is unnecessary to store the adjacency list of
any node, given that a node will be visited at most three times
during the fence construction procedure and the adjacency list
can be efficiently regenerated with each visit. Hence, the fence
construction procedure requires far less RAM than would be
necessary to store the network R in memory were it fully ex-
panded.

5. Dynamic Weight Pushing
Caseiro and Trancoso [2] proposed a technique for composing a
dictionary transducer L with a grammar transducer G in which
the arcs ofL are annotated with supplemental information about
the next non–ε–transitions that will be encountered during net-
work transversal. This “lookahead” information was used both
to avoid the creation of non-coaccessible states as well as to
provide for dynamic weight pushing.

While we eliminate the creation of non-coaccessible states
through use of the fence as described above, it is still useful
to consider a scheme for dynamic weight pushing based on
lookahead information. We used the following variation on the
technique described by Caseiro and Trancoso [2]. First, we
annotated each node n in HC with supplemental information
about the next non–ε–transitions that would be encountered in
a graph transversal beginning from n. This was achieved by
initiating a depth first search from each node n in HC, which
proceeded until a non-ε output symbol was encountered on a
transition. Then during search, for a partial hypothesis termi-
nating in state (nA, nB) ∈ QR, the next non–ε list in nA was
compared with the adjacency list of nB to find the intersecting
set of symbols. Of all transitions in the adjacency list of nB

with an input symbol in this intersection, the arc with the min-
imum weight was chosen and this minimum weight was added
to the language model score of the partial hypothesis ending in
state (nA, nB) ∈ QR. The token associated with each par-
tial hypothesis also included the value of this pushed weight.
When this value of pushed weight was greater than zero, the
difference between the minimum weight in the intersecting set
and the amount of weight already pushed was added to the LM
score. In this manner, we ensured that the correct total LM
weight would eventually be added to the partial hypothesis, at
latest when the search advanced across the next arc in B con-
taining the actual symbol. When this symbol was encountered,
the remaining balance of the weight was added to the partial
hypothesis and the value of the pushed weight was reset to zero.

The dynamic weight pushing algorithm is illustrated in Fig-
ure 6. Initially a token is created with a pointer to the transition
entering State 0 in HC, the upper graph, and the transition en-
tering State 1 in L ◦ G, the lower graph. For clarity, we do not
show the self-loops that are normally present inHC. Beginning
from State 0 inHC, the output symbols “M”, “N”, “P” and “T”
can be reached. Of the transitions labeled with these symbols in
L ◦ G, the transition with input “M” has the minimum weight
of 5. Hence, 5 is pushed onto the partial hypothesis inHC and
we set p = 5. From State 1, only “N”, “P” and “T” can be
reached, and of the transitions in HC labeled with these sym-

464

0 1 2

3

5

4

{M,N,P,T} {N,P,T} {P,T}

{M} {N}

{M}

1, p=6 1, p=7 0, p=0

1, p=00, p=6

5, p=5

0, p=5

0, p=00, p=5

0, p=0

AH-b(23):AH AH-m(18) AH-e(132) T-b(117):T

AH-m(4)
AH-e(132)

N-b(8):N
AH-e(22)

P-b(101):P

M-b(38):M

1

2

3

4

5

AH:ε/4

M:CAMERA/5

N:CAN/6

P:CAP/8

T:ε/7

Figure 6: Illustration of dynamic weight pushing.

bols, that transition with input “N” has the minimal weight of 6.
As p = 5 from the prior transition, we can push an additional
weight of 6 − 5 = 1 onto the partial hypothesis, set p = 6,
and advance from State 0 to State 1. From State 2 in HC only
“P” and “T” can be reached, which have weights 8 and 7 re-
spectively in L ◦ G. Thus in advancing from State 1 to State 2
an additional weight of 7 − 6 = 1 is pushed onto the partial
hypothesis and we set p = 7. In leaving State 2, no weight is
pushed onto the hypothesis associated with “T” and a weight of
8 − 7 = 1 is pushed onto the hypothesis associated with “P”.
In both cases, we set p = 0 as the actual phone symbols have
now been matched and we are ready to begin the next round of
lookahead with the transitions leaving States 4 and 5 in L ◦ G.

6. Experiments
After beamforming, the feature extraction of our ASR system
was based on cepstral features estimated with a warped min-
imum variance distortionless response [20] (MVDR) spectral
envelope of model order 30. Due to the properties of the warped
MVDR, neither the Mel-filterbank nor any other filterbank was
needed. The warped MVDR provides an increased resolu-
tion in low–frequency regions relative to the conventional Mel-
filterbank. The MVDR also models spectral peaks more accu-
rately than spectral valleys, which leads to improved robustness
in the presence of noise. Front-end analysis involved extract-
ing 20 cepstral coefficients per frame of speech and performing
global cepstral mean subtraction (CMS) with variance normal-
ization. The final features were obtained by concatenating 15
consecutive frames of cepstral features together, then perform-
ing a linear discriminant analysis (LDA) to obtain a feature of
length 42. The LDA transformation was followed by a second
global CMS, then a global STC transform [8].

The training data used for the experiments reported here
was taken taken from the WSJ0 and WSJCAM0 [6] sets, for
a total of 40 hours of training material. Acoustic models es-
timated with two different HMM training schemes were used
for several decoding passes: conventional maximum likelihood
(ML) HMM training [4, §12], and speaker-adapted training un-
der a ML criterion (ML-SAT) [1]. Our baseline system was
fully continuous with 3,500 codebooks and a total of 180,656
Gaussian components.

The experimental results described here were generated af-

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9

W
or

d
E

rr
or

 R
at

e
(%

)

Real-Time Factor

Dynamic Weight Pushing, Full Trigram
Dynamic Expansion, Full Trigram

Dynamic Weight Pushing, Small Trigram
Dynamic Expansion, Small Trigram

Static, Small Trigram

Figure 7: Word error rate vs. real-time factor for the static de-
coder as well as the dynamic expansion decoder both with and
without dynamic weight pushing.

ter four decoding passes on the close-talking microphone from
the Speech Separation Challenge Part 2 development set. The
individual decoding passes are also described in [10]. The
fourth decoding pass was based on vocal tract length nor-
malization [18] (VTLN), maximum likelihood linear regres-
sion [11] (MLLR), and constrained maximum likelihood lin-
ear regression [7] (CMLLR). These parameters were estimated
based on the word lattices from the third pass.

Figure 7 shows the results of a set of timing studies based
on the static decoder as well as the dynamic expansion decod-
ing algorithm described in Section 4 both with and without the
dynamic weight pushing algorithm presented in Section 5. We
used two language models for these experiments: the shrunken
trigram and the full trigram whose dimensions are given in Ta-
ble 1. The static network was based on the small trigram.

The results in Figure 7 indicate that the dynamic expan-
sion algorithm requires approximate 80% more execution time
than the static algorithm when the same language model is used.
They also show that, disappointingly, the dynamic weight push-
ing algorithm does not decrease the execution time, much the
opposite in fact. We attribute this to the fact that our initial im-
plementation of the on-the-fly composition algorithm was based
on matching the output symbols of HC with the input symbols
of L◦C through a linear search over the adjacency lists that had
been appropriately sorted. Greater efficiency could undoubtedly
be achieved if this linear search were replaced with a hash table
access, as the output symbols appearing in the adjacency list
of any given node in HC are typically very sparse due to the
nature of the decision tree used in its construction. The rela-
tive efficiency of the dynamic search algorithm with respect to
its static counterpart can be greatly improved by using the full
trigram language model, as indicated by the fact that for rela-
tively wide beams, the word error rate (WER) achieved by the
dynamic decoder with the full trigram is actually lower than that
achieved by the static decoder with the shrunken trigram.

Shown in Table 6 are the task image sizes for the static
and dynamic decoders. As is clear from the tabulated sizes,
when the same small trigram is used for both the static and dy-
namic decoders, the dynamic decoder requires a factor of ap-
proximately seven less RAM. This enables the full trigram to
be applied during dynamic decoding, which requires less than
500 Mb. The full trigram could not be used with static de-
coder on the 32-bit machines used for these experiments re-

465

Static Dynamic
Beam Small Trigram Small Trigram Full Trigram
120.0 1380 179 470
130.0 1381 182 473
140.0 1384 187 476
155.0 1389 200 485

Table 2: Task image sizes in Mb for the static and dynamic
expansion decoders at various beam settings.

ported here. On a work station with a 64-bit operating system,
7 Gb of RAM were required merely to load the decoding graph
built from the full trigram, and the entire task image was ap-
proximately 8 Gb. It is interesting to note that the size of the task
image for the dynamic decoder with the full trigram is nearly a
factor of three smaller than that of the static decoder with the
shrunken trigram.

7. Conclusions and Future Work
In this work, we have proposed an algorithm for dynamically
composing HC, which maps from sequences of Gaussian mix-
tures to phones, and L ◦ G, which maps from sequences of
phones to sequences of words. We also showed how a structure
dubbed the fence can be found that prevents non-coaccessible
nodes from being generated during dynamic composition, and
thereby reducing the efficiency of the search. With respect to
decoding based on the static graphHC ◦L◦G, the dynamic al-
gorithm requires approximately 80% more execution time. We
found that the dynamic composition algorithm actually became
more accurate than the static decoding algorithm at a given real-
time factor when a larger trigram language model was used with
the former. The large trigram LM could not be used with the
static decoder because the resulting decoding graph would not
fit into the the main memory of our 32-bit work stations.

We proposed here a refinement of the dynamic weight push-
ing algorithms that have appeared previously in the literature.
We were, however, unable to achieve any reduction in execution
time by using such a dynamic weight pushing algorithm. We at-
tribute this to the fact that the static weight pushing over L ◦ G
achieves a nearly optimal distribution of weights, so that further
dynamic pushing over HC yields no significant advantage. It
is also likely that replacing the linear search used to match the
output symbols of HC with the input symbols of L ◦ G with
a hash access would greatly improve the efficiency of both the
dynamic weight pushing as well as the on-the-fly composition
itself. Modifying our implementation to include such a dynamic
hash access will be a primary objective in the future.

8. References
[1] T. Anastasakos, J. McDonough, R. Schwarz, and

J. Makhoul. A compact model for speaker-adaptive train-
ing. In Proc. ICSLP, pages 1137–1140, 1996.

[2] D. Caseiro and I. Trancoso. A specialized on-the-fly algo-
rithm for lexicon and language model composition. IEEE
Trans. Audio, Speech and Language Processing, 14(4),
2006.

[3] Octavian Cheng, John Dines, and Mathew Magimai
Doss. A generalized dynamic composition algorithm
of weighted finite state transducers for large vocabulary
speech recognition. In Proc. ICASSP, 2007.

[4] J. Deller, J. Hansen, and J. Proakis. Discrete-Time Pro-

cessing of Speech Signals. Macmillan Publishing, New
York, 1993.

[5] H. Dolfing and I. Hetherington. Incremental language
models for speech recognition using finite-state transduc-
ers. In Proc. ASRU, 2001.

[6] Jeroen Fransen, Dave Pye, Tony Robinson, Phil Wood-
land, and Steve Young. WSJCAM0 corpus and recording
description. Technical Report CUED/F-INFENG/TR.192,
Cambridge University Engineering Department (CUED),
Speech Group, Trumpington Street, Cambridge CB2 1PZ,
UK, Sept. 1994.

[7] M. J. F. Gales. Maximum likelihood linear transfor-
mations for HMM-based speech recognition. Computer
Speech and Language, 12, 1998.

[8] M. J. F. Gales. Semi-tied covariance matrices for hidden
Markov models. IEEE Transactions Speech and Audio
Processing, 7:272–281, 1999.

[9] T. Hori and A. Nakamura. Generalized fast on-the-fly
composition algorithm for WFST-based speech recogni-
tion. In Proc. Interspeech, 2005.

[10] Kenichi Kumatani, Uwe Mayer, Tobias Gehrig, Emilian
Stoimenov, John McDonough, and Matthias Wölfel. Min-
imum mutual information beamforming for simultaneous
active speakers. In Proc. ASRU, submitted, 2007.

[11] C. J. Leggetter and P. C. Woodland. Maximum likeli-
hood linear regression for speaker adaptation of contin-
uous density hidden markov models. Computer Speech
and Language, 9:171–185, Apr. 1995.

[12] J. McDonough, Matthias Wölfel, and Emilian Stoimenov.
On maximum mutual information speaker-adapted train-
ing. Computer Speech and Language, to appear.

[13] M. Mohri. Finite-state transducers in language and speech
processing. Computational Linguistics, 23(2), 1997.

[14] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state
transducers in speech recognition. Computer Speech and
Language, 16:69–88, 2002.

[15] M. Mohri and M. Riley. A weight pushing algorithm
for large vocabulary speech recognition. In Proc. ASRU,
pages 1603–1606, Aarlborg, Denmark, Sep. 2001.

[16] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Periera.
Full expansion of context-dependent networks in large vo-
cabulary speech recognition. In Proc. ICASSP, volume II,
pages 665–668, Seattle, 1998.

[17] F. Pereira and M. Riley. Speech recognition by composi-
tion of weighted finite automata. In E. Roche and Y. Sch-
abes, editors, Finite-State Language Processing, pages
431–453. MIT Press, Cambridge, MA, 1997.

[18] L. Welling, H. Ney, and S. Kanthak. Speaker adap-
tive modeling by vocal tract normalization. IEEE Trans.
Speech Audio Proc., 10(6):415–426, 2002.

[19] D. Willett and S. Katagiri. Recent advances in effi-
cient decoding combining on-line transducer composition
and smoothed language model incorporation. In Proc.
ICASSP, 2002.

[20] M.C. Wölfel and J.W. McDonough. Minimum variance
distortionless response spectral estimation: Review and
refinements. IEEE Signal Process. Mag., 22(5):117–126,
Sept. 2005.

466

