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ABSTRACT

This paper describes the RWTH speech recognition system
for Arabic. Several design aspects of the system, including
cross-adaptation, multiple system design and combination, are
analyzed. We summarize the semi-automatic lexicon genera-
tion for Arabic using a statistical approach to grapheme-to-
phoneme conversion and pronunciation statistics. Further-
more, a novel ASR-based audio segmentation algorithm is
presented. Finally, we discuss practical approaches for paral-
lelized acoustic training and memory efficient lattice resco-
ring. Systematic results are reported on recent GALE evalua-
tion corpora.

Index Terms— Speech Recognition, System Combina-
tion, Cross-Adaptation, Audio Segmentation

1. INTRODUCTION

Arabic poses new challenges for research in human language
technologies. The morphological complexity of Arabic and
other language characteristics, like missing pronunciation in-
formation in Arabic texts [1], introduce new requirements in
the design of speech recognition systems.

In this paper, we describe our automatic speech recog-
nition (ASR) system for Arabic and present systematic re-
sults on recent evaluation corpora of the Global Autonomous
Language Exploitation (GALE) project [2]. The recognition
system consists of three subsystems each using a different
acoustic model. We illustrate the multiple system design and
analyze the effects of cross-adaptation and system combina-
tion techniques. The gain of cross-adaptation methods is also
shown by improved results on English corpora of the TC-
STAR Evaluation Campaign. The Arabic lexicon used is aug-
mented using a statistical approach to grapheme-to-phoneme
conversion and pronunciation statistics.

In addition, we go into some practical aspects of our sys-
tem: a fast maximum likelihood training for acoustic models
that is useful for processing large amounts of data and a mem-
ory efficient lattice rescoring technique required when dealing
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with huge language models. Furthermore, we describe a new
method for audio segmentation using several features derived
from the output of a speech recognizer.

The remainder of this paper is organized as follows: First,
we describe the acoustic models in Section 2 and the language
model together with the lexicon in Section 3. Section 4 de-
picts our decoding architecture. Practical aspects are covered
by Section 5. Finally, we present experimental results in Sec-
tion 6.

2. ACOUSTIC MODELS

We have three different acoustic models for our subsystems.
The features used are described in the next section. The acous-
tic models, their training and the speaker normalization and
adaptation methods applied are presented in the following
sections.

2.1. Features

The baseline acoustic front end consists of Mel frequency
cepstral coefficient (MFCC) features derived from a bank of
20 filters. We use 16 cepstral coefficients (including the ze-
roth coefficient) which are normalized using cepstral mean
and variance normalization. These MFCC features are aug-
mented with a voicedness feature [3].

The gammatone filterbank is reported to simulate the hu-
man auditory filter well. We use gammatone cepstral coeffi-
cients as described in [4], normalized like the MFCCs by cep-
stral mean and variance normalization. We add the voicedness
feature to the gammatone cepstral features as well.

Phone posterior features estimated by a neural network
(NN) are the third type of features used. The NN is trained
on phoneme classes obtained by a phone alignment, which is
generated using HMM models. The input to the NN are multi-
ple time resolution features, which are based on PLP features
[5]. A prior version of the NN features is described in [6], the
extended implementation currently used is depicted in [7].

In order to incorporate temporal context into the acoustic
features, we concatenate 9 consecutive feature vectors in a
sliding window. The concatenated feature vector is projected
to a feature space of lower dimension by applying a linear
discriminant analysis (LDA).
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Table 1. Transcribed recordings used for acoustic modelling.

Transcribed Data [h] 450.8
#Segments 209,656
#Running Words 3,256,278
Silence ratio [%] 10.3

2.2. Models

The phonemes in triphone context are modeled by 6-state hid-
den Markov models. Systems 1 and 3 consider triphone con-
text across word boundaries. Classification and regression
trees tie the triphone states to 4500 generalized triphone states
in Systems 1 and 2, System 3 has 5000 states.

System 1 and 2 use MFCC and NN features, the resulting
feature vectors have 70 and 80 components respectively. The
front end of System 3 consists of gammatone and voicedness
features projected by an LDA to feature vectors of 60 dimen-
sions.

2.3. Speaker Normalization and Adaptation

Both systems using MFCC features apply vocal tract length
normalization (VTLN) to the filterbank. During recognition,
the warping factors are estimated by a Gaussian mixture clas-
sifier on a sliding window, which allows us to apply VTLN
already in the first recognition pass and even on unsegmented
data.

Speaker variations are compensated by speaker adaptive
training (SAT) based on constrained maximum likelihood li-
near regression (CMLLR) [8].

2.4. Training

All the acoustic models are trained on the same corpus, which
is described in Table 1. The roughly 450h of audio material
are taken from two domains: broadcast news and broadcast
conversation. Parts of the transcripts have been derived auto-
matically or are quick transcriptions. The basic acoustic mod-
els are trained with the maximum likelihood method (“Viterbi
training”).

Discriminative training with the minimum phone error cri-
terion [9] is performed to enhance the acoustic models. The
word conditioned lattices required for the discriminative train-
ing are created in one pass with a unigram language model.
This weak language model is important for the discriminative
training because it allows for more diverse paths in the lat-
tice, resulting in a better generalization [10]. We produce two
lattice sets for the training data: one for the MFCC based Sys-
tems 1 and 2 and one for System 3, created using a decoder
with the corresponding acoustic model.

3. LEXICON AND LANGUAGE MODEL

Since Arabic is a morphologically rich language, the model-
ing of pronunciation lexica is a challenging task. Basically,

two problems have to be addressed. First, even with vocabu-
laries consisting of 256k words, the out-of-vocabulary (OOV)
rate is fairly high compared to e.g. English where we obtain
an OOV rate lower than 0.7 % with a lexicon consisting of 53k
words (cp. Tables 3 and 2) [11]. Second, diacritics are usu-
ally omitted in written Arabic texts. These diacritical marks
are used for disambiguation and clarify the actual pronunci-
ation. A word written without diacritics may have various
meanings depending on the pronunciation. Thus, the mean-
ing of a written word may often only be clear if the context is
available.

Our Arabic pronunciation lexicon was derived from the
lexicon of the LC-STAR project [12]. A statistical grapheme-
to-phoneme conversion model [13] was trained based on this
lexicon. This model was used to generate pronunciations for
words not covered by the original lexicon. The pronuncia-
tions are constructed using a set of 34 phonemes.

For all of the experiments presented, we use the same
recognition lexicon consisting of 256k words with approxi-
mately 429k distinct pronunciations. The pronunciation scores
are based on relative frequencies of pronunciations calculated
on a Viterbi alignment of the acoustic training data. We in-
corporate alignments from all of our three acoustic models to
obtain more robust scores.

The two language models that we used for the recognition
task are based upon a trigram backing-off LM provided by
SRI. This LM was trained on parts of the FBIS, TDT4, Gi-
gaword Arabic corpora, and data released especially for the
GALE project. For word lattice rescoring, the LM contains
approximately 265M multi-grams. A pruned version with
about 55M multi-grams is used for lattice generation.

4. DECODING ARCHITECTURE

The recognition is performed in three passes, as depicted in
Figure 1. The test corpus is segmented beforehand using
the output of System 1 with a speaker independent acoustic
model. The resulting segments are clustered using a gener-
alized likelihood ratio clustering with Bayesian information
criterion based stopping condition. The segment clusters act
as speaker labels required by the adaptation techniques in the
following steps.

System 2 performs the initial recognition pass whose out-
put is required for the text dependent speaker adaptation in
the next step. The CMLLR matrices for each system are cal-
culated in pass two and are used for a first speaker dependent
recognition. The lattices produced in this pass are rescored
with an unpruned trigram language model, while the decoder
uses a pruned trigram language model for lattice generation.

The second adaptation technique we use is maximum like-
lihood linear regression (MLLR) which is applied to the means
of the acoustic models. The number of regression classes is
adjusted according to the amount of available data by a re-
gression class tree. We use cross-adaptation.

The decoding in the third pass is carried out using the
MLLR transformed means and the CMLLR transformed fea-
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tures. The lattices produced are again rescored with the un-
pruned trigram language model. Eventually, the final results
can be combined to a single word sequence using ROVER.

4.1. Segmentation

The basic input to the recognition system is nearly unseg-
mented audio material from broadcast news recordings. Sev-
eral approaches exist for splitting this audio stream in seg-
ments such that a segment includes only one speaker and (ide-
ally) one sentence. The quality of the segmentation affects the
recognition performance since segments are assumed to be
spoken by a single speaker. Furthermore, the language model
performs better if segment boundaries correspond to sentence
boundaries.

Many segmentation methods use acoustic features directly
to find segment boundaries. It has been shown that the seg-
mentation performance can be increased by incorporating the
output of a speech recognizer [14]. A simple approach to use
the recognizer output for segmentation is to split the record-
ings at positions where silence is recognized with a duration
longer than some threshold [6]. This approach makes lo-
cal decisions, disregarding context, properties of surrounding
segments, and speaker changes.

Our segmentation method optimizes the whole sequence
of segments with respect to a context dependent segment score.
The segment scoring function used incorporates several fea-
tures: the segment length, variance of warping factors in the
segment which corresponds to speaker homogeneity, and the
word confidence of hypothesized boundary tokens.

The optimization can be expressed as a maximization over
the sequence of segment boundaries bN

1 = b1 . . . bN :

[bN
1 ]opt = argmax

N, bN
1 : bN=B

{
N∑

i=1

c(bi−1, bi)

}

where the bi are the segment boundaries with B the record-
ing end, and c(bi, bj) is the segment scoring function. The
optimization problem is solved with dynamic programming.
A beam search has to be used in order to deal with the high
number of possible segmentation hypotheses.

4.2. Speaker Adaptation

We use cross-adaptation [15] to benefit from our setup of
three systems. Therefore, we combine the first best word se-
quences of the rescored lattices of pass 2 in such a way that for
each system the results of the two other systems are used for
adaptation (see Figure 1). For this cross-adaptation, each pair
of systems is combined by ROVER using confidence scores.

5. PRACTICAL ASPECTS

The tasks presented in this paper require processing of large
amounts of data. We describe two methods which reduce
runtime and memory requirements for maximum likelihood
training and language model rescoring on word lattices.

5.1. Fast Parallel Maximum Likelihood Training

Due to the morphological complexity of Arabic, a lot of dif-
ferent triphone contexts occur with significant frequencies.
Thus, the tying of allophone states results in more mixture
models. We have to process large amounts of training data
to estimate these models reliably. The maximum likelihood
(ML) training of the HMMs (Viterbi approximation) consists
of several steps in each iteration:

1. Time alignment

2. Collection of all observations for each state

3. Estimation of the Gaussian mixture HMM parameters

4. Splitting of the mixtures (optional)

We do not count transitions here because we use fixed transi-
tion probabilities. The maximum approximation for mixture
densities is used. For the estimation of a mixture model, it
is therefore sufficient to assign the observations to densities
of the mixture and estimate weights, means, and the covari-
ance accordingly. We use a global pooled diagonal covariance
matrix which requires the weighted accumulation of observa-
tions from all mixtures.

This algorithm is expensive in terms of computation time
and memory requirements. Furthermore, it is not well suited
for parallelization, because each step depends on the results
of the preceding one. We can easily split up each step in small
subtasks, but the next step still requires the results of all pre-
ceding subtasks.

The first approximation we use is to keep the time align-
ment fixed for a complete training cycle. This allows us to sort
the feature vectors in caches sorted by their assigned mixture
index. Thus, the accumulation of observations can be done
for each mixture separately and in parallel. However, the
estimation of the covariance matrix still requires a synchro-
nization of all tasks. Consequently, we use mixture specific
covariances until the splitting of mixtures is finished. Using
this procedure, we can virtually train all mixture models in
parallel. An implementation using a kind of the MapReduce
programming model [16] is convenient. The memory require-
ments are small because each task keeps only a single (or a
few) mixture model(s) in memory.

In order to obtain a good estimate of the global pooled
variance vector after the estimation of mixture specific vari-
ances, we calculate the pooled variance vector subsequent to
the splitting steps and perform a few training iterations (with-
out further mixture splitting) using this vector. The variance
vector is re-estimated after each iteration.

5.2. Memory Efficient Lattice Rescoring

Practical problems occur if we want to use n-gram language
models for morphologically rich languages like Arabic. With-
out pruning the language model, it might consist of so many
n-gram scores that it does not fit into memory anymore. How-
ever, for language model rescoring of lattices it is not neces-
sary to load the whole language model because we can deter-
mine which multi-grams are needed beforehand. Therefore,
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Fig. 1. Illustration of the decoding process using 3 systems.

Table 2. Statistics for the GALE Arabic corpora.

Dev07 Eval06

Audio Data [h] 2.6 3.3
# Segments 586 815
# Running Words 18k 22k
Silence ratio [%] 10.6 11.5
OOV rate [%] 2.12 5.69

we collect all multi-grams occurring in a lattice and load only
the corresponding scores of the language model. To reduce
the computational overhead, we collect the multi-grams for
all lattices of the corpus to transcribe. Thus, in our experi-
ments with a trigram language model, the number of n-grams
can be reduced from over 250 million to about 400,000. A
similar technique for n-best lists was mentioned in [17]. The
SRI Toolkit [18] offers language model filtering as well, but
based on word lists instead of multi-gram lists.

6. EXPERIMENTAL RESULTS

In this section we discuss the results of the RWTH speech
recognition system and describe the corpora used.

6.1. Corpora

The GALE corpora used for evaluation consist of Arabic broad-
cast news and broadcast conversations from several TV chan-
nels in various countries. In Table 2, statistics for the GALE
development and evaluation corpora are shown. The number
of segments refers to the automatically generated segmenta-
tion as described in Section 4.1. For control experiments of
our decoding architecture, we performed experiments on the
English EPPS task [6]. The statistics for the respective cor-
pora are given in Table 3.

6.2. Results

First, we describe the results obtained with the fast ML train-
ing of the acoustic model described in Section 5.1. Table 4

Table 3. Statistics for the TC-STAR EPPS English corpora.

Eval06 Eval07

Audio Data [h] 3.2 2.9
# Segments 742 644
# Running Words 30k 26k
# Speakers 41 50
Silence ratio [%] 10.3 9.7
OOV rate [%] 0.55 0.61
PP recog. LM 106.6 92.3
PP rescoring LM 96.3 87.2

Table 4. Results for different training methods (System 3,
speaker independent, BNAT05 Corpus).

covariance pooling applied WER [%]

after each split (baseline) 22.4

none 23.0
after all splits 21.8
after all training iterations 21.9

lists the results on a development corpus obtained with Sys-
tem 3 for different variants of covariance pooling.

The use of mixture specific covariances during recogni-
tion (without applying any smoothing or tying methods) de-
teriorates the recognition performance compared to the base-
line training method, because of underestimated covariances.
Nevertheless, the usage of mixture specific covariances for
mixture splitting produces a better acoustic model, since the
distribution of observations in a single mixture can be mod-
elled more accurately. Pooling the covariance after all split-
ting steps and performing three further training iterations with
a pooled covariance gives the best results.

The next issue we studied is the improvement obtained by
our new segmentation. We compare a previous ASR-based
segmentation that uses silence duration as sole criterion to
the segmentation produced with the method described in Sec-
tion 4.1. We have not evaluated the segmentation using a
reference segmentation but compared the resulting recogni-
tion results directly. Table 5 shows that the new segmentation
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Table 5. Results of the 2. pass of System 3 for different
segmentations.

WER [%]

segmentation criterion Dev07 Eval06

silence duration 18.7 34.1
multiple features 18.2 32.3

Table 6. Results of System 3 using different inputs for MLLR
adaptation.

WER [%]

adaptation using results of system Dev07 Eval06

3 (no cross-adapt.) 17.8 33.5
2 17.3 30.9
1 17.3 30.9
1 + 2 (ROVER) 17.1 30.6

improves the recognition performance. A segmentation ob-
tained with the method described has been used in the Arabic
speech recognition system of SRI [19] for the 2007 GALE
Evaluation.

The different adaptation methods are analyzed in Table 6.
Adaptation using the output of the system to be adapted yields
the worst results. Using the transcription produced by another
system reduces the error rate. The best results are obtained
when we use the combined output of two systems.

Having shown that our segmentation and cross-adaptation
methods work well, we present detailed results of the whole
recognition system. Table 7 lists intermediate results pro-
duced by the subsystems of the recognition system. We ob-
serve that Systems 1 and 2 produce noticeably better results
than System 3, which is caused – among other things – by the
missing VTLN. The rescoring with a larger language model
and both adaptation methods give consistent improvements.

The word error rates obtained for the results produced by
ROVER are given in Table 8. The combination of the 3 sys-
tems decreases the error rate by 2 % relative, although the
systems were already combined by cross-adaptation.

Table 8 distinguishes the error rates on the different record-
ing conditions of the evaluation corpora. Transcription of
broadcast conversations (BC) is a more difficult task than the
transcription of broadcast news (BN). Professional speakers
with virtually no background noise appear in the BN record-
ings, whereas BC are recorded in a more noisy condition. The
interviews in BC with non-professional speakers lead to more
frequent hesitations, false starts, and also the speech rate may
vary considerably. Furthermore, the presence of more speak-
ers and overlapping speech have impact on the recognition
performance.

We applied parts of the described decoding architecture
also to the English EPPS task of the 2007 TC-STAR Evalu-
ation Campaign. We used the four subsystems as described
in [6]: two MFCC based systems, a MFCC and NN based

Table 7. Intermediate results of the decoding passes 1 to 3
and LM rescorings (LMR).

pass

corpus system 1 2 LMR 3 LMR

Dev07
1 − 17.4 17.1 16.4 16.2
2 20.6 17.3 17.2 16.3 16.1
3 − 18.2 18.0 17.1 16.7

Eval06
1 − 31.7 31.5 30.3 30.1
2 34.7 31.3 30.8 29.9 29.8
3 − 32.3 32.1 30.6 30.4

Table 8. Results of single systems and system combination.
Divided in broadcast news (BN) and broadcast conversation
(BC) recordings.

WER [%]

corpus system total BN BC

Dev07
1 16.2 13.8 20.7
2 16.1 14.0 20.1
3 16.7 14.4 20.8
ROVER 15.7 13.5 19.7

Eval06
1 30.1 25.3 34.9
2 29.8 25.0 34.7
3 30.4 25.6 35.5
ROVER 29.1 25.4 33.9

system, and a gammatone system. A comparison of results
obtained with and without cross-adaptation is given in Ta-
ble 9. The use of cross-adaptation improves all subsystems.
We compare the effects of cross-adaptation on system com-
bination results in Table 10. The gain of system combination
without cross-adaptation is 5 % relative compared to 3 % with
cross-adaptation. The results obtained with cross-adaptation
are still slightly better than those without it. We translate the
first best result of a single system and the system combina-
tion to Spanish using a phrase-based machine translation sys-
tem [20]. The differences in BLEU scores are fairly small.
However, the system combination yields slightly better re-
sults. These results differ from those in [21], although dif-
ferent tasks and error metrics were used.

7. CONCLUSION

We described the RWTH broadcast news transcription system
for Arabic. The advantages of cross-adaptation and system
combination in a multiple system architecture were shown on
several corpora.

The ASR-based audio segmentation algorithm presented
in this paper had a considerable impact on the overall recog-
nition performance. Furthermore, we discussed techniques
for the acceleration of the acoustic training by efficient par-
allelization and reduced memory requirements of language
model rescoring of lattices.
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Table 9. Results of the RWTH TC-STAR systems for the En-
glish Eval07 corpus with and without MLLR cross-adaptation
(CA). All results include language model rescoring.

pass

corpus system 2 3 w/o CA 3 w. CA

Eval06

MFCC 10.1 8.7 8.4
Gammatone 10.5 9.0 8.4
NN 11.6 9.4 8.9
MFCC 2 9.6 8.5 8.0

Eval07

MFCC 10.5 10.1 9.6
Gammatone 11.2 10.7 10.1
NN 12.2 11.7 10.4
MFCC 2 10.4 9.7 9.3

Table 10. System combination results of the RWTH TC-
STAR systems for English (Eval07) with and without MLLR
cross-adaptation (CA) together with results of English to
Spanish machine translation.

system CA WER BLEU [%]

best single
no 9.7 38.4
yes 9.3 38.5

combination
no 9.2 38.6
yes 9.0 38.8
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