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ABSTRACT

In this paper we present evaluations on the large vocabulary

speech decoder we are currently developing at Tokyo Insti-

tute of Technology. Our goal is to build a fast, scalable, flex-

ible decoder to operate on weighted finite state transducer
(WFST) search spaces. Even though the development of the

decoder is still in its infancy we have already implemented a

impressive feature set and are achieving good accuracy and

speed on a large vocabulary spontaneous speech task. We

have developed a technique to allow parts of the decoder to

be run on the graphics processor, this can lead to a very sig-

nificant speed up.

Index Terms— Speech recognition, Parallel programming

1. INTRODUCTION

We are currently developing a large vocabulary speech recog-

nition system at Tokyo Institute of Technology (Titech), our

goal is to build a decoder to operate on weighted finite state
transducer (WFST) search spaces. The main design criteria

are flexibility, speed and resource usage.

The paper is structured as follows: Section 2 of the paper

is a very brief overview of WFST speech decoders. Section 3

first covers the basic operation of the search algorithm, then

describes the decoder features in more detail and is loosely

broken down according to our design criteria. To address

speed we describe the parallelisation extensions that exploit

multiprocessor systems. We describe a novel and unique fea-

ture of our decoder where we have extended the multi-processor

paradigm to allow the acoustic computations to be offloaded

onto the graphics card. This is important work, which shows

how another type of application can make use of the graphics

processing power already available in many machines.

There is a description of flexibility options available in

the decoder, these include an overview of the highly modular

frontend which allows the system to run in batch mode or

streaming mode accompanied by details of the live decoding

extensions and lattice generation features.

We next describe how we have reduced the memory us-

age by incorporating a disk based WFST option which also

allows the system to fast-load the models. Section 4 of the

paper provides a set of benchmarking results on a difficult

Japanese spontaneous speech task. The experiments aim to

illustrate the decoder’s behavior in terms of accuracy, speed

and memory usage when operating in various configurations.

2. BACKGROUND

The basic speech recognition problem can be expressed as:

Ŵ = arg max
W

{P (X | W)P (W)} (1)

The task of the decoder is to find the most likely word se-

quence Ŵ, given an observed sequence of speech feature vec-

tors X. The language model probability is denoted by P (W),
whilst P (X | W) is the score from the other knowledge

sources such as the acoustic models.

Within the WFST paradigm all the knowledge sources in

the search space are combined together to form a static search

network [1]. The composition often happens off-line before

decoding and there exist powerful operations to manipulate

and optimise the search networks [1]. Within this framework

the decoder becomes agnostic to various knowledge sources,

thus changes made to the information sources before the net-

work compilation stage should not require modifications to

the decoder.

However there is a caveat with the WFST approach. The

fully composed networks can often be very large and there-

fore at both composition and decode time large amounts of

memory can be required. To mitigate the memory burden on

the decoder approaches such as on-the-fly composition of the

network [2, 3], disk based search networks [4] and efficient

in-memory representations [5] have been developed by oth-

ers.

3. DECODER DESCRIPTION

Our current implementation is a single pass time synchronous

Viterbi beam search decoder using a token passing scheme

[6]. The decoder has been designed specifically with speech

tasks in mind. We are primarily considering a recogniser cas-

cade which performs a transduction from context dependent

phone arcs to word sequences, that is C ◦ L ◦ G (CLevel)

443978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



where C is the context dependency, L is the lexicon, G is

the language model and ◦ denotes the composition operator.

During the search the decoder dynamically expands the hid-

den Markov model (HMM) arcs into state sequences. It is also

possible to decode state level networks by composing acoustic

models H into the recogniser cascade H ◦C ◦L◦G (HLevel),

and then simulating the self-transitions via an appropriate arc

definition that contains a single HMM state.

The decoder’s search algorithm keeps a list of active search

states and a list of active arcs. States and arcs are considered

active when they contain tokens. The algorithm consists of

creating a token for the empty hypotheses, associating it with

the initial state of the search network and then iterating the

three following steps for each parameter vector in the utter-

ance.

1. In the first step, expand active states, tokens are prop-

agated from each state to the initial state of every arc

leaving the state.

2. In the second step, expand active arcs, the tokens held

in each arc are advanced to the next frame. This step

uses a specialised time synchronous Viterbi algorithm

optimised to the arc topology. When a token reaches

the last state in the arc, it is propagated to the following

search state, and activating it if necessary.

3. Finally, in the third step, epsilon propagation, tokens

are propagated across epsilon input edges.

The best solution is recovered as the best hypothesis con-

tained in a final state after processing the last frame of the

utterance.

Two pruning strategies are currently used: Beam pruning

where at each frame hypotheses are culled if they have a score

greater than the combined current best cost plus beam width.

Histogram pruning caps the maximum active hypotheses al-

lowed to a fixed band width.

As a large amount of time is spent performing the acoustic

computations, the Gaussian mixture calculations are written

to take advantage of the Streaming Single Instruction Multi-

ple Data (SIMD) extensions when they are available.

3.1. Multiprocessing

It is common for commodity processors to support some form

of multiprocessing, either via multiple cores or as multi threads.

To fully exploit these architectures, our decoder can also di-

vide the work into various threads, using an approach similar

to [7]. Each thread has its own active state and arc lists, and

its own memory management. States are assigned to a partic-

ular thread using a hash function of its numerical ID and arcs

are assigned to the same thread as its source state. Interaction

between threads occurs when a token is propagated from the

last state of an arc to the following search state, because this

state can belong to a different thread. A pending activation list

is used to delay this propagation so that it will be later done

by the thread that owns the state. Synchronisation between

threads is achieved using barriers at various points in the al-

gorithm: before propagating pending lists, and during epsilon

propagation. Epsilon propagation is still single threaded.

3.2. Acoustic Computation using Graphics Hardware

Acoustic computations often consume the greatest amount of

CPU time during speech decoding, others have proposed al-

gorithmic methods for reducing this cost [8, 9]. We are cur-

rently investigating new techniques to utilise the graphics pro-

cessor unit (GPU) as a co-processor for offloading the acous-

tic calculations. Modern GPUs are massively parallel proces-

sors with very large memory bandwidth. The field of research

concerned with performing general purpose computations on

graphics hardware [10] is known as General Purpose GPU

(GPGPU). In our GPGPU scheme all of the acoustic mod-

els are represented as a matrix A in which each row is a log

weighted Gaussian component. The ith component of J di-

mensional mixture model is represented as a vector according

to: {
K,

μi1

σ2
i1

, . . . ,
μij

σ2
ij

,− 1
2σ2

i1

, . . . ,− 1
2σ2

ij

}
(2)

Where K is:

log wi − J

2
log 2π − 1

2

∑
j

log σ2
ij −

1
2

∑
j

μ2
ij

σ2
ij

(3)

The score of every Gaussian can be calculated simultane-

ously by expanding the feature vector x to:

zT =
{
1,x1, . . . ,xJ ,x2

1, . . . ,x
2
J

}
(4)

and performing the matrix vector multiplication y = Az. y is

vector containing log weighted scores of the feature vector for

every Gaussian component. When the decoder is started the

acoustic models are expanded and moved into video memory.

Next in the main decoding loop before searching each frame

the feature vector is sent to the graphics card where every

Gaussian score is computed. The scores are moved back from

the graphics card into acoustic model score cache, where the

scores are then used during the search for the current frame.

3.3. Disk Based Network

The decoder can also operate with the search network left on

the disk. The other model components including the acous-

tic models, arcs definitions and word lists are typically much

smaller than the fully composed WFST and are therefore loaded

into memory.

In order to perform disk based decoding the WFST file

is composed of three separate blocks and arranged in the fol-

lowing manner. A header contains information on the size

of the network such as the state and arc count. A state offset
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dictionary, a record for each state indicates the arc count and

the position on the file where the arcs are located. The arcs
for each state are written as blocks in a sequential manner.

During search when a set of arcs is required, an in-memory

copy of the state dictionary is used to quickly find the file po-

sition. The arcs are then loaded from file and used for the

search. Under this scheme it is also necessary for the decoder

to explicitly release arcs that are no longer needed to avoid

memory leaks. A further benefit of the disk based approach is

that instances of the decoder can be started very quickly.

3.4. Lattice Generation

The decoder also has the ability to additionally output lattices

as well as a single best path. There is support for both word

and phone lattices, these are both written out as a WFST. Lat-

tice generation is based on the phone pair assumption [11].

3.5. Frontend Description

The decoder has a highly customizable frontend. The design

was influenced by the design of the Sphinx4 [12] frontend.

Chains of processing blocks are connected together and data

packets propagated through to the decoding engine, each one

of the processors is built to perform a specific operation such

as windowing or a Fourier transform. The frontend was de-

signed with the following goals in mind:

• To operate in streaming or batch modes.

• To enable arbitrarily long chains of processors to be

configured in any order at runtime.

• To facilitate ease of extension in which new types of

processor blocks can be written and seamlessly inte-

grated into the frontend.

The current implementation includes all the required proces-

sors to extract MFCC features with delta, delta-delta and en-

ergy terms.

3.6. Live Decoding

The streaming frontend also allows for the decoder to oper-

ate in a live mode. The stream could be from an arbitrar-

ily long data source such as a news feed or a microphone or

simply to allow the decoder to operate on large files whilst

consuming less memory. In the live mode the decoder oper-

ates slightly differently, after garbage collection if a common

prefix is found in the traceback the partial hypothesis up to

that point is output and the associated memory is released.

To allow the decoder to run indefinitely the WFST network is

closed so that the final state can feed back into the initial state.

This is similar to the scheme described in [13]. The cepstral

mean normalisation (CMN) in the live frontend uses a fixed

mean vector calculated from the training data.

4. EVALUATIONS

Our evaluations were carried out using the Corpus of Sponta-

neous Japanese (CSJ) [14]. The corpus contains a total of 228

hours of training data from 953 lectures.

The raw speech was first converted to a sequence of 38

dimensional feature vectors with a 10ms frame rate and 25ms

window size. Each feature vector was composed of 12 Mel-

frequency cepstral coefficients with delta and delta–deltas,

augmented with delta and delta–delta energy terms.

The acoustic models were three state left-to-right tri-phone

models. The state output densities were 16 component Gaus-

sian mixture models with diagonal covariances. The language

model was back-off trigram with a vocabulary of 25k words.

The test set used for evaluations was composed of 2328

utterances which spanned 10 lectures. This yielded a total

of 116 minutes of speech. On this testing data the language

model perplexity was 57.8 and the out of vocabulary rate was

0.75%.

The experiments were conducted on a 2.40GHz Intel Core2

machines with 2GB of memory and an Nvidia 8800GTX graph-

ics processor running Linux, the decoder was compiled us-

ing the GCC compiler. All of the evaluations utilised the de-

coder operating without multiprocessor support with the ex-

ception of that described in section 4.2. In this evaluation the

multi-threaded decoder was compared to the decoder operat-

ing without threading support.

4.1. HLevel and CLevel WFST Evaluations

We first evaluated our decoder operating on both CLevel and

HLevel networks and compared the performance to the Julius

decoder [15] (http://julius.sourceforge.jp/).

Several recognition experiments were run with the beam

width varied from 100 to 200, the maximum number of hy-

potheses allowed at any one time during the decoding was

capped to the best 10000. Figure 1 shows the recognition ac-

curacy and its relationship to the real time factor (RTF). The

WFST decoder was consistently able to achieve higher accu-

racy for the same RTF when compared with Julius (version

3.5.3).

At the CLevel the compiled network had approximately

2.1M states and 4.3M arcs, and the decoder required between

approximately 150MBs and 170MBs of memory during search.

As expected the HLevel network had substantially more states

and arcs at approximately 6.2M and 7.7M respectively, this

translated to between 330MBs ∼ 400MBs of memory us-

age in the decoder. Julius for comparison required 60MBs

∼ 100MBs of memory.

For narrow beams the HLevel decoder was slightly faster

and achieved a marginally higher accuracy, showing the better

optimized HLevel networks can be used with small overhead

using singleton arcs. The decoder operating on the CLevel

network required substantially less memory than when using
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Fig. 1. Recognition accuracy versus RTF comparing the

WFST decoder using CLevel and HLevel networks with the

Julius decoder.

the HLevel equivalent. However, using the HLevel network

has the advantage of being able to represent totally arbitrary

networks.

4.2. Multiprocessor Evaluations

The decoder was additionally run in multi-threaded mode us-

ing one and two threads to take advantages of both of the cores

in the processor. Figure 2 shows the performance of the multi-

threaded decoder using one or two threads in comparison to

the non-threaded decoder. The multi-threaded decoder with

two threads was faster than running in single threaded mode.

However, when decoding in parallel mode neither core fully

saturated. Profiling indicated this is due to synchronisation

points where the threads communicate best costs and epsilon

propagation. The multi-threaded decoder using two threads

is able to achieve higher accuracy for the same beam when

compared to a single-threaded decoder. This is because there

are parts of the decoding where each thread uses a local best

cost for pruning and not the absolute best cost at that point in

time. Therefore hypotheses which would normally be pruned

in the single threaded systems are allowed to exist for longer.

4.3. GPGPU Evaluations

In this set of evaluations the GPGPU enabled decoder is com-

pared to the SSE vectorized Gaussian scheme. The RTF in-

crease in Table 1 shows that for wide beam we see a speed

increase; using the GPU for a beam of 175 results in over

a 25% reduction in RTF. However, for narrower beams the

GPGPU decoder runs slower. This is as expected because

for narrow beams the average number of Gaussians needed

per frame is small even though with GPGPU we are calcu-

lated every Gaussian and communicating with the graphics

card over a slower bus.
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Fig. 2. Recognition Accuracy versus RTF comparing

the multi-threaded decoder using 1 and 2 cores to the non-

threaded decoder.

Beam SSE RTF GPGPU RTF RTF Reduction (%)

100 0.04 0.1 -150

125 0.13 0.14 -7.69

150 0.32 0.25 21.88

175 0.67 0.5 25.37

200 1.12 0.88 21.43

Table 1. RTF reduction when performing acoustic computa-

tions using the graphics card.

4.4. Disk Based Network Evaluations

In this round of evaluations we consider the speed impact and

memory reduction by switching to a disk based WFST. The

evaluations were run using the non-threaded decoder operat-

ing in disk and memory based WFST modes. Figure 3 shows

the accuracy versus RTF and Figure 4 shows how the memory

usage varies with beam width. Memory measurements were

approximations based on the resident memory reading from

the top command. The results show that by using a disk based

WFST it is possible to substantially reduce memory require-

ments whilst only increasing the RTF by a small amount.

A further caching scheme was also implemented in which

once a set of arcs had been read from the disk they were held

in an in-memory cache permanently. However, our experi-

ments showed only a negligible increase in speed, possibly

because the operating system or hard disk is already caching

frequently accessed data.

4.5. Lattice Generation Evaluations

In these evaluations we study the behavior of the decoder

when generating phone lattices. The motivation behind these

experiments was to quantify how the extra load on the de-

coder would affect the decoding speed. These experiments

represent the slowest case for measuring the additional load

for generating lattices. This is because we not only consider
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Fig. 3. Recognition Accuracy versus RTF for the memory

and disk systems operating using the non-threaded decoder.
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Fig. 4. Memory usage versus beam width for the non-

threaded decoder using the memory and disk based networks.

the additional overhead the decoder has in generating the lat-

tices but also include the time required to write the lattices out

to disk. The evaluations used the non-threaded decoder con-

figured to generate phone level lattices. Figure 5 shows there

is a small reduction in speed when generating lattices.

4.6. Frontend Evaluations

In these evaluations we consider the performance of the recog-

niser when carrying out feature extraction inside the decoder.

In these experiments the frontend was operated in a batch-like

mode where for each utterance all of the frames are computed

before applying CMN. The feature vectors are then streamed

into the decoder. The baseline system reads pre-computed bi-

nary cepstra files from disk and loading times are included in

the baseline system measurements.

As expected there was no reduction in accuracy when de-

coding from raw speech. Table 2 shows there is an RTF in-

crease when using the frontend. For moderate to large beams

the frontend accounts for only a small portion of the total CPU

time.
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Fig. 5. Performance of the decoder with and without phone

lattice generation enabled.

Beam RTF Increase (%)

100 17.23

125 6.78

150 2.74

175 1.15

200 0.649

Table 2. RTF increase when performing feature extraction.

4.7. Live Decoding Evaluations

When operating in the live mode the decoder can stream data

via the frontend and output text during the decoding process.

In these evaluations we consider the decoders performance

by transcribing entire unsegmented lectures from the CSJ test

set. On arbitrarily long data and large files a static mean value

computed from the training data is used for CMN. Figure 6

shows the performance of the live decoder operating on lec-

tures compared to the batch decoder recognising cepstra files.

For the same beam width the live decoder performs slightly

worse than the batch utterance decoder. Applying dithering

to batch CMN utterances did not reduce the accuracy. Apply-

ing batch CMN across an entire lecture and then live decod-

ing gave nearly identical maximum accuracy to the baseline

system referred to in Figure 6. Furthermore, applying static

CMN to the utterance data also lead to around a 1% drop in

maximum accuracy. These results indicate mismatches in the

CMN conditions for testing and training are slightly reducing

the accuracy for the live lecture decoder.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented preliminary evaluations of

our new large vocabulary speech decoder. We described the

performance in various configurations.

We have described a new technique for performing the

acoustic calculations using the graphics processor that can

yield over a 25% reduction in the RTF. By using an improved
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Fig. 6. Performance of the decoder operating in live mode.

GPGPU scheme it should be possible to make better use of

computational power available. For example a multi-threaded

decoder could use one core to perform the search and another

core to co-ordinate the GPU to compute the acoustic scores

for future frames.

Future work will finalize and evaluate our on-the-fly com-

position algorithms and continue improving the performance

and speed of our decoder.
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