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ABSTRACT

In this work we discuss the development of two crosslingual acous-
tic model sets for automatic speech recognition (ASR). The start-
ing point is a set of multilingual Spanish-English-German hidden
Markov models (HMMs). The target languages are Slovenian and
French. During the discussion the problem of defining a multilingual
phoneme set and the associated dictionary mapping is considered. A
method is described to circumvent related problems. The impact of
the acoustic source models on the performance of the target systems
is analyzed in detail. Several crosslingual defined target systems are
built and compared to their monolingual counterparts. It is shown that
crosslingual build acoustic models clearly outperform pure monolin-
gual models if only a limited amount of target data is available.

Index Terms— crosslingual, acoustic modelling

1. INTRODUCTION

Enterprises engaged in ASR are usually faced with the question of
globalizing their products. This does not only concern big interna-
tional companies but also smaller business. Companies which are
operating telephone assistant systems or automobile manufacturers
demand from their suppliers system components that can be used
worldwide. This may mean monolingual operability for multiple lan-
guages but also multilingual usability for multilingual markets or ap-
plications.

As state-of-the-art ASR technology greatly relies on the avail-
ability of adequate language resources, big efforts were undertaken to
construct and distribute publically available speech and text databases.
Although these efforts were highly successful in terms of covered lan-
guages and environmental conditions, companies are still faced with
the problem of unavailable training data and the inflexible handling
of new languages. A typical scenario is the demand to extend an ASR
system to a minority language which is not yet covered by available
databases, or, a speech database in the target language is available but
does not match the environmental or dialectal conditions of the target
application.

In this work we address the issue of porting an ASR system
from one language to an other. We examine two target languages,
Slovenian, and French, and assume that a limited amount of speech
material in these target languages is available. The acoustic models
of a multilingual Spanish-English-German system serve as a starting
point. The chosen application scenario consists of a typical medium
scale task, trying to recognize a list of so-called phonetically rich
words, and application words. For the experiments, tied-mixture HMMs
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are used, also reflecting the idea of a medium scale, or even embedded
application.

2. BASIC CONCEPTS

With few exceptions, [1], recent work on crosslingual acoustic mod-
elling assumes the availability of a certain, though limited, amount
of speech material in the target language. Under the additional pre-
sumption that speech material and some well formed acoustic models
of one or more source languages are available, three main research
lines for crosslingual modelling can be identified. They are:

• Feature compensation
• Model combination
• Model adaptation

In feature compensation the focus lies directly on the acoustic data.
The main idea is to transform speech material from a source language
to the feature space of the target language, [2], [3]. As a result the
sparse target language speech material is augmented, broadening the
database for the subsequent HMM training. As feature compensation
acts on the feature stream prior to acoustic model definition and train-
ing we name it a pre-processing technique.

The approach of model combination is quite contrary to feature
compensation. Instead of building dedicated acoustic models for the
target language, acoustic models of several source languages are cho-
sen. That is, multiple source language ASR systems are run in par-
allel, each configured to recognize the target language. In a post-
processing step the hypotheses of all systems are then combined,
and the task is to extract the best from each outcome. For the post-
processing ROVER [3] or discriminative model combination (DMC)
[4] was explored.

Model adaptation may be seen as an intermediate technique, lo-
cated between feature compensation and model combination. Dif-
ferences in the acoustics between languages are seen as an acoustic
mismatch problem similar to the one of speaker adaptation. Thus,
instead of directly acting on the acoustic data (as in case of feature
compensation), classical model adaptation techniques are applied to
port the acoustic models of the source language to the target language
[5], [6]. In contrast to model combination, only one source model set
is used. This model set might be the one of a dedicated source lan-
guage, or, preferably, a multilingual model set based on several source
languages.

In addition to the acoustic mismatch, crosslingual problems ex-
hibit also a structural mismatch. Caused by the different phoneme
sets and the different phonotactics of the involved languages, a lan-
guage specific definition of the acoustic model set is needed. To over-
come this problem an adaptation of the model set by so-called poly-
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phone decision tree adaptation was proposed, [6].
In this work we follow the idea of model adaptation. The starting

point is a set of multilingual Spanish-English-German hidden Markov
models with their associated decision tree.

3. SOURCEMODEL DEFINITION

In crosslingual acoustic modelling, the question arises which source
language one should chose for a specific target language. In previous
work it was found that a language which is close to the target lan-
guage tends to be a good choice. In [5], for example, Spanish turned
out to be the best choice for building an Italian system. However,
in practical situations a close language is often not available. In the
current case, Slovenian, as one of the target languages, belongs to
the Slavic language group, and there are no other Slavic languages in
the source language portfolio. In such a case it has been shown that
a set of multilingual source models tends to outperform monolingual
acoustic source models [6]. For this reason, we decided to use a set of
trilingual Spanish-English-German HMMs as source models for the
Slovenian, and also for the French mapping task.

A common practice for ASR systems using context dependent
acoustic models, is to define the model sets by a phonetic decision
tree [7]. Usually, instead of building one big decision tree over the
complete acoustic space, one sub-tree per central phoneme and state
position is built. This action is justified by the fact that acoustic cor-
relations between different state positions and different phonemes are
expected to be small.

In the multilingual case, the a-priori assignment between central
phonemes and decision trees can not be overtaken directly. When
applying several source languages one is confronted by the problem
that the phoneme sets associated with the different source languages
are, in general, quite different. For all phonemes which do not have
exact counterparts (the same SAMPA symbols) in one of the other
languages, pure monolingual trees would be build. To cope with this
problem the phonemes of the individual languages are usually clus-
tered to a multilingual phoneme set, [8], and [6]. Next, the original
phonemes are mapped to the corresponding multilingual phonemes
which are defined by each cluster. Finally the tree growing process is
carried out by using the multilingual phonemes as the trees’ roots.

However, the use of multilingual phonemes has its own disadvan-
tages. There is the problem of the fixed assignment of models with
the same central phoneme to one specific tree. Phoneme clustering
in general, and in particular in the multilingual case, is far from be-
ing unequivocal. Depending on the context the quality of a central
phoneme may change in such a way that some of its polyphones may
better be assigned to other trees. However, the a-priori assignment
of models having the same central phoneme to one predefined set of
trees does not permit considering such peculiarities.

Furthermore, multilingual phonemes require a dictionary map-
ping. In the multilingual case this is easily accomplished. Simply, the
mapping from the monolingual to the multilingual phonemes defined
by the clustering needs to be applied. In the crosslingual case, how-
ever, the situation is different. The concept of amultilingual phoneme
set needs to be extended to the phonemes of the target language which
may yet introduce further uncertainties into the model definition pro-
cess.

To remedy these problems, in this work we apply for each state
position one decision tree which covers all central phonemes. Beside
applying context questions the tree also uses questions with respect to
the central phonemes. For the question set itself, generic features as
defined by the International Phonetic Alphabet (IPA), are used, e.g.
plosive, bilabial, et cetera. Compared to commonly used broad pho-
netic classes, such features have the advantage that, in general, they

can simply be picked out of a textbook. Furthermore, crosslingual
model definition results much simpler. Instead of having to map the
target phonemes to the broad phonetic classes used to construct the
source model tree, the tree can directly be entered by the IPA features
associated to the target language phonemes. In addition, the fact that
common tree roots rather than a multilingual phoneme set were used
to construct the decision tree pays off twice. First, there is no need
to map the target language phonemes to a multilingual phonemes set,
and, as a corollary, no mapping of the target language dictionary is
necessary. The use of common root nodes naturally results in a direct
assignment of source to target models.

4. ACOUSTIC SOURCE MODELS

The starting point for the crosslingual model transfer is a tri-lingual
Spanish-English-German set of HMMs. All source language data as
well as the adaptation and test data of the target languages stem from
SpeechDat fixed telephone databases. In the case of the source lan-
guage data, from each database a 1000 speaker training part was ex-
tracted. Only so-called phonetically rich sentences were used for the
training. Table 1 gives and overview of the data.

Lang. #Phrases Hours Speakers
Female Male

SP 7994 6.9 500 500
EN 8089 7.2 500 500
GE 7540 9.2 500 500

Table 1. Training data used for building the multilingual source mod-
els. All data stem from the Spanish (SP), English (EN), and Ger-
man (GE) SpeechDat fixed telephone databases. In each case a 1000
speaker subset was extracted. The data chunks are balanced respec-
tive sex, giving 500 female and 500 male speakers.

The data is parametrized by calculating every 10ms twelve mel-
cepstrum coefficients (MFCC) (and the energy). Cepstral mean sub-
traction is applied. First and second order differential MFCCs plus
the differential energy are employed too. For each of the four data
streams a codebook is constructed consisting of 256 and 32 (delta en-
ergy) Gaussian mixtures, respectively.

For acoustic modelling, a 3-state left-to-right demiphone topol-
ogy is used, see figure 1. Demiphones [9] can be thought of as tri-
phones which are cut in the middle giving a left and a right demi-
phone. In contrast to triphones, they neglect the influence the left
context of a phone might have on the right and vice versa. This draw-
back in its modelling capabilities is, at least partly, compensated by
its improved trainability due to the reduced number of models. As-
suming N phonemes, we get N

3 possible triphones, but only 2N
2

demiphones. In light of the amount of the available training data this
might be seen as advantageous.

As lined out in section 3, a phonetic decision tree is used for

Left demiphone Right demiphone 

Fig. 1. Demiphone topology

state tying. According to the model topology and the fact that com-
mon tree roots for all phonemes are used the overall tree consists
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of six sub-trees, see figure 2. The question space of the tree is con-

State positions

Sub−trees

Left / right demiphonesRoot

Fig. 2. Structural layout of the decision tree adopting one binary sub-
tree for each state position but over all central phonemes. The use
of the demiphone topology results in an additional differentiation for
left and right demiphones.

structed by so-called IPA-features. As the SpeechDat databases come
along with the definition of phoneme sets in SAMPA, the SAMPA
were mapped back to the IPA and the associated characteristics, as
e.g. plosive, bilabial, unvoiced for a p, were assigned to the SAMPA.
This was done for all phonemes, 31 for Spanish, 44 for English, and
47 for German, resulting in 122 individual feature vectors. During
tree induction, up to two of the individual attributes were combined
to form questions. Bearing in mind that questions with respect to the
central phoneme were also asked, valid questions were of the form:
Is the central phoneme a plosive or unvoiced?, or: Is the right context
phoneme bilabial?

In [6] it was found that the use of multilingual source models is
advantageous for crosslingual acoustic modelling. However, in [10]
the same authors also report that, when provided with dedicated lan-
guage information in the form of language tags, a decision tree tends
to cluster the language information out when applying corresponding
language questions. To develop an idea of this effect, two trees are
grown. The first tree applies only linguistically motivated questions.
In the case of the second tree, additional questions which ask for the
language are used. Figure 3 shows the impact of these so-called lan-
guage questions on the two resulting decision trees. For growing tree
sizes the number of pure monolingual tree leaves are plotted over the
total number of leaves.

The lower plot in figure 3 corresponds to a tree grown by the ex-
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Fig. 3. Development of the monolinguality of the tree’s leaves for
growing tree size. The two plots correspond to two trees which were
constructed with and without applying language questions.

clusively use of linguistically motivated questions as described above.
In case of the upper plot, beside the linguistically motivated questions
also language questions were used. Figure 3 basically confirms the
findings of [10]. The use of the language information leads rapidly
to a high amount of monolingual tree leaves. For just 1500 leaves,
i.e. tied HMM states, already 70% of the leaves are pure monolin-
gual. Without asking language questions the situation changes sig-
nificantly. For 1500 leaves, the amount of monolingual leaves drops
down to 35%.

The behavior of the tree which does not apply language ques-
tions is, at least partly, caused by construction. As explained above,
linguistic attributes are assigned to individual phonemes according
to the assigned SAMPA symbol. Phonemes of the three languages
which are assigned the same SAMPA symbol own therefore identical
IPA-features. This makes it yet impossible for the tree growing algo-
rithm to distinguish corresponding models of these languages, even if
these models were different from an acoustic point of view.

In this work we follow the results of [6]. That is, we base all
crosslingual modelling experiments on multilingual models which
are defined by a phonetic decision tree not applying language ques-
tions. In contrast to [6] we use common decision trees for the central
phoneme of the context dependent models. To investigate the influ-
ence of different sized source model sets we built two HMMs, one
with 1000 and the other with 3000 tied states.

5. BASIC CROSSLINGUAL CONSIDERATIONS

In section 1 we mentioned, that in this work, tied-mixture HMMs are
used. In fact, a semi-continuous systems is used, which is mainly
driven by the circumstance that such systems are still widely used in
real world applications where restrictions with respect to CPU and
memory consumption exist. In the case of crosslingual applications,
the use of semi-continuous HMMs results in some additional prob-
lems. As a semi-continuous systems codes the discriminative in-
formation between acoustic units by mixture weights associated to
the codebook entries, it is questionable if the commonly used code-
book adaptation (updating of the means and covariances) is a useful
strategy for porting the source models to the target language. In the
following we thus investigate this topic. In addition, some baseline
systems for Slovenian and French are developed. These systems will
provide benchmarks for the judgment of the final crosslingual sys-
tems.

First a pure monolingual Slovenian and a pure monolingual French
system is built. As in the case of the source languages, the training
and the test data is taken from the corresponding SpeechDat fixed
telephone databases. However, because of the Slovenian SpeechDat
database consists of merely 1000 speakers, only 900 speakers (450
female, 450 male) are used for the system build. The remaining 100
are used for testing. The training data consists of so called phonet-
ically rich sentences. In case of the test data, a word list consisting
of phonetically rich words and application words is used. Also the
test data is balanced with respect to sex. To keep the French system
comparable to the Slovenian one, also for the French system a 900
speakers training set and a 100 speaker test set was defined. The de-
sign of the French training and test sets follow the considerations for
the Slovenian ones.

The column called CB-mono of table 2 presents the performance
of these systems. We attribute the worse Slovenian performance mainly
to the smaller amount of Slovenian training data (see also table 2).
One needs also to take into account the fact that Slovenian is mod-
eled by 47 SAMPA, whereas for French 43 SAMPA are used, mak-
ing the Slovenian model space potentially bigger. Table 2 also pro-
vides the results of two additional systems named CD-multi. The
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Lang. Hours CB-mono CB-multi
SL 4.7 9.60 9.61
FR 7.6 6.12 6.57

Table 2. Training data and system performance for 900 speaker
monolingual Slovenian (SL) and French (FR) target systems, WER in
[%]. CD-mono indicates the use of dedicate monolingual codebooks,
and CD-multi indicates the use of the multilingual source language
codebooks.

CD-multi systems serve to investigate the impact of the multilingual
source language codebooks when used instead of dedicated target lan-
guage codebooks. According to table 2 this impact is in fact negli-
gible. Switching from a pure monolingual setup, applying Slovenian
and French codebooks, respectively, to a mixed set-up, that is, apply-
ing the multilingual codebooks of the source languages which have
never seen any data of the target languages, hardly affects the re-
sults. Hence, as we do not expect any significant harm from the use
of the multilingual instead of dedicated monolingual codebooks, all
subsequent tests on building a crosslingual Slovenian or French target
system are based on the use of the multilingual codebooks composed
from the three source languages.

Next, the basic crosslingual model mapping step is done. Af-
ter assigning corresponding linguistic features to all Slovenian and
French phonemes, the two multilingual trees described in section 4
are entered and two sets of Slovenian and French models are defined.
Table 3 shows that, independent of the language and model set size

Slovenian French
#Tree leaves 1000 3000 1000 3000

PRED 48.85 45.88 47.14 47.65
MONOpred 13.68 10.75 21.04 15.52

Table 3. Predicted models before and after a complete re-training,
WERs (MONOpred) and mWERs (PRED) in [%].

after pure model prediction (PRED) mean word error rates (mWER)
of approximately 50% are achieved 1. These PRED model constitute
the base for all subsequent model refinements.

In table 3 we also present so called MONOpred results. These re-
sults are obtained by retraining the PRED models using the complete
900 speaker Slovenian, and French training data. Compared to the
CD-multi results of table 2 the MONOpred models distinguish only
in the underlying decision tree. They serve therefore to judge the
crosslingual modelling capability of the underlying source languages
decision trees. Comparing the CB-multi with the MONOpred results
we observe for Slovenian solely 1-4%, but for French 9-15% loss in
performance. Bearing in mind that significantly more French training
material is available, it is clear that the underlying Spanish-English-
German decision trees match the Slovenian phonotactics better than
the French.

To further investigate this issue, we calculate the demiphone over-
lap [6] between the source and the target languages. Table 4 presents
the percentage of demiphone types found in the target language data-
bases which are covered by source language demiphones (upper num-
bers), and the corresponding coverage of demiphone tokens (lower
numbers). The coverage of demiphone tokens is calculated from the
percentage of demiphone types by weighting the individual demi-
phones by their normalized occurrence counts. Focusing on the actual
demiphone coverage by the multilingual configuration, it is striking

1For a description of the term mean word error rate see section 6.

Coverage Measure SP EN GE MU

SL Types 21.36 28.70 60.77 75.65
Tokens 36.95 34.68 82.49 92.47

FR Types 17.76 17.02 25.80 39.75
Tokens 28.54 27.86 32.56 43.10

Table 4. Demiphone coverage, in [%], for Slovenian (SL) and French
(FR) by a Spanish (SP), a English (EN), a German (GE), and a com-
bined Multilingual (MU) model set.

that for Slovenian the coverage numbers are approximately a factor
of two higher than in the French case. This confirms the conclusions
drawn from table 3. Examining also the individual language-specific
results, it is clear that the good Slovenian behavior basically stems
from the German models. However, the highest coverage numbers
obtained for French stem also from the German source models.

The findings described by table 3, and 4 are further confirmed
when analyzing the phonetic decision trees after target model pre-
diction. In case of accessing a source language tree with linguistic
characteristics of a target language typically not all parts of the tree
are used. This is caused by linguistic features and feature combina-
tions which are present in the source language but not in the target
language. This results in sub-trees of the source language tree which
can not contribute to the target model definition. The number of target
models (leaves) predicted from the source language decision tree are
therefore expected to be smaller than the total number of tree leaves,
and, as poorer the match between source and target language gets, as
less target models should result. To probe this assumption, we com-
pare the number of tree leaves of the two multilingual source trees to
the corresponding number of leaves which are actually used by the
target language. Table 5 presents the results of this analysis. Also ta-

Slovenian French
#Leavessource 1000 3000 1000 3000
#Leavestarget 718 1832 508 1130

Table 5. Number of tree leaves, i.e. tied model states, of the multi-
lingual source and target trees. The target trees are obtained by target
model prediction from the source trees, and are thus sub-trees of a
sources trees.

ble 5 confirms the previous findings. For Slovenian we find that about
60-70% of the original leaves are used by the predicted Slovenian
models. Though these numbers appear already low, in case of French
they even drop down to 35-50% confirming one more time that the
multilingual source models combined out of Spanish, English, and
German fit much better to Slovenian than to French.

6. CROSSLINGUALMODEL REFINEMENT

From table 3, it appears to be quite clear that pure crosslingual model
prediction does not lead to reasonable system performances. A com-
mon strategy to overcome this problem consists in acoustic model
adaptation by a limited amount of target data [2], [5].

Also in this work we investigate therefore acoustic model adap-
tation. In a first step classical acoustic model adaptation is applied.
Such techniques are yet not able to overcome the structural modeling
problems introduced by predicting the target models from a source
tree which has never seen any target language. To overcome this prob-
lem, also so-called polyphone decision tree specialisation (PDTS) [6]
is investigated.

For all subsequent tests two adaptation sets per target language
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are used. A small one comprising data from 10 speakers and a big one
comprising data from 50 speakers. Table 6 gives a detailed overview
of the adaptation sets. Note that, though the same number of speak-
ers is used for both languages, in terms of recording time, the amount
of Slovenian adaption data is actually significantly smaller than the
French one.

When testing the systems we were faced by the problem that

#Speaker 10 50

SL #Phrases 85 426
Time 3.1 15.4

FR #Phrases 84 422
Time 5.4 27.6

Table 6. Amount of Slovenian (SL) and French (FR) adaptation data.
The times are given in minutes and exclude silence. All data sets are
balanced respective sex.

quite high error rates were observed (see the PRED results of table
3). As a consequence, the confidence margins for the word error rates
(WER) were quite big, and we could therefore not conclude that a
single system was better than another. To overcome this problem,
we based the system evaluation on a two-way analysis of variance
test (ANOVA) which tests for the hypothesis that the mean WERs
(mWER) (calculated over several test sets) of two systems are equal
[11]. Thus, instead of a single test, 8 similar but independent tests
were run for each system configuration. Afterwards the mean WERs
of two system configurations were compared by ANOVA. In the fol-
lowing sections we therefore present mean WERs. Statistically sig-
nificant (95% confidence interval) different results, with respect to
some reference results, are marked boldface. The 8 test sets them-
selves consist of single phonetically rich words and application words
and comprise between 662 and 678 sentences for French, and be-
tween 619 and 646 sentences for Slovenian. The resulting grammars,
just word lists, consist of between 438 and 452 words per French test
set, and between 360 and 383 words per Slovenian test set.

6.1. Crosslingual Acoustic Model Adaptation

In section 5, the use of dedicated target language codebooks did not
result in any significant performance improvement. Hence, we actu-
ally do not expect to see any significant performance gains by adapt-
ing the codebooks to the target languages. Instead adapting mean and
covariance parameters, we therefore adapt the mixture weights of the
Gaussian mixture densities. Adaptation itself is performed by maxi-
mum a-posteriori convex regression (MAPCR) [12]. Contrasting the

Slovenian French
#Speakers 10 50 10 50

PRED 48.85 45.88 47.14 47.65
MAPCR1000 25.12 18.89 27.55 22.90
MAPCR3000 26.66 18.73 26.24 19.64

Table 7. Contrast of MAPCR adapted models with the predicted ones
(PRED), mWER in [%]. The subscripts denote the model set size of
the underlying multilingual model set.

previously obtained PRED results with the MAPCR results, see ta-
ble 7, reductions in mWER of nearly a factor of two for the small
10 speaker adaptation sets, and more than a factor of two for the 50
speaker adaptation sets are obtained.

It is interesting to note that all Slovenian systems perform better
than their French counterparts, though significantly less adaptation

material is available for them. We attribute this behavior one more
time to the structural shortcomings of the predicted French model
sets. In fact, only approximately 30-50% of the source model states
are used by the French target models. This results in a considerable
limitation of the French modelling capabilities which can not made
up for by more adaptation data.

6.2. Polyphone Decision Tree Specialisation

To cope with the problem of the phonetic context mismatches, PDTS
was proposed [6]. PDTS consists of the crosslingual adaptation of a
phonetic-acoustic decision tree to a target language. The tree grow-
ing process of the source tree restarts using some adaptation data of
the target language. Consequently, PDTS permits introducing pho-
netic context information into the decision tree which is not present
in the source language but is important for the target language. In
the present work, and in the light of MAPCR, PDTS is applied as
follows. For a given source tree the tree growing process is restarted
applying the adaptation data of the target language. Afterwards, the
models associated to the new leaves are trained by one iteration of
Baum-Welsh training on the adaptation data. The resulting models
may directly be used as a final model set. In our system we also use
them as a starting point for a MAPCR stage on top of the newly gen-
erated states.

When running PDTS one is confronted with the problem of de-
ciding when to stop the tree growing process. We decided to test for
two configurations, stopping PDTS when the minimum occupation
count fell below 5, and 15 model tokens per leaf. In table 8 the re-
sulting PDTS adapted and retrained model sets are compared with
the MAPCR adapted model sets already presented in table 7. Note in
particular the subscripts given in table 8. They specify the tree sizes
before and after applying PDTS.

Drawing our attention first on the Slovenian models we see that

Slovenian French
#Speakers 10 50 10 50

MAPCR1000 25.12718 18.89718 27.55508 22.90508

MAPCR3000 26.661832 18.731832 26.241130 19.641130

PDTS5

1000 34.211201 23.532554 27.201386 16.341459
PDTS5

3000 47.652026 26.393029 37.661750 18.042678

PDTS15

1000 28.81832 18.031686 26.49885 14.841758
PDTS15

3000 45.941858 21.132341 34.211361 15.822069

Table 8. Contrast of retrained PDTS adapted models versus MAPCR
adapted models, mWER in [%]. The subscripts denote the number of
tied states of the source and of the target model sets. The superscripts
denote the minimum occupation counts.

all PDTS adapted models sets which are significantly different to
MAPCR adapted models perform much worse than their MAPCR
counterparts. This is definitely caused by the circumstance that, after
PDTS, the available adaptation data spreads over more states (see the
subscripts), and the model parameters can no longer be estimated ro-
bustly. In case of French, the picture changes a lot. It is striking that
for the 50 speaker adaptation set the PDTS systems always perform
better than the MAPCR systems. Relative reductions in mWER of
up to 25% are achieved. The reason for this behavior is twofold. At
first, PDTS improves the French model definition significantly. Sec-
ond, the amount of adaptation data is large enough to give reasonable
model estimates of the, by PDTS, increased model set. This is in line
with the circumstance that the French adaptation data is about the
double of the Slovenian one.
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In the Slovenian but also in the French 10 speaker adaptation
case, the disappointing performances obtained by PDTS are expected
to be caused by the inappropriate acoustic adaptation. Running just
one iteration of Baum-Welch training with the available amount of
adaptation data and an increased model space leads to poorly esti-
mated models. To remedy this problem, the PDTS defined model
sets were refined by MAPCR. Table 9 contrasts the final PDTS and

Slovenian French
#Speakers 10 50 10 50

MAPCR1000 25.12 18.89 27.55 22.90
MAPCR3000 26.66 18.73 26.24 19.64

APDTS5

1000 28.57 23.28 22.93 15.17
APDTS5

3000 26.70 23.52 24.47 15.58
APDTS15

1000 23.72 17.44 21.80 13.70
APDTS15

3000 25.67 18.04 23.17 14.47

Table 9. Contrast of PDTS and MAPCR adapted models (APDTS)
versus MAPCR adapted models, mWER in [%]. The subscripts de-
note the number of tied states of the source model sets. The super-
scripts denote the minimum occupation counts.

MAPCR adapted models to the MAPCR only adapted models.
Now, also in the case of Slovenian, significant improvements

over the MAPCR-only adapted models are achieved. The best results
with 23.72% and 17.44% mWER are obtained for the APDTS15

1000

models. Also in case of French the best results are achieved for the
APDTS15

1000 system. They are yet with 21.80% and 13.70% mWER
significantly better than the Slovenian counterparts. Here the larger
amount of adaptation data combined with PDTS pays off. It is no-
table that crosslingual acoustic modelling clearly favors broad robust
source models. The best results are always obtained for the systems
which are based on the smallest source tree, 1000 leaves, and the
smallest target language tree (highest minimum occupation count).

It is worthwhile to compare the best crosslingual models to mono-
lingual models which are built exclusively on the adaptation data. We
thus build corresponding monolingual Slovenian and French model
sets exclusively using the adaptation data. Table 10 contrasts these
systems with the best crosslingual, i.e. the APDTS15

1000, ones. From

Slovenian French
#Speakers 10 50 10 50

Monolingual 54.06 21.33 33.28 14.61
Crosslingual 25.67 18.04 23.17 14.47

Table 10. Contrast of monolingual and crosslingual trained target
systems, mWER in [%].

table 10 we can draw two conclusions. In case of very limited target
data (10 speakers) crosslingual acoustic modelling provides a pow-
erful method to build reasonable target systems. Compared to pure
monolingual built models, relative reductions in mWER of 30-50%
are achieved. When more adaptation data becomes available this ad-
vantage may decrease rapidly. In case of French, 50 speaker adap-
tation data (27.6 minutes) are yet enough to train a system which
performs as good as a crosslingual defined one.

Finally, comparing the best crosslingual results with the monolin-
gual references from table 2, a performance gap of 7.8% for French
and 8.4% for Slovenian are observed. We attribute this to the small
amounts of adaptation data, but also to the fact that, as PDTS builds
upon the stem of a given decision tree, the model refinement by PDTS
gives only suboptimal results.

7. CONCLUSIONS

This paper has described the crosslingual acoustic model develop-
ment for a Slovenian and a French ASR system. The paper has con-
centrated on the definition of a suitable set of acoustic source models
facilitating an easy transfer of the source to the target models. The in-
teraction of the phonetic source language decision tree with the target
languages was investigated in detail. After target model prediction
the target models were refined in two steps by polyphone decision
tree specialization (PDTS) and maximum a-posteriori convex regres-
sion (MAPCR). In the case of the small adaptation sets, the crosslin-
gual model sets outperformed their monolingual counterparts always
significantly. For the big adaptation sets the corresponding mono-
lingual systems were outperformed too. However, significant differ-
ences could only be detected for the Slovenian systems. Finally, the
performance of well trained (900 speakers) pure monolingual models
could not be reached. We attribute his behaviour to inherent limita-
tions of PDTS, but also to the very small amount of adaptation data.
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