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ABSTRACT

The development of an automatic speech recognizer (ASR)
that can accurately recognize spoken names belonging to a
large lexicon, is still a big challenge. One of the bottlenecks
is that many names contain elements of a foreign language
origin, and native speakers can adopt very different pronunci-
ations of these elements, ranging from completely nativized to
completely foreignized pronunciations. In this paper we fur-
ther develop a recently proposed method for improving the
recognition of foreign proper names spoken by native speak-
ers. The main idea is to combine the standard acoustic model
scores with scores emerging from a phonologically inspired
back-off model that was trained on native speech only. This
means that the proposed method does not require the devel-
opment of any foreign phoneme models on foreign speech
data. By applying our method on a baseline Dutch recog-
nizer (comprising Dutch acoustic models) we could reduce
the name error rate for French and English names by a con-
siderable amount.

Index Terms: spoken name recognition, phonological fea-
tures, cross-lingualism

1. INTRODUCTION

It is a challenge to develop an automatic speech recognizer
(ASR) that can accurately recognize proper names (e.g. per-
son names, city names, street names, etc.) when the perplex-
ity of the task is elevated. In a directory assistance appli-
cation for instance, there may be a few 100K person names
to distinguish, and it would be extremely expensive to elicit
from human experts typical phonetic transcriptions of each
name. Hence, one must rely on an automatic grapheme-to-
phoneme (G2P) converter instead. But unfortunately com-
mercially available G2P converters were trained to transcribe
the regular words of a language. When confronted with for-
eign names, they often do not produce an acceptable output.
Recent experiments on the transcription of person and geo-
graphical names occurring in the Netherlands showed that the
state-of-the art Dutch G2P converter of Nuance was unable
to produce an acceptable phoneme sequence (one of the man-
ual transcriptions present in a lexical database) for about 30%
of these names. When also considering wrong lexical stress
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assignments as errors, the error rate further increased to 50%
[1].

Even if the G2P converter could be improved to produce
more often an acceptable transcription, there would still be a
problem because there is clear evidence (e.g. [2]) that, de-
pending on their familiarity with the language of origin, na-
tive speakers may use different pronunciations of a foreign
name. These pronunciations can range from totally nativized
pronunciations (using native phonemes and native G2P rules)
to totally foreignized pronunciations (using foreign phonemes
and foreign G2P rules). We therefore argue that the ASR
should incorporate lexical and acoustic models that can cope
with this type of pronunciation variability.

In [3] one proposes to use multiple G2Ps to produce mul-
tiple pronunciations of a name: one G2P for the native lan-
guage and one for each likely language of origin of the name.
These likely languages of origin are determined by running
a language identification algorithm on the name. Obviously,
the outputs of the non-native G2Ps must be converted to na-
tive phoneme sequences that are compatible with the acous-
tic models of the native ASR. Adding the obtained pronun-
ciations to the baseline dictionary caused a reduction of the
word error rate (WER) by 25% for foreign names spoken by
foreign speakers and by 10 % for foreign names spoken by na-
tive speakers, the case we will be dealing with in the present
paper.

In [4], one also creates pronunciation variants, but this
time in a data-driven way. This is achieved by using native
acoustic models to align each name utterance with a graph of
available initial pronunciations of that name (6 per name) as
identified on the basis of expert knowledge. By seeking alter-
native phonemes for modeling the regions where the acous-
tics badly match the graph, new pronunciations were created.
Including these pronunciations in the lexicon resulted in an
improvement of the name recognition error rate by 20 to 40%
relative. However, these figures may be optimistic because
the tests were run on the same names that were also used to
learn the new pronunciations.

A number of authors argue that in order to perform well,
some non-native phonemes should be kept in the phonetic
transcriptions and separate acoustic models should be avail-
able for these phonemes. In [5] for instance, models of En-
glish phonemes that have no good German equivalent were
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trained on English speech spoken by German speakers and
added to the inventory of acoustic models. By doing so the
WER on a corpus of German sentences containing at least
one English name dropped from 60 to 44%.

In [6], non-native pronunciation variants for names of
an English origin are generated in a totally data-driven way.
An English phoneme recognizer generates English pronunci-
ations, and by aligning these pronunciations with the canon-
ical pronunciations emerging from a German G2P converter,
one obtains training examples for the automatic learning of
decision trees that can be used for the generation of English-
accented pronunciation variants. This method however only
yields a small drop (5.2 % relative) of the WER .

In cases where names from several languages have to be
recognized, an approach that needs foreign phoneme models
for each of these languages may turn out to be impractical,
especially when some of these languages are less-resourced
languages such as Indonesian, Russian, etc.. In that case one
can try to create acoustic models for all the sounds in the TPA
(International Phonetic Alphabet) and use these models for
the mapping of foreign phonemes to symbols that have an
associated acoustic model (e.g. [7]).

In a recent paper [8] we proposed a novel method that
is a bit related to the just mentioned IPA approach, in the
sense that it uses a phonologically motivated back-off score
in combination with the traditional acoustic likelihoods. Pre-
liminary experiments showed that the method can be effec-
tive even with a back-off model that was exclusively trained
on native speech data. This confirms an earlier finding [9] that
phonological feature models learned on native speech are also
capable of characterizing foreign sounds.

In this paper we further elaborate and motivate our model
and we assess its capabilities on a substantial trilingual spo-
ken name corpus. In a later stage, we also plan to investigate
the capabilities of our method in combination with phonolog-
ical models that were trained on multilingual speech data, be-
cause it was shown in [10] that such models are more reliable
than monolingually trained models.

The outline of this paper is as follows. In section 2 we
recall the basics of our previously proposed method, but we
present better motivations and a stepwise introduction of the
foreignizable phoneme concept. The main contribution of the
paper resides in the presentation, in Section 3, of a new and
much more extensive experimental study than the one pre-
sented in the original paper. The major conclusions of this
study and two directions for future research can be found in
Section 4.

2. METHODOLOGY

Suppose that g represents a state of a baseline acoustic model,
and that logpa(x|q) is the log-likelihood of acoustic vector
x in this state. Suppose further that logpp(x|q) is the log-
likelihood of acoustic vector x in state g as computed on the
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basis of a phonologically inspired back-off model. In that
case, we propose to replace the standard acoustic score by a
two-stream score

LL(x|q) = g14logpa(x|q) + g24 [ logpr(x|q) — 5] (1)

with g4 and go, being state dependent stream weights, and
(c, B) normalization coefficients whose role will be explained
in a moment.

2.1. Computing the phonological score

The core of the back-off model is a neural network that com-
putes the posterior probabilities P(f;|x) of the 25 binary
phonological features (PHFs) f; ( = 1,..,25) that form
the basis for our phonological description of acoustic model
states [11]. The binary features describe (1) the vocal source
(voiced, inactive), (2) the manner of articulation (closure,
vowel, fricative, burst, nasal, approximant, lateral, silence),
(3) the place of articulation of consonants (labial, labio-
dental, dental, alveolar, post-alveolar, velar, glottal) and (4)
the articulatory properties of vowels (low, mid-low, mid-
high, high, back, mid, front, retroflex, rounded).

Since the PHF detector computes posterior probabilities,
the log-likelihoods can be computed as

Pp(g]x)

log pp(x|q) = log Polg) + log p(x) ()

If we further assume that go, log p(x) is only weakly depen-
dent on the state g, it does not contribute much to the discrim-
ination between states and it can therefore be ignored. In that
case, we argue that

Pp(qx)

Eotg)

LL(x|q) = g1qlogpa(x|q) + g2q[ log

would be an acceptable two-stream score to use. Now it is
time to explain what the role of («, 3) is. We first aligned the
training data with the baseline models so that each frame was
assigned a state g. Then « and 5 was chosen such that

{E,Var}|a log %ﬁq}){) — fB] = {E,Var}{logpa(x|q)] (4)

taken over all frames. This makes the two stream scores
more equivalent, and (g1, g24) interpretable as stream impor-
tances. The search for the optimal stream weights can then be
restricted to g14 + g2 = 1.

To compute the back-off score from the posterior prob-
abilities P(f;|x), we need a PHF characterization of state
q. This characterization is derived from the PHF charac-
terization of the corresponding phoneme and from the aver-
age P(f;|x) of observations assigned to state ¢ in a forced
alignment (see [8]). If P, denotes the set of positive features



that are supposed to be on for this state, and N, the comple-
mentary set of negative features, then, assuming independent
PHFs leads to

Pplglx) fz'x
8 Po(e) f;ql
f1|x)
+ log &)
f%:\f 1 - P(fl)

Now it happens that the prior probabilities of the features are
usually low (because they are only positive for some of the
phonemes) and that the posterior probabilities for the negative
features in the correct state are even lower. This means that
the ratios corresponding to the negative features are usually
close to one on the states of the optimal state sequence, and
consequently, that they do not contribute much to the phono-
logical score. However, if this score is dominated by the posi-
tive features, we have to take into account that different states
have a different number of positive features. This means that
there is a danger that the contributions of the phonological
scores to the two-stream score on different states are not com-
patible. To compensate for this, we have replaced the sums by
means in Equation 5:

Pp(qlx) lex
log Pgs(q) card(P) f;)
1 1- P(filx)
card(Ny) Z log 1—P(f:) ©

fi€Ng

It has been verified experimentally [8] that this replacement
gives an improvement.

2.2. Determination of the stream weights

In order to determine optimal stream weights for each state
¢, we would have to conceive an automatic weight optimiza-
tion scheme. However, before starting to develop such a
scheme, we will investigate what can be achieved with state-
independent stream weights (g1, g2) which are optimized by
tracking the WER, measured on a development set, as a func-
tion of g = 1 — g1, and by selecting the value yielding the
minimal WER.

2.3. Phonological characterization of a state

Until now, the phonological description of state ¢ emerges
from PHF characterization of the phoneme from which it
originates. However, we argue that it makes sense to make a
distinction between two types of phonemes: (i) purely native
phonemes and phonemes originating from foreign phonemes
with the same phonological description on the one hand, and
(i1) phonemes originating from a foreign phoneme with a de-
viating phonological description on the other hand. We call
the latter phonemes foreignizable and we anticipate that they
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are often pronounced with the phonological features of their
foreign counterparts. Therefore, we use the phonological rep-
resentation of the foreign phoneme in that case to compute
the back-off score for all the states of that phoneme.

In order to do so, foreignizable phonemes are explicitly
marked in the lexicon by means of an underscore notation
(see Table 1). When /r_rr/ appears in an English name that

Table 1. Tiwwo English names with their baseline and alterna-
tive transcriptions comprising foreignizable phonemes (sym-
bols are SAMPA, except for the English /r/ which is denotes
as /rr/). A hyphen represents a short pause.

name transcription
Burr Tuppel baseline bYr-tYp@l
alternative bY3:r3:-tYp@l
Alan Presser baseline El@n-prEs@r

alternative 1
alternative 2
alternative 3

El@n-prrrEs@r
El@n-prEs@rar
El@n-prrrEs@rar

is part of a Dutch lexicon, it means that the Dutch phoneme
/t/ (from the Dutch word oor) was obtained as an approxima-
tion of the English /rr/ (from the English word or) and that
the acoustic score must be obtained by combining the model
score emerging from a triphone model with /t/ as the central
phoneme and a back-off score computed on the basis of the
PHFs of /rr/. Note that it can happen (see Table 1) that two
subsequent phonemes (e.g. the Dutch /Y/ (from bus) + /r/)
originate from the same foreign phoneme (e.g. the English
/3:/ from bird) and vice versa.

The number of foreignizable phonemes depends on the
(native, foreign) language combination: for (Dutch, English)
we found 6 foreignizable phonemes (see [8]), for (Dutch,
French) we found 7.

2.4. Introduction of pronunciation variants

Foreignizable phonemes can also form a basis for the gener-
ation of pronunciation variants in the lexicon. A simple way
to accomplish this is to produce alternative pronunciations by
replacing one or more foreignizable phonemes by their pure
native equivalents. Table 1 shows two names and the vari-
ants that were created for them in this way. The underlying
motivation is that the user may adopt a nativized pronuncia-
tion for all or just for some of the foreignizable phonemes.
In that case it may be advantageous to let the recognizer de-
cide where to select nativized and where to select foreignized
pronunciations.

3. EXPERIMENTS

The experiments in [8] were restricted to the recognition of
English names by a Dutch speech recognizer, and the number



of different English names was quite limited. In this paper
we perform tests on a much larger corpus of spoken names,
and report results for English, French as well as Dutch names,
uttered by Dutch speakers.

The spoken name corpus was recorded in the AU-
TONOMATA project that was funded by the Dutch-Flemish
STEVIN program [12]. The database will soon be made pub-
licly available by Dutch-Flemish Language & Speech Tech-
nology Center (www.tst.inl.nl). In the present study we se-
lected the 60 Dutch speakers from Flanders (one of the two
regions in Europe were Dutch is spoken). Each speaker ut-
tered one of 10 lists of 120 Dutch, 23 English, 23 French and
15 Moroccan names and there was no overlap between these
10 name lists. One third of the speakers was between 12 and
18 years old, the remaining speakers were adults. The names
were either person names (first name + family name), city
names or street names.

In the present study the Moroccan names were omitted
and the remaining data were divided in an adaptation set, a
development set and a test set (see Table 2). The same 60
speakers were present in all the data sets, but the adaptation
set comprised only Dutch names, and there was no overlap
in the names occurring in the development set and the test
set. The test set was designed to contain a large percentage of

Table 2. Composition (in terms of language of origin of the
name) of the test, development and adaptation sets extracted
from the AUTONOMATA spoken name corpus.

| | English (E) | French (F) | Dutch (D) | All |

adapt - - 4440 4440
develop 380 380 760 1520

test 1000 1000 2000 4000

total 1380 1380 7200 9960 |

foreign names.

In all experiments the ASR had a vocabulary of 1660
names: 1200 Dutch, 230 English and 230 French names.
However, the ASR is assumed to have no prior knowledge
of the language of origin of these names. The acoustic mod-
els were triphone models: either speaker-independent models
(SIMs) that were trained using HTK [13] on a multi-speaker
read speech corpus recorded in the Flanders [14], or adapted
models (AMs) obtained from these SIMs by MLLR adapta-
tion on the basis of the adaptation set extracted from the spo-
ken name corpus. During adaptation we trained 32 model
transformation matrices according to the procedure explained
in the HTK-book.

Although the adaptation set contains the same speakers
as the test set, it was verified in a separate experiment with a
smaller test set and no speaker overlap between the adaptation
set and the test set, that the WERSs on the test set were very
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similar to those reported here. This means that the models are
not so much adapting to the test speakers, but mainly to the
acoustic circumstances appearing in the spoken name corpus
recordings.

We will now describe the baseline experiments that have
been run, and after that, the experiments that were conducted
to assess the capabilities of our method.

3.1. Setting up a baseline system

In the baseline system, no back-off models nor pronunciation
variants created based on foreignizable phonemes were used.

We have investigated the effect of using different types of
transcriptions in the lexicon. To that end we had available
the Dutch, English and French versions of the Nuance G2P-
converter, and an example transcription of each name. The
latter is a transcription that, according to a human expert, is a
likely and acceptable transcription of the name. Using these
resources we composed the following lexicons:

DuAlone all names transcribed by Dutch G2P
All all names transcribed by three G2Ps

ManAlone manual transcriptions of all names
DuMan merge of DuAlone and ManAlone
AllMan merge of All and ManAlone

The corresponding word (name) error rates obtained with the
two acoustic model sets on the different parts of the test set
are listed in Tables 3 (SIMs) and 4 (AMs).

Table 3. Baseline performances (WER in %) obtained with
the speaker independent acoustic models in combination with
the different lexicons.

| lexicon | English | French | Dutch | All ]
DuAlone 61.7 433 19.3 | 359
All 50.8 32.5 213 | 31.5
ManAlone | 45.1 47.5 17.5 | 319
DuMan 42.7 37.4 17.7 | 28.9
AllMan 47.0 33.5 19.8 | 30.0

Table 4. Baseline performances (WER in %) obtained with
the adapted acoustic models in combination with the different
lexicons.

| lexicon | English | French | Dutch | All |
DuAlone 33.7 234 4.2 16.4
All 20.7 12.8 4.4 10.6
ManAlone 15.7 30.7 3.7 13.4
DuMan 13.3 17.8 3.7 9.6
AllMan 15.1 14.8 3.9 9.4

The most important finding is that foreign G2Ps produce
much better transcriptions of foreign names than the native



G2P, even with the foreign phonemes being mapped to native
phonemes. This can only mean that a lot of native speak-
ers adopt foreign name pronunciations that are closer to for-
eignized than to nativized pronunciations.

A second important finding is that the foreign G2Ps (4//)
offer transcriptions that outperform (especially with AMs) the
manual transcriptions (ManAlone).

A third finding is that the Dutch transcriptions are indis-
pensable to get a good result: DuMan significantly out per-
forms ManAlone.

A last finding is that the foreign G2Ps do not attribute
much anymore if the Dutch and manual transcriptions are al-
ready in the lexicon. For the Dutch names they are useless and
only augmenting the lexical confusion, whereas for foreign
names there is a balance between that effect and the positive
effect of bringing in a better transcription than the manual one
for some of these names.

3.2. Testing the proposed methodology

Since one usually has no access to manual transcriptions we
take A/l as the baseline lexicon and we assess our method-
ology when applied in combination with this lexicon. Fig-
ures in bold in the Tables refer to results that are significantly
better than the baseline according to a Wilcoxon signed-rank
test [15] with p = 0.05.

3.2.1. Back-off model with native phoneme representations

In a first experiment we just took the lexicon A/l as used in
the baseline system. The phonological representations that
served as a basis for the computation of the back-off scores
were those of the native phonemes that gave rise to the model
states. We determined the optimal stream weight by perform-
ing recognition tests on the development set for several values
of go. We tracked the WER as a function of g2, smoothed the
curve and located the minimum of the smoothed curve. The
corresponding stream weights were then imputed in the ASR
system. The optimal stream weights were (g1, g2) = (0.2,0.8).
The corresponding WERs plus the absolute and relative im-
provements (Al and RI) over the baseline are summarized in
Table 5. The first remarkable fact is that the improvement
is modest in the SIM case but substantial in the AM case.
Possibly, our method is not effective as long as the baseline
acoustic models are insufficiently accurate.

A second remarkable fact is that in the AM case, the
improvement is not only substantial for English and French
names, but surprisingly, also for Dutch names. Apparently,
the back-off model provides information that is not captured
by the triphone model.

3.2.2. Back-off model with foreign phoneme representations

In a second experiment, we replaced the former A/l lexicon by
a lexicon with foreignizable phonemes in the foreign G2P out-
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Table 5. Performances (all in %) of an ASR with a two-stream
acoustic model and native phonological representations of the
model states.

| triphones | measure | E [ F | D | All |
SIMs WER 47.3 | 30.8 | 21.0 | 30.0

Al 35 | 1.7 | 02 | 1.5
RI 69 | 5.2 1.0 | 55

AMs WER | 183 | 102 | 3.1 | 87
Al 24 26 | 13 | 19
\ RI 11.6 | 20.3 | 29.5 | 17.9

puts of foreign names. Then we used the phonological char-
acterization of the foreign phonemes to control the back-off
score computation. The results of this experiment are sum-
marized in Table 6. Obviously, the introduction of foreign

Table 6. Performances (all in %) of an ASR with a two-
stream acoustic model and foreignizable phonological rep-
resentations of the model states.

| triphones | measure | E | F | D | All |

SIMs | WER | 46.7 | 301 | 212 | 29.8
Al 4.1 2.4 0.1 1.8
RI 8.0 7.4 0.7 5.5

AMs WER | 18.1 | 10.1 | 3.1 | 8.6
Al 26 | 27 | 1.3 | 2.0
RI 12.6 | 21.1 | 29.5 | 18.9

phonological representations causes only a small consistent
gain, but one that is achievable at no extra cost.

One of the possible explanations for the low gain is that
the speakers not always use a foreign pronunciation, and thus
that a back-off model on the basis of a foreign representation
is not always the best solution. In order to test that hypothesis
we have conducted an additional experiment.

3.2.3. Including pronunciation variants

In a third experiment we have introduced pronunciation vari-
ants in the lexicon using the method proposed in section 2.4.
The recognition results obtained with this lexicon are summa-
rized in Table 7.

The Table reveals that the results have further improved,
and that the improvement is now starting to be statistically
significant for the speaker-independent case as well. Note too,
that the improvement is confined to the English and French
name subsets, as expected. However, the gain is moderate
and adding variants is increasing the computational load. We



Table 7. Performances (all in %) of an ASR with a two-stream
acoustic model,foreignizable phonological representations of
the model states and pronunciation variants.

| triphones | measure | E [ F | D | All |
SIMs WER 459 | 294 | 214 | 29.5
Al 4.9 3.1 | -0.1 2.0
RI 9.6 95 | -0.0 | 6.3
WER 17.6 | 10.0 | 3.1 8.5
Al 3.1 2.8 1.3 2.1
RI 149 | 21.9 | 29.5 | 19.8

AMs

therefore we recommend to use the system with foreignizable
representations but without variants.

4. CONCLUSIONS AND FUTURE WORK

We have further elaborated a novel technique for improving
the recognition of foreign names spoken by native speak-
ers. The method is based on the introduction of a two-stream
acoustic model and foreignizable phonemes in the lexicon.
The two-stream acoustic models combine the standard acous-
tic likelihood on a triphone state with a phonological score for
that same state. The standard acoustic models and the phono-
logical feature extractors were both trained on native speakers
only.

For the recognition of English and French names spoken
by Dutch speakers, the method yielded significant reductions
of the WER of 15 % and 22 % relative. Surprisingly, the
recognition also improved for the Dutch names.

We are currently evaluating our methodology under the
assumption that the ASR knows the language of its vocabu-
lary entries. Furthermore, there is evidence [8] that the results
can be further improved by training the phonological feature
extractor on multilingual speech.
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