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ABSTRACT

We describe a cardinal-synchronous Viterbi decoder for statistical
phrase-based machine translation which can operate on general
ASR lattices (as opposed to confusion networks). The decoder
implements constrained source reordering on the input lattice and
makes use of an outbound distortion model to score the possible
reorderings. The phrase table, representing the decoding search
space, is encoded as a weighted nite state acceptor which is de-
terminized and minimized. At a high level, the search proceeds
by performing simultaneous transitions in two pairs of automata:
(input lattice, phrase table FSM) and (phrase table FSM, target lan-
guage model). An alternative decoding strategy that we explore is
to break the search into two independent subproblems: rst, we
perform monotone lattice decoding and nd the best foreign path
through the ASR lattice and then, we decode this path with re-
ordering using standard sentence-based SMT.

We report experimental results on several testsets of a large
scale Arabic-to-English speech translation task in the context of
the Global Autonomous Language Exploitation (or GALE) DARPA
project. The results indicate that, for monotone search, lattice-
based decoding outperforms 1-best decoding whereas for search
with reordering, only the second decoding strategy was found to
be superior to 1-best decoding. In both cases, the improvements
hold only for shallow lattices.

1. INTRODUCTION

Current research in speech translation focuses on augmenting the
interface between ASR and MT to more than 1-best hypotheses,
the idea being that the MT component should have the freedom to
select paths whose translations are more likely. We distinguish be-
tween the cascaded approach to speech translation, where the sys-
tem is comprised of a series of individual engines that are applied
in sequence, and the integrated approach, where the SMT compo-
nent accepts multiple ASR hypotheses as input. In increasing order
of generality, these hypotheses can be presented in various forms:
n-best lists, confusion networks [1] and arbitrary lattices [2, 3].
The maximum degree of generality (or the tightest coupling) is at-
tained by performing a joint ASR and MT search which has only
been possible, so far, for limited domain tasks [4].

There is no guarantee, at the outset, that lattice-based SMT is
bound to improve translation performance. This is because ASR
lattices contain paths which are worse than the 1-best in terms of
word error rate in addition to the paths which are better. This is
an often overlooked aspect of lattice processing and researchers
tend to focus only on the oracle word error rate (i.e. the error
rate of the path of lowest WER). It can happen, however, that a
weak MT component prefers paths which result in worse overall
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performance. Therefore, care has to be taken on how to combine
the ASR and MT scores when doing lattice decoding.

While lattice-based SMT decoding has been studied previ-
ously already [2, 3, 4], the work presented here exhibits differences
along several axes. First, compared to the prior art, we discuss how
to deal with word reordering on a lattice during decoding. Sec-
ondly, the way we construct the search space (subsection 3.3) also
differentiates our work. Thirdly, to the best of our knowledge, we
are the rst to apply lattice decoding to a truly large scale speech
translation task.

The remainder of this paper is organized as follows: section 2
formulates the problem, section 3 describes the lattice-based SMT
decoder, section 4 presents some experimental results on a large
scale Arabic-to-English speech translation task and section 5 sum-
marizes our ndings.

2. PROBLEM FORMULATION

We are given x = x1 . . . xT , xt ∈ IRd, a sequence of acoustic
feature vectors corresponding to a foreign speech utterance which
is to be translated into a target string e = e1 . . . eI , ei ∈ E. The
goal of speech translation is to nd the target string ê with the
highest posterior probability given the acoustics x:

ê = argmax
e∈E∗

P (e|x) (1)

The difference with text translation is that the foreign sequence
is not given, instead we have to sum up over all possible realiza-
tions f = f1 . . . fJ , fj ∈ F as suggested in [5]:

P (e|x) =
∑

f∈F∗
P (e, f |x) (2)

By applying Bayes rule to the term on the right side of equa-
tion (2), we get:

P (e, f |x) =
P (x|e, f)P (e, f)

P (x)

=
P (x|f)P (e, f)

P (x)

(3)

where in the last equation of (3) we made the (reasonable) assump-
tion that the acoustic sequence does not depend on the target word
sequence when conditioned on the foreign word sequence.

By combining (1), (2) and (3) and by taking into consideration
that P (x) is constant with respect to the max operation, we obtain:
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ê = argmax
e∈E∗

∑

f∈F∗
P (x|f)P (e, f)

= argmax
e∈E∗

∑

f∈F∗
P (x|f)P (f |e)P (e)

(4)

with P (x|f) being the likelihood of the acoustic feature vectors
given the foreign word sequence, P (f |e) the likelihood of the for-
eign word sequence given the target words and P (e), the prior
probability of the target word sequence (given by the English lan-
guage model). In (4) we have applied the source-channel model
for machine translation [6] to separate the two knowledge sources:
the LM term which controls the well-formedness of the target word
sequences and the translation model. Alternatively, it is also com-
mon, especially when modeling the translation problem with WF-
STs, to reason directly in terms of joint probabilities as in [7, 3].

2.1. Lattice-based decoding

Lattice-based decoding simply means that we restrict the summa-
tion in (4) only to the paths occurring in a lattice, that is:

ê = argmax
e∈E∗

∑

f∈L(x)

P (x|f)P (f |e)P (e) (5)

where L(x) denotes the set of paths that occur in the ASR lattice
corresponding to the acoustics x.

2.2. Phrase-based SMT

In phrase-based translation [8], we segment the foreign input sen-
tence into a sequence of 1 ≤ K ≤ J phrases f̄ = f̄1 . . . f̄K .
We assume a uniform distribution over all possible segmentations.
Each foreign phrase f̄k in f̄ is translated into a target phrase ēk
with probability φ(f̄k|ēk). The conditional probability P (f |e) can
be expressed as:

P (f |e) =
∑

f̄ ,ē

P (f̄ |ē)

=
∑

f̄ ,ē

K∏

k=1

φ(f̄k|ēk)
(6)

where the summation is performed over all the segmentations which
are consistent with f and e.

2.3. Source word reordering

Let σ : {1, . . . , J} → {1, . . . , J}, σ ∈ SJ , be a permutation of
the set {1, . . . , J} with SJ being the symmetric group of order J .
We de ne the permuted foreign sequence as

fσ := fσ(1) . . . fσ(J)

The translation model can be expressed by marginalizing over the
permutations and by using the chain rule of conditional probabili-
ties as follows:

P (e, f) =
∑

σ∈SJ

P (e, f , σ)

=
∑

σ∈SJ

P (f |e, σ)P (e|σ)P (σ)

=
∑

σ∈SJ

P (fσ|e)P (e)P (σ)

(7)

with P (σ) being given by the distortion model. The distortion
model used in this work is based on the window/skip model intro-
duced in [9] and the scores are computed following the outbound
distortion scheme proposed in [10] which, for the sake of com-
pleteness, is written below:

P (σ) :=

J−1∏

j=1

P (σ(j + 1)− σ(j)|fσ(j)) (8)

which simply means that we model the probability of the length of
the jump to the next word conditioned on the identity of the current
word. Note that this particular distortion scheme depends on both
σ and f .

Putting (5) and (7) together, we can formulate the lattice-based
SMT decoding problem with reordering in the following way:

ê = argmax
e∈E∗

∑

f∈L(x)

P (x|f)
∑

σ∈SJ

P (fσ|e)P (e)P (σ) (9)

2.4. Two-pass strategy

Implementing (9) directly can be computationally expensive be-
cause of the double summation. The idea then is to divide the
problem into two subparts in the following manner:

1. Lattice-based monotone decoding of best foreign path:

f̂ = argmax
f∈L(x)

max
e∈E∗ P (x|f)P (f |e)P (e) (10)

2. Sentence-based non-monotone decoding of best English path:

ê = argmax
e∈E∗

∑

σ∈SJ

P (f̂σ|e)P (e)P (σ) (11)

This strategy has the obvious advantage of factoring the search
into subproblems of lower complexity. In the next section, we dis-
cuss how to implement equations (9)–(11) ef ciently with WFSTs.

3. DECODER DESCRIPTION

3.1. WFST interpretation

Finite state machines offer a convenient formalism to represent,
access and manipulate heterogeneous knowledge sources in a uni-
form way. Knowledge sources can be combined through the com-
position operation and the resulting automata can be “shrunk” to an
optimal size via determinization and minimization and ef ciently
searched. It is no wonder then that WFSTs have lately become the
formalism of choice in both ASR [11] and SMT [3, 2, 7] and we
shall make no exception here.

Similarly to [7], equation (9) can be rewritten using nite-state
terminology as follows:

ê = best-path(I ◦ R ◦M ◦ L) (12)

where the component FSMs represent:

• I : input lattice acceptor. Encodes f with weight P (x|f)P (f).

• R: reordering transducer. Maps f to fσ with weight P (σ).

• M : translation transducer. Maps fσ to e with weight P (fσ|e).

• L: language model acceptor. Encodes e with weight P (e).
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3.2. Decoding approaches

Computing the entire composition in (12) off-line is usually in-
tractable for a larger scale task. The alternative is to have a decoder
which implements on-demand (or on-the- y) composition during
the search. This approach has been favored by [7, 3]. Both authors
opt for using general FSM decoders. This has the advantage that
the same decoder can be used for different FSM con gurations and
the disadvantage that the decoder is oblivious to special FSMs (e.g.
R). We take a different approach and design a specialized decoder
which has an ef cient implementation for the reordering FSM (but
cannot support arbitrary FSM con gurations).

3.3. Search space construction

The starting point for creating the M FSM is a bilingual phrase ta-
ble with scores. Next, we carry out the following steps in sequence
which are illustrated in Figure 1 for a French-to-English example:

1. Add one path per phrase from the start to the nal state

2. Determinize resulting acceptor

3. Minimize previous acceptor

4. Make FSM cyclic and mark foreign/English arcs

We encoded the phrase table as an acceptor (instead of a trans-
ducer) because the determinization and minimization operations
are much simpler on acyclic acceptors and we rely on the decoder
to differentiate between the foreign and the English arcs.
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Figure 1: Steps for constructing a phrase-table acceptor.

3.4. Viterbi decoding

The search proceeds in the following way. At each step, we take
simultaneous transitions in pairs of FSMs which are labeled by
the same word: rst, we take one transition in (I,M) and then, if
possible, we take a sequence of transitions in (M,L). Note that
this requires the “English” section of the phrase-table FSM to be
sorted in topological order. The search stops when we reach the
nal states in all component FSMs. All hypotheses which compete

at a given step cover the same number of input words which is
commonly referred to as cardinal synchronous decoding. These
hypotheses are pruned using a combination of beam and histogram
(or rank) pruning as explained in [11] for ASR.

3.5. Monotone decoding

For monotone decoding, we keep track of tuples of active states
(li,mj , nk), where li is a state in the input lattice, mj is a state in
the phrase table FSM and nk represents a target language model
state which is similar to [3]. In addition, we keep track of the
following component scores which are combined with indepen-
dent weights: acoustic and foreign language model scores from
the ASR, translation scores and English LM scores.

3.6. Non-monotone decoding

In the case of search with reordering, there are a couple of addi-
tional complications. First, we have to be able to access distant
successors in a lattice from any given node, (e.g. immediate suc-
cessors have distance 1, their immediate successors have distance
2, and so on). Second, we have to keep track of more information
during the search for each hypothesis:

• Current state in input lattice

• First state in input lattice from which reordering window
applies

• State vector for reordering window

• Jump distance from previous word (used for reordering)

• State in translation FSM

• State in LM FSM

The state vector for the reordering window is an extension of
the coverage bit vector [7] except that, instead of bits, we have
lattice states. It can be represented as a 64 bit integer if we limit
ourselves to a maximum window size of 4 and if each lattice has
less than 64K nodes. This elegantly solves the problem of path
recombination i.e. hypotheses which have identical window values
can be merged.

Compared to monotone decoding, there is an additional dis-
tortion score which is also combined with an independent weight.

4. EXPERIMENTS AND RESULTS

The experiments were conducted on a large scale Arabic-to-English
broadcast news and broadcast conversations speech translation task
which is part of the GALE DARPA program. We report results on
four test sets which vary by collection time and by genre. Table 1
summarizes the characteristics of these various test sets.

The speech recognition system used in this work consists in
the rst two decoding passes of our 2006 GALE evaluation sys-
tem (which had three passes/models). The rst pass search is done
with speaker independent acoustic models and the second pass
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Name Genre Nb. segments Nb. words
BNAD05s BN 8 15.0K
DEV07 BN+BC 110 19.6K
EVAL06s-BN BN 24 6.0K
EVAL06s-BC BC 14 6.7K

Table 1: Testset description. Nb. of segments refers to the number
of shows or “snippets”. Nb. of words represents the number of
decoded Arabic words.

BNAD05s DEV07 EVAL06s-BN EVAL06s-BC
15.7% 17.9% 24.0% 31.9%

Table 2: ASR 1-best word error rates.

with speaker-adaptive trained (or SAT) models. Both sets of mod-
els are trained discriminatively on 135 hours of supervised data
and 1800 hours of unsupervised data (i.e. without reference tran-
scripts). The models are unvowelized (or graphemic) in the sense
that short Arabic vowels are not explicitly represented. More de-
tails about the training of the Arabic models can be found in [12].

We generated two sets of lattices which differ in the average
link density (ALD) and the degree of pruning: one set with an
ALD of 2.5 (pruned with a beam of 0.5) and another one with an
ALD of 5 (pruned with a beam of 1.0). The original (unpruned)
lattices have an ALD of 450. The ASR decoder that was used to
generate the lattices is described in [11]. The 1-best word error
rates on the different test sets are summarized in Table 2.

The MT phrase tables were trained on a variety of corpora:
UN parallel corpus, LDC News and various GALE data releases.
Phrases were extracted using the inverse projection constraint de-
scribed in [13]. The English language model is a 5-gram LM and
has about 800M n-grams. All non-monotone decodings were run
with a window width of 4 words and a maximum skip length of 2.

In Table 3 we report TER results for both monotone and non-
monotone decodings for 1-best, lattice set 1 (LS1) and lattice set 2
(LS2). We also compare direct decoding with the two-pass strat-
egy presented in subsection 2.4. An analysis of these results show
that the largest gains (1 TER point) are obtained for EVAL06s-
BC followed by the BNAD05s testset (1 point monotone, 0.5 with
reordering). The gains on the other test sets are inconclusive. A
second observation is that the two-pass strategy outperforms the
direct decoding strategy and degrades less on the larger lattices.
Finally, we note that the only testset which improves for the larger
lattices is EVAL06s-BC (which also has the highest WER/TER).

5. CONCLUSION

We described a Viterbi decoder for speech translation which oper-
ates on general ASR lattices. The decoder nds the path of mini-
mum cost through an on-demand composition of several automata.
We deal ef ciently with word reordering on the lattice by repre-
senting the reordering FSM implicitly as a node coverage vector.
A two-pass decoding strategy is also presented which has the ad-
vantage of factoring the search into simpler subproblems. Future
work will extend some of these ideas to joint decoding.

Monotone decoding
BNAD05s DEV07 EVAL06s-BN EVAL06s-BC

1bst 64.0% 60.1% 67.6% 70.6%
LS1 63.0% 59.8% 67.4% 69.8%
LS2 63.2% 59.8% 67.8% 69.5%

Non-monotone direct decoding
1bst 61.7% 58.9% 66.9% 70.3%
LS1 61.5% 59.1% 67.4% 70.8%
LS2 61.6% 59.4% 68.1% 70.4%

Non-monotone two-pass decoding
LS1 61.2% 58.8% 67.1% 69.9%
LS2 61.3% 59.2% 67.5% 69.3%

Table 3: TER results for lattice-based SMT decoding.
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