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ABSTRACT 

A survey of research on spoken language understanding is 
presented. It covers aspects of knowledge representation, 
automatic interpretation strategies, semantic grammars, conceptual 
language models, semantic event detection, shallow semantic 
parsing, semantic classification, semantic confidence, active 
learning

Index Terms— Spoken language understanding, conceptual 
language models, spoken conceptual constituent detection, 
stochastic semantic grammars, semantic confidence measures, 
active learning.

1. INTRODUCTION 

Epistemology, the science of knowledge, considers a datum as 
basic unit. A datum can be an object, an action or an event in the 
world and can have time and space coordinates, multiple aspects 
and qualities that make it different from others. A datum can be 
represented by an image or it can be abstract and be represented by 
a concept. A concept can be empirical, structural, or an a-priori 
one. There may be relations among data.  
Computer epistemology deals with observable facts and their 
representation in a computer. Knowledge about the structure of 
a domain represents a datum by an object and groups objects 
into classes by their properties.   
Natural language refers to data in the world and their relations. 
Sentences of a natural language are sequences of words. Words of 
a sentence have associated one or more data conceptualizations 
also called meanings which can be selected and composed to form 
the meaning of the sentence.  
Semantics deals with the organization of meanings and the 
relations between signs or symbols and what they denote or mean.  
Computer semantics performs a conceptualization of the world 
using well defined elements of programming languages. 
Programming languages have their own syntax and semantic. The 
former defines legal programming statements, the latter specifies 
the operations a machine performs when an instruction is executed. 
Specifications are defined in terms of the procedures the machine 
has to carry out.  Semantic analysis of a computer program is 
essential for understanding the behavior of a program and its 
coherence with the design concepts and goals. Formal logics can 
be used to describe computer semantics. 
Computer programs conceived for interpreting natural language 
differ from the human process they model. They can be 
considered as approximate models for developing useful 
applications, interesting research experiments and 

demonstrations. Semantic representations in computers usually 
treat data as objects respecting logical adequacy in order to 
formally represent any particular interpretation of a sentence.  
Even if utterances, in general, convey meanings which may not 
have relations which can be expressed in formal logics ([45], p. 
287), formal logics have been considered adequate for 
representing natural language semantics in many application 
domains. Logics used for representing natural language 
semantic should be able to deal with intension (the essence of a 
concept) and extension (the set of all objects which are instances 
of a given concept).  
Computer systems interpret natural language for performing 
actions such as a data base access and display of the results and  
may require the use of knowledge which is not coded into the 
sentence but can be inferred from the system knowledge stored 
in long or short term memories. It is argued in [135] that a 
specification for natural language semantics requires more than 
the transformation of a sentence into a representation. In fact, 
computer representations should permit, among other things,  
legitimate conclusions to be drawn from data [72]. 
Interpretation may require the execution of procedures that specify 
the truth conditions of declarative statements as well as the 
intended meaning of questions and commands [135]. Procedures 
are executed by an interpretation strategy.
Spoken Language Understanding (SLU) is the interpretation of 
signs conveyed by a speech signal. This is a difficult task because 
meaning is mixed with other information like speaker identity and 
environment.  Natural language sentences are often difficult to 
parse and spoken messages are often ungrammatical. The 
knowledge used is often imperfect and the transcription of user 
utterances in terms of word hypotheses is performed by an 
Automatic Speech Recognition (ASR) system which makes errors. 
Strategies of the first SLU systems performed transformations 
from signals to words, then from words to meaning. Some 
strategies were successively propose d to transform signals into 
basic semantic constituents to be further composed into semantic 
structures. 
This paper reviews the history of SLU research with particular 
attention to the evolution of interpretation paradigms, influenced 
by experimental results obtained with evaluation corpora. This 
review integrates and complements reviews in [22,73].  

2. COMPUTER REPRESENTATIONS OF MEANING

Computer representation of meaning is described by a Meaning 
Representation Language (MRL) which has its own syntax and a 
semantic. MRL should follow a representation model coherent 
with a theory of epistemology, taking into account, intension and
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extension, relations, reasoning, composition of semantic 
constituents into structures, procedures for relating them with signs. 
The semantic knowledge of an application is a knowledge base 
(KB). A convenient way for reasoning about semantic knowledge 
is to represent it as a set of logic formulas. Formulas contain 
variables which are bound by constants and may be typed. An 
object is built by binding all the variables of a formula or by 
composing existing objects.  
 Semantic compositions and decisions about composition actions 
are the result of an inference process.  Basic inference problem is 
to determine whether  FKB  which means that KB entails a
formula F, meaning that F is true in all possible variable 
assignments (worlds) for which KB is true.  
In [135], the possibility of representing semantic relations with 
links between classes and objects is discussed. The formulas in a 
KB describe concepts and their relations which can be 
represented in a network called semantic network. A semantic 
network is made of nodes corresponding to entities and links 
corresponding to relations. This model combines the ability to 
store factual knowledge and to model associative connections 
between entities [135].  Examples of relations are composition 
functions [44]. 
The structure of semantic networks can be defined by a graph 
grammar. Computer programming classes and objects called 
frames can be defined to represent entities and relations in 
semantic networks. In a frame based MRL, grammar of frames 
is a model for representing semantic entities and their properties. 
 Such a grammar should generate frames describing general 
concepts and their specific instances. Part of a frame is a data 
structure which represents a concept by associating to the 
concept name a set of roles which are represented by slots.
Finding values for roles corresponds to fill the frame slots. A 
slot filler can be the instance of another frame. This is 
represented by a pointer from the filler to the other frame. The 
semantic of an MRL can be described by procedures for 
generating instances of entities and relations. This characterizes 
procedural semantics. Procedures for slot filling as well as for 
frame evocation use methods.  
Different frames may share slots with similarity links. There may 
be necessary and optional slots. Fillers can be obtained by 
attachment of procedures or detectors (of e.g. noun groups), 
inheritance, default.
Procedures can also be attached to slots with the condition in 
which they have to be executed. Examples of conditions are when-
needed, when-filled. Slots may contain expectations or 
replacements (to be considered if slots cannot be filled).  
Descriptions are attached to slots to specify constraints. Given a 
slot-filler for a slot, the attached description can be inferred. 
Descriptions can be instantiations of a concept carrier and can 
inherit its properties. Descriptions may have connectives, 
coreferential (descriptions attached to a slot are attached to another 
and vice-versa), declarative conditions.  
Verbs are fundamental components of natural language sentences. 
They represent actions for which different entities play different 
roles. Actions reveal how sentence phrases and clauses are 
semantically related to verbs by expressing cases for verbs. A case
is the name of a particular role that a noun phrase or other 
component takes in the state or activity expressed by the verb in a 
sentence.  There is a case structure for each main verb. Attempts 
were made for mapping specific surface cases into a deep semantic 
representation expressing a sort of semantic invariant.  Many deep 

semantic representations are based on deep case n-ary relations 
between concepts as proposed by Fillmore [31]. Deep case 
systems have very few cases each one representing a basic 
semantic constraint.  
In [81], schemas containing roles and other information are 
proposed as active structures to model events and capture 
sequentiality. 
A popular example of MRL is the Web Ontology Language 
(OWL) [87] which integrates some of the most important  
requirements for computer semantic representation.. 
A heterarchical architecture based on a KB made of situation-
action (production) rules  is described in [29]. 

3. SYNTACTIC AND SEMANTIC ANALYSIS FOR 
INTERPRETATION 

An initial, considerable effort in SLU research was made with an 
ARPA project started in 1971. The project is reviewed in [55] and 
included approaches mostly based on Artificial Intelligence (AI) 
for combining syntactic analysis and semantic representation in 
logic form. Systems of this project generate a sequence of word 
hypotheses with an ASR system and perform interpretation with 
the same approaches used for written text.  It was assumed, as 
stated for example in [128], that a semantic analyzer has to work 
with a syntactic analyzer and produce data acceptable to a logical 
deductive system. This is motivated by arguments, for example in 
[44], that each major syntactic constituent of a sentence maps into 
a conceptual constituent, but the inverse is not true. For example, 
adapting the notation in [44], a sentence requiring a restaurant near 
the Montparnasse metro station in Paris can be represented by the 
following bracketed conceptual structure expression: 

:[Action REQUEST ([Thing RESTAURANT], [Path NEAR 
([Place IN ([Thing MONTPARNASSE])])]] 

The formalism is based on a set of categories. Each category, e.g. 
Place can be elaborated as a Place-function, e.g. IN and an 
argument. 
The expression  can be obtained from a syntactic structure like 
this: 

S[VP [V give, PR me] NP [ART a, N restaurant] PP[PREP near, 
NP [N Montparnasse, N station]]]] 

Assuming that natural languages are susceptible to the same kind 
of semantic analysis as programming languages, in [78], it is 
suggested that each syntactic rule of a natural language generative 
grammar is associated with a semantic building procedure that 
turns the sentence into a logic formula. 
An association of semantic building formulas with syntactic 
analysis is proposed in categorical grammars conceived for 
obtaining a surface semantic representation [62].  
Semantic knowledge is associated, in this case with lexical entries 
and logic formulas are composed by actions performed during 
parsing. The use of a lexicon with Montague grammars is 
discussed in detail in [26].  
Organization of lexical knowledge for sentence interpretation has 
been recently the object of investigation. VerbNet [54], is a 
manually developed hierarchical verb lexicon. For each verb class, 
VerbNet specifies the syntactic frames along with the semantic 
role assigned to each slot of a frame. Modelling joint information 
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about the argument structure of a verb is proposed in [123].  In the 
WordNet Project [75], a word is represented by a set of 
synonymous senses belonging to an alphabet of  synsets. It can be 
used for word sense disambiguation.  
Suitable procedures can be attached to frames to generate 
logical sentences from slots filled are filled. Details on the use 
of syntax and semantics for natural language understanding can 
be found in [2]. 
Slot filling procedures can be executed under the control of a 
parser or, in general, by precondition-action rules. As natural 
language is context sensitive, procedural networks for parsing 
under the control of Augmented Transition Network Grammars 
(ATNG) were proposed.  ATNGs [134] are augmentations of 
Transition Network Grammars (TNGs). TNGs are made of 
states and arcs. The input string is analyzed during parsing from 
left to right, one word at a time. The input word and the active 
state determine the arc followed by the parser. Arcs have types, 
namely CAT (to read an input symbol), PUSH (to transfer the 
control to a sub-network) and POP (to transfer the control from 
a sub-network to the network that executed the PUSH to it). 
 In ATNGs condition testing and register setting actions are 
associated to certain arcs. Actions set the content of registers 
with linguistic feature values and can also be used for building 
parse trees. It is also possible to introduce actions of the type 
BUILD associated to an arc to compose a parse tree or to 
generate semantic interpretations. Different ATNGs can be used 
in cascade for parsing and interpretation. An arc type 
TRANSMIT transfers syntactic structures from the syntactic to 
the semantic ATNG. 
If a portion of a parse tree can be mapped into a semantic 
symbol of an MRL, then this symbol could be used as a 
nonterminal in a grammar which integrates syntactic and 
semantic knowledge. In [135], syntactic, semantic and 
pragmatic knowledge are integrated into procedural semantic
grammar networks in which symbols for sub networks can 
correspond to syntactic or semantic entities.
In [139], TNGs are proposed as procedural attachment to frame 
slots. A chart parser can be activated for each TNG under the 
conrol of the interpretation strategy. In [133], a search algorithm 
was implemented in which the TNG was employed during ASR 
decoding. 
In [127] a best first parser is used. Its results trigger activations 
in a partitioned semantic network with which inferences and 
predictions are performed by spreading node activation through 
links. Tree Adjoining grammars (TAG) also integrate syntax and 
logic form (LF) semantics [114].  
Classification based parsing may use Functional Unification 
grammars (FUG), Systemic Grammars (SG), or Head Driven 
Phrase Structure Grammars (HDPSG) which are declarative 
representations of grammars with logical constraints stated in 
terms of features and category structure.  Semantics may also 
drive the parser, causing it to make attachments in the parse tree. 
Semantics can resolve ambiguities and translate English words 
into semantic symbols using a discriminant net for 
disambiguation.. A interesting example of interleaving syntax 
and semantics in a parser is proposed in [25].  
Semantic parsing is discussed in [144]. A semantic first parser is 
described in [143]. 
Simple grammars are used for detecting possible clauses, then  
classification-based parsing completes the analysis with inference  
[51]. 

Early experiment is SLU made it clear the necessity of analyzing 
portions of a sentence when the complete sentence could not be 
analyzed. Problems of this type may be due to the fact that spoken 
language very often does not follow a formal grammar, hesitations 
and repetitions are frequent and available parsers do not ensure full 
coverage of possible sentence even in the case of written text. 
As grammar coverage was limited for input speech, in [136] 
ATNGs were proposed to interpret parts of a sentence using a 
middle out analysis of the input words. A scope specification is 
associated with grammar actions. Parsing can proceed to the left or 
to the right of the input word. Scope specification indicates a set of 
states the parser has to have passed through before the action can 
be safely performed. If this is not the case, the action is delayed. In 
[112], it is proposed to relax parser constraints when a sentence 
parser fails. This will permit the recovery of phrases and clauses 
that can be parsed. Fragments obtained in this way are then fused 
together.
More complex systems using fallback were proposed. 
Noticeable examples are The Delphi system [10] and  the 
Gemini system [46]. They are described in some detail in ([22], 
ch. 14). 

4. FINITE STATE PROBABILISTIC MODELS FOR 
INTERPRETATION

Even if there are relations between semantic and syntactic 
knowledge, integrating these two types of knowledge into a 
single grammar formalism may not be the best solution. Many 
problems of automatic interpretation in SLU systems arise from 
the fact that many sentences are ungrammatical, the ASR 
components make errors in hypothesizing words and grammars 
have limited coverage. These considerations suggest that it is 
worth considering specific models for each conceptual 
constituent.  
In addition to partial parsing [51] and back-off, in the Air Travel 
Information System (ATIS) project, it was found useful to 
conceive devices for representing knowledge whose imprecision 
is characterized by probability distributions. It was also found 
useful to obtain model parameters by automatic learning using 
manually annotated corpora. This works as far as manual 
annotation is easy, reliable and ensures a high coverage.  
Stochastic finite-state approximations of natural language 
knowledge are practically useful for this purpose. Finite-state 
approximations of context-free grammars are proposed in [89]. 
Approximations of TAG grammars are described in [97]. A review 
of these approximations is provided in [28].  
Let assume that a concept C is expressed by a user in a sentence W 
which is recognized by an ASR system, based on acoustic features 
Y. This can be represented as follows: Y e  W e  C.  

Symbol e  indicates an evidential relation meaning that if Y is 
observed then there is evidence of W and, because of this, there is 
evidence of C. 
There are exceptions to this chain of rules, because a different 
concept C’ can be expressed by W and Y can generate other 
hypotheses W’ which express other concepts. Furthermore, C can 
be expressed by other sentences jW  which can be hypothesized 
from Y. The presence of C in a spoken message described by Y 
can only be asserted with probability: 
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Let assume now that C is a sequence of hypotheses about 
semantic constituents, the following decision strategy can be 
used to find the most likely sequence C’ as follows: 

)CW(P)W/Y(Pmaxarg)Y/C(Pmaxarg'C
CC

Word hypotheses are generated by an ASR system using a 
probabilistic language model (LM).
A solution based on the above introduced concepts is 
implemented in the system called Chronus [90]. The core of this 
system is a stochastic model whose parameters are learned from 
a corpus in which semantic constituent are associated to 
sentence chunks. The conceptual decoder at the core of Chronus 
is based on a view of utterances as generated by an HMM-like 
process whose hidden states correspond to meaning units called 
concepts. Thus, understanding is a decoding of these concepts 
hidden in an utterance. In the Chronous system, the probability 
P(CW)  is computed as follows. 

    P(CW)=P(W|C)P(C)   

P(C) is obtained with concept bigram probabilities
Examples of learning algorithms for finite state transducer  can 
be found in [91]. 
In [27], it is proposed to extract concept hypotheses from a word 
lattice. Each concept hypothesis is extracted with a  probabilistic 
conceptual semantic context-free grammar.
The CHANEL system [60], performs the following 
computation:

P(CW)=P(C|W)P(W) 

CHANEL learns semantic interpretation rules by means of a 
forest of specialized decision trees called Semantic
Classification Trees (SCTs). The required annotation only 
consists in listing the concepts present in a sentence. 
There is an SCT for every elementary concept. An SCT is a binary 
tree with a question associated to each node. Questions span an 
entire sentence. They are generated and selected automatically. 
Probability P(C|W) is obtained from the counts of  times the leaf 
corresponding to the pattern that matched with W is reached. 
Notice that W can be an entire sentence. Different conceptual 
constituent hypotheses can be generated by different sentence 
patterns that share some components. A frame-based semantic 
representation is generated by rules. In the ATIS domain a frame 
instance is expressed by a single spoken message. 
Specific conceptual language models can be used in ASR 
decoding [95, 145] to obtain semantic constituent hypotheses, 
possibly a lattice of them, directly from the signal rather than from 
word hypotheses. A compound LM can be obtained by integrating  
a generic n-gram LM with specific LMs,  one for each semantic 
constituent. Specific LMs can be accepted by stochastic finite-state 
machines (FSM). Variable N-gram Stochastic Automata (VNSA) 
and their use for hypothesizing semantic constituents are proposed 
in [101]. 
In [83], weighted finite state machine (WFSM) are proposed 
whose edges are labelled with words. A path in the WFSM 
represents a phrase. Word n-grams and WFSMs can be combined 

and regarded as a hidden Markov model (HMM).The model 
construction starts with sentence parsing. The first step of the 
construction consists in partially parsing a training corpus in order 
to recognize sequences of words as phrases. The training corpus is 
first annotated with part of speech (POS) tags. At the end of this 
process, each word of the corpus is associated to its most probable 
part of speech. The annotated corpus is then partially parsed using 
a greedy finite state partial parser. The parser gathers together 
adjacent words composing a phrase of a given type (noun phrase, 
verb phrase..). Different grammars are used to recognize phrases of 
different nature and length. The second step is the construction of   
phrase classes. It consist in grouping together into classes phrases 
of the same category. The third step consists in merging together 
classes having a close internal distribution. 
Finite state models can be made more robust by modifying the 
original topology to take into account possible insertions, deletions 
and substitutions. Insertion of words not essential for 
characterizing a semantic constituent can be modeled by groups of 
syllables [21].  
Recent advances in research on stochastic FSM made it possible to 
generate a probabilistic lattice of conceptual constituent 
hypotheses from a probabilistic lattice of word hypotheses.  
In [99]; a stochastic finite-state conceptual language model jCLM
is conceived for every semantic constituent. An initial ASR 
activity uses a generic LM, indicated as GENLM, for generating a 
graph WG of word hypotheses. An automaton AWG is derived for 
this graph. A sequence W of word hypotheses is scored by its 
likelihood.  
A knowledge source, is built by connecting all the jCLM  in 
parallel. Such a knowledge source is composed with WG leading 
to an automaton SEMG: 

operator  indicates composition.  0CLM is a generic model. 
Arcs of SEMG are labelled by pairs of symbols. The first symbol 
of the pair is a word w with associated its likelihood. The second 
symbol of the pair can be the empty symbol, the beginning of a 
semantic tag or the end of a semantic tag. A semantic tag 
represents any semantic constituent or structure for which a 
relation with a word pattern has been identified. 
The support of a concept jc  sup( jc ), is the union of all the paths 
going from the beginning to the end of WG. Supports for different 
concepts can overlap.  
In order to obtain the concept tags representing hypotheses that are 
more likely to be expressed by the analyzed utterance, SEMG is 
projected on its outputs leading to a weighted Finite State Machine 
(FSM) containing only indicators of beginning and end words of 
semantic tags. The resulting FSM is then made deterministic and 
minimized leading to an FSM SWG given by: 

SWG=OUTPROJ(SEMG) 

where OUTPROJ represents the operation of projection on the 
outputs followed by determinization and minimization.  
A network of conceptual LMs has been used  directly in the ASR 
decoding process [21]. The whole ASR knowledge models in this 
way a relation between signal features and meaning.  
Conceptual hypotheses in the lattice obtained by this projection 
can be further processed for performing semantic composition and 
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inference. In [53], an automaton extracts key phrases from 
continuous speech and converts them to commands for a multi-
modal interaction with a virtual fitting room. Finite state LM for 
interpretation are discussed in [92], Interesting results can also be 
found in [138]. Integration of semantic predictors in statistical 
LMs is proposed in  [16]. 
LMs based on Latent Semantic Analysis (LSA)  capture some 
semantic relationship between words. LSA maps the words and 
histories into a semantic space using Singular Value 
Decomposition (SVD) technique [6]. Word similarities are 
measured with distance metrics such as the inner product between 
vectors. A similar technique was proposed for hypothesizing 
semantic components in a sentence [15]. 
A solution with which relevant improvements were observed in 
large corpora experiments is proposed in [130]. Super abstract role 
values (superarv) are introduced to encode multiple knowledge 
sources in a uniform representation that is much more fine-grained 
that parts of speech (POS). 
In [121], a hierarchy of LMs is proposed for interpretation. The 
introduction of three new ways to use semantic information in 
LMs is presented in [28]. 
The introduction of three new ways to use semantic information in 
LMs is presented in [28]. 
Finite state models are used to obtain a concept LM score which is 
interpolated with the n-gram LM score. In a second approach, 
semantic parse information is combined with n-gram information 
using a two-level statistical model. In the third approach, features 
are used for computing the joint probability of a sentence and its 
parse with a single maximum entropy (ME) model.  

5. STOCHASTIC GRAMMARS FOR 
INTERPRETATION

The rules of a grammar assert the truth of a non terminal symbol 
given the truth of other terminal and non terminal symbols. The 
assertion of the presence of a semantic constituent or compound 
also depends on the assertion of syntactic structures and words. It 
is thus possible, in principle, to introduce nonterminal symbols 
which represent semantic entities into a natural language grammar 
and hypothesize their presence in a sentence with a parsing 
strategy. Grammars of this type should be context-sensitive and 
parsing strategies should provide inference capabilities. 
Nevertheless, context-free grammars or grammars capable of 
representing certain degrees of context-sensitivity may be adequate 
for a grop of applications.  Furthermore, development of new types 
of grammars and parser capable of taking into account imprecision 
made it attractive to integrate syntactic and semantic knowledge 
into stochastic semantic grammars. Grammars may capture 
relations between words and semantic constituents as well as 
knowledge for composing constituents into structures. These 
grammars can be augmented to contain structure building 
knowledge and perform logic operations.  
Stochastic context-free grammars (SCFG) can generate sentences 
of any length. Parsing these sentences is an activity that involves 
the application of a finite number of rules. Sequences of their 
application can be modelled by a finite state structure and the 
history of the rules applied before a given rule can be summarized 
by finite feature sets. Sequences of rule applications and their 
probabilities are considered in history grammars [8] making them a 
more accurate probabilistic LM. 

For SLU, the linguistic analyzer TINA was proposed. It is written 
as a set of probabilistic context free rewrite  rules with constraints, 
which is converted automatically at run-time to a network form in 
which each node represents a syntactic or semantic category [111]. 
The probabilities associated with rules are calculated from training 
data, and serve to constrain search during recognition (without 
them, all possible parses would have to be considered).  
A robust matcher was obtained by modifying the grammar to 
allow partial parses [112].  In robust mode, the parser proceeds 
left-to-right as usual, but an exhaustive set of possible parses is 
generated starting at each word of the utterance.   
The Hidden Understanding Model (HUM) is inspired by (but not 
formally equivalent to) Hidden Markov Models [76]. In the HUM 
system, after a parse tree is obtained, bigram probabilities of 
partial path towards the root, given another partial path are used.  
Interpretation is guided by instructions represented by a stochastic 
decision tree. 
Let M be the meaning of an utterance, represented by one or 
more semantic structures, and let W be the sequence of words 
that convey this meaning. Hypotheses are scored by the 
following probability: 

  Pr(M|W) = Pr(W|M)Pr(M)|Pr(W)  
    
For given W, the M that maximizes Pr(M|W) can be found by 
maximizing Pr(W|M)Pr(M), since Pr(W) is fixed. Pr(M) can be 
estimated from a semantic language model that  specifies how 
meaning expressions are generated stochastically;  Pr(W|M) can 
be estimated from a lexical realization model  that specifies how 
words are generated, given a meaning. The semantic language 
model employs tree structured meaning representations:
concepts are represented as nodes in a tree, with sub-concepts 
represented as child nodes. Interpretation is guided by a strategy 
represented by a stochastic decision tree. Each terminal node is 
the parent of a word or of a sequence of words. Note that unlike 
Chronus, HUM  allows arbitrary nesting of concepts.    
Chart parsers were used to analyze portions of sentences in a 
middle-out strategy and to produce a forest of sub-trees when 
the parser could not process an entire sentence. The problem of 
computing the probability of a partial parse when a stochastic 
CFG is used was investigated in [19] and it was shown that only 
upper-bounds for parse probabilities can be obtained. 
Other examples on the use of semantic grammars can be found 
in [80]. Parsing word graphs is proposed in [122]. 
Most grammars have hand-crafted rules which might then be 
augmented with corpus statistics. Parsing with these grammars 
suffers from limited coverage. 
At Cambridge University [42], an approach based on SCFGs was  
proposed which does not require fully annotated data for training. 
The proposed solution considers a hidden vector state (HVS) 
model. Each vector state is viewed as a hidden variable and 
represents the state of a push-down automaton. Such a vector is the 
result of pushing non-terminal symbols starting from the root 
symbol and ending with the pre-terminal symbol. Non-terminal 
symbols correspond to semantic compositions like FLIGHTS 
while pre-terminal symbols correspond to semantic constituents 
like CITY. 
In [129] it is observed that the remarkable robustness exhibited by 
the auditory system may be attributed to the use of a detection 
based mechanism. A new formulation is proposed that performs 
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concept hypothesization in conjunction with ASR decoding under 
the control of a SCFG.
Combination of semantic and syntactic structures in LM is 
proposed in [11]. Lexicalized stochastic grammars and head-driven 
statistical parsers are presented in [14,18]. Partial parses are 
proposed in [13,106] to enhance robustness. They use a top-down 
strategy, conditioning word prediction on previously hypothesized 
structures.  Several learning systems have been developed for 
semantic parsing. These systems use supervised learning methods 
which only utilize annotated sentences. 
In [52], a semi-supervised learning system for semantic parsing 
using a support vector machine (SVM), is described. Given 
positive and negative training examples in some vector space, an 
SVM finds the maximum-margin hyperplane which separates them. 
When new unlabeled test examples are also available during 
training, a transductive framework for learning uses them for 
adapting the SVM classifier.  
In [86], statistical translation models are used to translate a source 
sentence S into a target MRL. Interesting solutions for semantic 
interpretation using a machine translation approach can be found 
in [69]. Sudoh and Tsukada, [117] propose a statistical NLU model 
that can be trained using loose correspondence between pairs of a 
word sequence and a set of concepts associated at the sentence 
level. Concepts are represented as attribute/value pairs. 

6. MODULAR SEMANTIC INTERPRETATION

Semantic interpretation involves operations of different types 
performing, among other things, a sort of syntactic analysis, 
generation of MRL descriptions and inference. Approaches purely 
based on grammars show limitations is assuring adequate coverage 
and ability to deal with ungrammatical  sentences, hesitations and 
corrections, imprecision of the ASR component. 
In order to increase interpretation accuracy, it appears useful to 
perform different operations with suitable modules, each using 
specific methods, models and strategies.  
Following ideas about local parsing [1], interesting results were 
found on the generation of semantic constituents using finite-state 
models and different types of specific classifiers. Depending on the 
domain complexity, constituent hypotheses can be composed into 
semantic structures with semantic grammars, logical inference, and 
situation-action rules.   
Semantic constituent hypotheses are generated with shallow 
semantic parsing using classifiers trained with recent machine 
learning algorithms. The contribution of different interpretation 
features is scored with exponential models.  
Shallow semantic parsing with the goal of creating a domain 
independent meaning representation based on a predicate/argument 
structure was first explored in detail by Gildea and Jurafsky, [33], 
Pradhan, [93].
Most of the approaches to shallow parsing use features and 
perform classification and can be divided into two broad classes: 
Constituent-by-Constituent (C-by-C) or Word-by-Word (W-by-W) 
classifiers [37].  
In C-by-C classification [93], the syntactic tree representation of a 
sentence is linearized into a sequence of non-terminals syntactic 
constituents. Then, each constituent is classified into one of several 
arguments or semantic roles using features derived from its 
respective context. In the W-by-W method, features are obtained 
with a bottom-up process for each word after chunking a sentence 
into phrases.  

In [119] a method of unsupervised semantic role labelling is 
proposed for large corpora. The approach starts with 
“bootstrapping” by making role assignments that are unambiguous 
according to a verb lexicon. Then, iteratively, a probability model 
is created based on the currently annotated semantic roles. This 
model is used to assign roles having sufficient evidence which are 
added to the annotated set. The procedure is repeated and 
probability thresholds are adapted until all predicate arguments 
have been assigned roles. Class back-off probabilities are used 
when detailed probabilities cannot be reliably estimated. 
Interpretation can benefit from useful collections of linguistic 
information.
A lexicon can be used for semantic role labelling which lists the 
possible roles for each syntactic argument of each predicate. A 
predicate lexicon is available for FrameNet [3], and a verb lexicon 
is available for PropBank [68].  
VerbNet [54] specifies, for each verb class, the corresponding 
syntactic frames along with the semantic role assigned to each slot 
of a frame. 
Various feature-based methods have been proposed for identifying 
and classifying predicates and arguments and for extracting 
relations using kernel methods and maximum entropy models 
[49,118].
In [140], a combination is proposed of partial parsing, also called 
chunking, with the mapping of the verb arguments onto 
subcategorization frames that can be extracted automatically, for 
example, from WordNet [75].  
MindNet [103] produces a hierarchical structure of semantic 
relations (semrels) from a sentence using words in a machine 
readable dictionary.  These structures are inverted and linked 
with every word appearing in them, thus allowing performing 
matching and computing similarities by spreading activation.   
Results in [94] with SVM classifiers have shown that there is a 
significant drop in performance when training and testing on 
different corpora.  
Committee-Based Active Learning uses multiple classifiers to 
select samples [113]. The concurrent use of SCT, boosingt [109] 
and SVM classifiers is proposed in [100] to increase 
classification robustness. 
A cascade of classifiers for a two step interpretation strategy is 
proposed in  [66]  
In [109], the possibility is considered of using human-crafted 
knowledge to compensate for the lack of data in building robust 
classifiers. The AdaBoost algorithm proposed for this task 
combines many simple and moderately accurate categorization 
rules that are trained sequentially into a single, highly accurate 
model. AdaBoost is entirely data-driven and requires an adequate 
amount of data for training. A new modification of boosting is 
proposed that combines and balances human expertise with 
available training data.  The basic idea of the approach is to 
modify the loss function used by boosting to balance two terms, 
one measuring fit to the training data, and the other measuring fit 
to a human-built model.  
For the interpretation of written text,  assigning arguments to 
predicates has been considered as a tagging problem for which 
various supervised machine learning techniques have been 
proposed [9,33,37,93]. Some of the features are the predicate, the 
syntactic category of a phrase and its position with respect to the 
predicate, the head-world, named entities, other features of the 
parse tree. 
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In [93], the parsing problem is formulated as a multi-class 
classification problem and uses an SVM classifier whose scores 
are converted to probabilities using a sigmoid function. For each 
sentence being parsed, an argument lattice is generated. A Viterbi 
search is performed through the lattice combining the probabilities 
computed from the SVM output with the LM probabilities, to find 
the maximum likelihood path.  
The issue of combining model-driven grammar-based and data-
driven approaches has been considered in [131].  
At ATT [4], a mixture language model for a multimodal 
application is described with a component trained with in-domain 
data and another obtained with data generated by a grammar. 
Understanding is the recognition of the sequence of 
predicate|argument tags that maximizes P(T|W) where T is the tag 
sequence and W the sentence. An approximation is made by 
considering bigrams and trigrams of tags  
At IBM [107], a system is proposed which generates an N-best list
of word hypotheses with a dialogue state dependent trigram LM 
and rescores them with two semantic models.  An Embedded 
context-free semantic Grammar (EG) is defined for each concept 
and performs concept spotting by searching for phrase patterns 
corresponding to concepts. As a result, semantic hypotheses are 
generated by filling a number of slots in a frame representation. 
Decision among these hypotheses is made based on maximum 
word coverage.
Trigram probabilities are used for scoring hypotheses with the EG 
model. Concept tags are placed at the beginning and end of the 
corresponding phrases in a sequence of word hypotheses. The 
resulting score of a hypothesis is P(W,C). 
A second LM, called Maximum Entropy (ME) LM (MELM), 
computes probabilities of a word, given the history, using an ME 
model.
The use of classifier in spoken opinion analysis is described in [5]. 

7. DIALOG ACT AND SENTENCE 
CLASSIFICATION

A speech act  is a  dialogue fact expressing an action. Speech acts 
and other dialog facts to be used in reasoning activities have to be 
hypothesized from discourse analysis. Different classifiers for 
speech acts, goal and roles are proposed in [30].  Dialogue acts 
(DA) are meaningful discourse units, such as statements and 
questions. Dialogue acts and other dialogue events, such as 
subjectivity expressions, are related to discourse segments which 
may contain many sentences. For this reason, in order to make 
statistical models for DA hypothesization it is useful to introduce 
features of various types, such as lexical, segment, numerical. 
Various techniques have been proposed for DA modeling and 
detection. Among them, it is worth mentioning semantic 
classification trees [71], Decision trees [115], hidden Markov 
models (HMM) [115], fuzzy fragment-class Markov models [137], 
neural networks [105,115], maximum entropy models [115].  
In [105], dialog acts are hypothesized by a search process based on 
the Viterbi algorithm. There is an HMM source for every dialog 
act DA which generates sequences of words W. The emission 
probability is given by: 

)DAPr(
)WPr()W|DAPr()DA|WPr(

and the probability Pr(DA|W) is obtained by a neural network fed 
by words and prosodic features and trained using the Kullback-
Leibler divergence as error measure. 
In [120], Pr(DA|W) is obtained from a finite-state model 
automatically trained using SCTs. 
Words and dialogue facts can be related to query communication 
goals with belief networks [74]. 
Graphical models are proposed in [47]. The focus is on dynamic 
Bayesian networks. For joint segmentation and classification of 
DAs, a technique based on a Hidden-Event Language Model 
(HELM) is described in [142]. 
A more accurate event detection is obtained if sentence boundaries 
are identified in spoken messages containing more than one 
sentence. Approaches to this task have used Hidden Markov 
Models (HMM) [110] and Conditional Random Fields (CRF) [67].  
Call routing is an important and practical example of spoken 
message categorization. In applications of this type, the dialog act 
expressed by one or more sentences is classified to generate a 
semantic primitive action belonging to a well defined set. 
A solution to spoken message categorization is proposed in [35]. 
Knowledge is represented by a network used for mapping words or 
phrases into actions. The network computes a score for every 
action hypotheses when fed with words or phrases. Phrases are 
obtained with grammar fragments. A single-layer association 
network is considered whose parameters are estimated with a 
training corpus. An overview of early versions of the How may I 
help you application can be found in [36]. The application has 
evolved with the introduction of new classification and learning 
methods. 
More recent solutions for document type (and sentence type) 
hypothesization were proposed using Latent Semantic Analysis 
(LSA) [7,15].  
In [61], discriminative training is proposed for natural language 
call routers. In [34] a method is proposed for estimating the LM 
probabilities with a criterion that optimizes end-to-end 
performance of a natural language call routing system. In [92], the 
problem of categorical classification of actions from speech input 
is investigated. A dialogue model is introduced with state-
dependent LMs.  

8. PROBABILISTIC LOGIC AND INFERENCE FOR 
SLU

In practical applications, SLU is part of a dialogue system 
whose objective is the execution of actions to satisfy a user goal.  
Actions can be executed only if some pre-conditions are 
asserted true and their results are represented by post-conditions. 
Preconditions for actions depend on instances of semantic 
structures composed by previous dialogue actions.  
Control strategies for interpretation determine how semantic 
structures are built, how expectations are defined and how 
knowledge structures are matched with input data in the 
presence of constraints and imprecision. 
A control strategy can be called constructive if it gradually 
builds data structures using a basic queue called agenda where 
pointers to partial interpretations, called theories, are stored in 
an order dependent on the scores assigned to the theories.  
Early approaches to SLU used semantic representations in terms 
of  partitioned semantic networks [127].  
In the last two decades, most SLU applications did not require to 
perform complex semantic compositions and were mostly based 

371



on semantic grammars, shallow semantic parsers and sentence 
categorization. 
Recently, in [21] a logic based solutions was proposed for making 
inferences about user intensions in telephone applications. A 
dialogue manager (DM) of a vocal service has a state model. A set 
of states is active at turn k of a dialogue. The system interprets a 
dialogue turn message in two phases. 
In the first one, a word-to-constituent transducer translates a word 
lattice into a constituent lattice. In the second phase, a set of 
precondition-action  rules  are  also encoded as a transducer that 
transform concept hypotheses into state transitions. Different states 
can be reached with different probabilities. The N-best states are 
then processed by DM to determine the next dialogue action.  
Instances of constituents can be structured into probabilistic frames. 
In probabilistic frame-based systems [57], it is possible to have a 
probability model for a slot value which depends on a slot chain. It 
is also possible to inherit probability models from classes to 
subclasses, to use probability models in multiple instances and to 
have probability distributions representing structural uncertainty 
about a set of entities. It is shown that it possible to construct a 
Bayesian network (BN) for a specific instance-based query and 
then perform standard BN inference. 
A general method based on Petri nets for probabilistic inference on 
frames is proposed in [82]. 
Methods for probabilistic logic learning are reviewed in [23]. 
If different logical worlds have to be considered, then possible 
world probabilities have to be estimated. The computation of 
probabilities of possible worlds is discussed in [84],[88] (p. 459). 
A general method for computing probabilities of possible worlds 
based on Markov logic networks (MLN) is proposed in [104].  

9. SEMANTIC CONFIDENCE
The posterior probability )Y(P , where Y is a time sequence of 
acoustic features is not the best reliability indicator for a 
hypothesis [116]. In fact, acoustic, lexical, language and semantic 
models introduce various degrees of imprecision. Furthermore, 
suitable confidence indices should also take into account 
information that is not coded in Y, such as the coherence of the 
available hypotheses with the entire dialogue history, including 
system prompts and repairs.   
It is important to design algorithms for computing the probability 

)(P conf  that an interpretation  is correct given conf  which 
represents a set of confidence indicators or functions of them.   
In [12], important issues related to confidence metric for ASR and 
SLU are discussed. They refer to the identification of errors and 
confidence features, feature combination and use, evaluation.  
Confidence measures for ASR are reviewed [41]. Confidence 
measures for in SLU are proposed in [85].  Confidence measures 
for ASR and SLU are reviewed in [32, 48]. 
The majority of the approaches share two basic steps:  

generate as many features as possible based on the 
speech recognition and|or natural language 
understanding process,  
estimate correctness probabilities with these features 

 Typically, confidence measures depend on the particular 
application and its domain. 
Using the posterior probabilities, obtained with acoustic and 
language models, of words supporting the interpretation [64], the 
probability that a conceptual structure can be evaluated [58].  

Lin and Wang [65] propose a concept-based probabilistic 
verification model, which also exploits concept N-grams. 
In order to achieve more accurate scoring depending on the context, 
in [93] it is proposed to create confidence models for semantic 
frames using previous system prompts in addition to the features 
obtained from the speech recognition results.  
Among the methods for fusing confidence scores it is worth 
mentioning Fisher linear discriminant analysis [50], decision trees, 
neural networks and SVM [141].  
In [100] an interpretation strategy implemented by a decision tree 
is proposed. At a node of the tree, a decision unit jDU  is applied. 
Node units make decisions based on the values of specific 
confidence indicators, including the consensus among observations 
taken from different view points.  
Following ideas proposed for committee based active learning 
[113], some sesemantic confidence indicators are based on the 
agreement of semantic interpretations obtained by different 
methods using FSMs, and classifiers of the type SCT, SVM and 
boostexter.   
In [108], both word, and concept level confidence annotations are 
considered. Two methods are proposed that use two sets of 
statistical features to model the presence of semantic information 
in a sentence. The first relies on a semantic tree where node and 
extension scores are used. Scores are based on the assumption that 
sentences that are grammatically correct and likely to be free of 
recognition errors tend to be easier to parse and should receive 
high confidence. The second technique is based on joint maximum 
entropy modelling words of a sentence and the semantic parse tree. 
Different maximum entropy techniques are used to combine 
semantic and lexical information features depending on the type of 
parsing performed. Lattice based posterior probabilities are 
combined with semantic features in a probabilistic framework for 
each word or concept and dialog state information.  
Word lattices can be further processed and formatted into a 
Confusion-Network (CN) structure. In  [70], an algorithm for the 
generation of confusion networks (CN) has been proposed. An 
alternative CN generation algorithm has been proposed in [40].  
Speech recognition systems encounter more difficulties when 
trying to recognize short words as compared to longer words. In a 
word lattice, the ASR system tends to generate a large number of 
hypotheses of the same word with different lengths, start frames 
and acoustic scores. It is frequent that word hypotheses having 
significantly different time lengths are grouped in the same class, 
with short words becoming possible alternatives to much longer 
words. Following these observations some modifications suitable 
for confidence evaluation in SLU were proposed in [77]. 
Error correction is proposed in [98]. In [56], probabilities 

)c,c(P ji
lRe of the relations between instantiations of concepts in 

the same spoken sentence are defined and related to the mutual 
information of constituent hypotheses in a sentence. 
Confidence scoring, has been applied to detect errors in intention 
recognition results and has proved useful for dialogue management 
[24,58]. If the detection is successful, the system can safely avoid 
unnecessary confirmations for reliable slots and put high priority 
in asking questions about unreliable or unfilled ones. In [43] it is 
proposed to incorporate discourse features into the confidence 
scoring of intention recognition results. A number of discourse- 
related features (called discourse features) are introduced that  
characterize the contextual adequacy of slot values  
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In [96], multiple candidate hypotheses from different sources (e.g. 
deep syntactic parsing and shallow topic classification) are 
evaluated and assigned overall confidence scores using features at 
multiple levels (e.g. acoustic, semantic and context-based).  
A discourse coherence measure [63], based on topic consistency 
across consecutive utterances is obtained with  interutterance 
distance based on the topic consistency between two utterances 
The confidence measures are incorporated into the utterance 
verification framework by combining them in the computation of 
an overall posterior probability. 

10. RECENT RESULTS IN ADAPTIVE LEARNING 
FOR SLU

Knowledge for SLU is imprecise and incomplete. Once an 
application is deployed, many errors can be ascribed to SLU 
knowledge imprecision.  
It is useful to adapt systems to fast variations in feature statistics 
and learn new events with minimum supervision. Instead of 
assuming a fixed and given training data as in the passive learning 
used in the approaches reviewed so far, in adaptive learning 
samples are dynamically determined with automatic methods.  
Methods for adaptive learning are active learning, unsupervised 
learning and their combination. 
Part of errors due to SLU knowledge imprecision can be detected 
by introducing suitable confidence indicators. The corresponding 
messages can then be used as samples for updating SLU 
knowledge. Such an activity is known as active learning.   
Approaches to active learning rely on two basic method types: 
certainty-based and committee-based methods. An initial system is 
developed with certainty-based methods using a small set of 
annotated examples [17]. Such a system is used for interpreting 
unannotated examples. Confidence indicators are obtained for 
these examples and the examples with the lowest certainties are 
proposed to human labelers for annotation. Committee-based 
methods consider a set of classifiers trained with a small set of 
annotated examples [20]. A new set of unannotated instances is 
presented to the classifiers. The samples for which different 
classifiers provide the most different interpretations are selected 
for human inspection and annotation.   
Applications of certainty-based learning to sentence classification 
are proposed in [38].  
With committee-based learning better results were obtained for 
sentence classification using SVM and Boostexter classifiers [124]. 
A committee-based method, which is applicable to multiview 
problems (i.e., problems with several sets of uncorrelated attributes 
that can be used for learning is co-testing [79]. In co-testing, the 
committee of classifiers is trained using different views of the data. 
In [39], a method is proposed in which a bootstrapped model is 
built with selected samples of relevant text obtained by 
transcriptions from conversational systems and  data retrieved 
from web sites. The boostrap model is updated by an iterative 
process which combines unsupervised and active learning. 
Unsupervised learning involves decoding followed by model 
building. This is implemented by co-training with the assumption 
that  there are multiple views for classification. Multiple models 
are trained using the views. Unlabelled data are classified with all 
the models. The training set of a classifier is then composed using  
other classifier’s predictions. A confidence score is computed for 
active learning and used to select utterances for manual annotation.  

In [102], an active learning method is proposed based on 
selective sampling and error rate prediction as function of the
training examples. 
Interpretation model adaptation is proposed in [125]. 
A multitask learning method is presented in [126] for natural 
language intent classification. The already labelled data are reused 
across applications while training so that collaboration among 
methods improves learning results.  
LM adaptation to the prediction of concepts is proposed in [59]. 
Discriminative training of acoustic and language models using the 
Maximum Mutual Information (MMI) or Minimum Classification 
Error (MCE) criteria have been used for language model 
adaptation in spoken dialogue systems. The learning objective in 
SLU systems is to minimize concept error rate which does not 
reduce to minimizing word error rate which has been the objective 
of previous MMI and MCE applications [132]..   

11. FUTURE PERSPECTIVES 

History of SLU has shown an evolution from the use of high 
precision, non-probabilistic, low coverage semantic human-crafted  
KSs to the introduction of modular, complex, probabilistic KSs 
some of them obtained with automatic learning using manually 
annotated corpora. Research on new KS paradigms, probabilistic 
frames and inference for SLU will provide more effective KSs.  
In the future, it will be interesting to consider a more careful 
evaluation of cost and performance of manual annotation vs. 
manual composition of KSs.  
Modular architectures should implement cooperation between KSs 
making an effective use of human linguistic knowledge, machine 
learning algorithms, linguistic resources, available data.  
Optimal or sub-optimal, parallel or sequential decision strategies 
should use system capabilities to assess the confidence of the 
interpretations they produce. 
In spite of the imprecision of the modules used in the SLU chain, it 
is possible to develop useful applications in limited domain. 
Thanks to effective confidence indicators, SLU results can be 
evaluated. Specific dialog actions can be performed when 
confidence is not high. By switching to a human operator when 
verification is not satisfactory, it is possible to achieve, in some 
cases, good automation rates.  
Better KSs and strategies will make it possible to consider domains 
more complex that the ones of today applications. 
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