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ABSTRACT

A barge-in system designed to re ect the design of the acoustic
model used in commercial applications has been built and evaluated.
It uses standard hidden Markov model structures, cepstral features
and multiple hidden Markov models for both the speech and non-
speech parts of the model. It is tested on a large number of real-world
databases using noisy speech onset positions which were determined
by forced alignment of lexical transcriptions with the recognition
model. The ML trained model achieves low false rejection rates
at the expense of high false acceptance rates. The discriminative
training using the modi ed algorithm based on the maximum mutual
information criterion reduces the false acceptance rates by a half,
while preserving the low false rejection rates. Combining an energy
based voice activity detector with the hidden Markov model based
barge-in models achieves the best performance.
Index Terms: barge-in, VAD, dialog systems, speech recognition,
acoustic modeling

1. INTRODUCTION

Speech processing technologies have since their inception been in-
volved with the problem of detecting speech, whatever the acoustic
environment. The problem of accurately distinguishing speech from
the background is still an active area of research as it is so important,
and so hard to do well.

In practice there are three different applications involving speech
detection. They differ in their intent and the mechanisms used to
achieve their targets. The most obvious is the general question of
the presence of speech, commonly referred to as the Voice Activity
Detection (VAD) problem, which tries to detect every non-speech
segment, even if it is, for example, within a continuous utterance,
like a short pause [1, 2, 3]. The next obvious application, most com-
monly encountered in ASR applications is the problem of endpoint-
ing. Here we only need to detect the beginning and the end of an
utterance, but we rely on the ASR system to internally determine
if there are any utterance internal pauses [4, 5, 6]. Of course, they
are still detected, and if long enough, based on some pre-determined
threshold, an and of an utterance is declared.

Here we address the problem of a unique speech detection prob-
lem that only occurs in dialog based applications: barge-in. Barge-in
happens when a user of an automated dialog system attempts to input
speech during the playback/synthesis of a prompt generated by the
dialog. In this unique situation two things are expected to occur, vir-
tually instantaneously. First the prompt is immediately terminated,
both to indicate to the user that the system is listening to him/her,
and to allow uninterrupted recognition of the user’s utterance. At the
same time, the ASR engine starts processing the accumulated speech

starting some short amount of time prior to the detected barge-in [7].
In the case of barge-in we face only a relatively small subset of the
problems faced by the VAD systems. On the other hand, the errors
can have a signi cant impact to the perceived usability of the system
and might cause it to be abandoned by the user. A false barge-in,
which happens when the system incorrectly believes that there is
speech input by the user will terminate the prompt, leaving the user
without proper guidance for providing the appropriate input to the
system. This can have a long term effect diverting the dialog away
from the intended operation for many turns. On the other hand, if, by
trying to minimize false alarms, the system becomes less sensitive to
speech input and fails to barge-in, the users nd it uncomfortable
speaking while the prompt is still active, which corrupts their deliv-
ery of the speech input, affecting the ASR due to the unnaturalness
of the input. In addition this often leads to unwanted echo and con-
sequent poor recognition performance. This is assuming the ASR
system is left active all the time, and not initiated by the barge-in
detection, in which case the speech would be lost to the system.

The ideal barge-in response requires minimum latency, respond-
ing to the speech input as quickly as possible, while requiring high
level of accuracy in detecting speech. Those two criteria are contra-
dictory and are often traded off one against the other. The overall
dialog system scenario implies, to a large extent, that the barge-in
performance is tightly coupled with the ASR system. In essence, a
awless barge-in performance that negatively impacts the ASR per-

formance is detrimental to the system performance, and vice-versa.
In many ways the best barge-in system is the ASR system, with the
serious drawback that its latency is too long. Alternatively, matching
the barge-in performance to the ASR performance would minimize
such possible differences and it is naturally achieved by using the
ASR technology to provide the barge-in processing.

Here we attempt to discriminatively train a hidden Markov
model (HMM) based barge-in acoustic model. Unlike the more con-
ventional Gaussian mixture models (GMMs) which normally have
one GMM for speech and one for non-speech, which leads to easy
input labeling, multi-state HMMs have a large number of correct po-
tential alignments. All alignments which satisfy the condition that
some of the HMM states (the speech states) are aligned with the
speech portion of the signal and some of the non-speech states are
aligned with the rest of the input. Since discriminative training tech-
niques require the ”truth” to be known this ambiguity creates a dif-
culty. Here we show an easy method for avoiding this obstacle re-

sulting in greatly improved barge-in performance on a large number
of speech utterances from different applications.
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2. THE SPEECH DATA

One of the dif culties of training and evaluating barge-in models
is the inability to replicate the real-life barge-in conditions in suf-
cient numbers for collecting truly representative data. Even when

this is ignored, it is necessary to label a large amount of data for
speech and non-speech which can be very time consuming, espe-
cially if done on large amounts of speech. It is necessary, however,
to evaluate on large databases to achieve an accurate representation
of barge-in performance on different tasks under realistic conditions.
We circumvent all of these problems by using all of the data which
was collected for training the latest version of the AT&T acoustic
model for commercial applications [8, 9]. This database of well over
1000 hours of speech, over a million utterances and about 10 million
words consists of speech collected as part of dozens of different col-
lection scenarios, from real life customer applications to recordings
designed with speci c targets for data collection. It includes general
English utterances, alphabet and digit strings, both in isolation and
combined, isolated utterances, short utterances like names, and many
others. It provides a great variability for both training the barge-in
models and testing of barge-in performance. Unlike most publica-
tions on speech detection, we are not so concerned with arti cially
adding noise to clean speech recordings to simulate what might hap-
pen in real-life conditions. We already have the appropriate data,
and our task is to evaluate and improve the performance on the data
our recognition system encounters in its usual applications. Given
the size of the data, we concluded to approach the barge-in problem
from a different perspective. First, the models we were planning to
build are so small relative to the amount of data we had, that we
could ignore the question of overtraining. Consequently, in addition
to several small independent test sets, our training data is also used
as out testing data. The main problem was the labeling of so much
speech, but given the quantity we decided that even noisy labeling
was going to be adequate. We used the current version of the acous-
tic model trained on this data for forced alignment of the speech with
the lexical transcriptions. For our convenience, the speech segments
were excised and became the training data for the speech part of the
barge-in model. Similarly, the non-speech parts of the database were
excised to become the training data for the non-speech part of the
barge-in model. Thus it is our ground truth for speech/non-speech
boundaries.

3. THE BARGE-IN MODEL

The barge-in model we chose to investigate re ects our experience in
building acoustic models for ASR and the needs and capabilities of
the recognizer for which it is built. Matching the ASR and the barge-
in con gurations as much as possible seemed optimal, using multi-
ple HMMs for speech and non-speech. Also, given our past experi-
ence with modeling non-speech portions of the signal for maximum
recognition accuracy, a single GMM is inadequate. Consequently,
we chose to preserve the non-speech part of the acoustic model [8]
in the barge-in model. It consists of four HMMs, two with a single
state, and two as three state left-to-right HMMs, totaling eight states,
each represented as a Gaussian mixture. Each weighted mixture had
32 components, each having 13 dimension corresponding to 13 cep-
stral features. The decision to preserve the non-speech part of the
ASR model made the bootstrapping trivial, as we could just keep
the original HMM segmentations and labels. For the speech part of
the model, we continued with keeping the characteristics of the ASR
model. We partitioned the phoneme labels in the ASR model into
ve categories: vowels and glides, unvoiced fricatives, voiced frica-

tives, other consonants, and nasals. The speech part of the barge-in
model consists of ve three state left-to-right HMMs, based on the
ASR model phonemic segmentation of the training data, after rela-
beling into one of the ve phoneme classes.

The training data is processed using a standard 13-dimensional
mel- lterbank cepstral analysis every 10 ms. No additional pro-
cessing was used to minimize latency and processor usage. The
training of the barge-in model followed the usual steps of training
a recognition acoustic model. We preserved the speech/non-speech
boundaries, but allowed for new legal HMM sequences within the
speech and non-speech segments as part of the training. We forced
an arbitrary sequence of non-speech HMMs for the non-speech seg-
ments. Initially, for the speech segments, in addition to forcing the
use of the speech HMMs, non-speech HMMs were also permitted,
but with a very high insertion cost. It can be thought of as a lan-
guage model cost, which was set to 6 for insertion of a non-speech
HMM, with the language model weight of 16. All other HMMs
have the insertion cost set to 1. As will be seen later, the use of
insertion cost can be used to manipulate the trade-off between the
false insertion and false acceptance in the barge-in performance. The
reason for allowing non-speech HMMs during the speech segments
is that automatic forced alignment of recognition acoustic models,
due to their context-dependent HMM structure and thus somewhat
arbitrary placement of phoneme boundaries, often exhibit the ten-
dency to include some of the non-speech portion of the signal as
part of the utterance initial or nal phoneme. Each HMM had a
gamma duration distribution associated with it, and the weight given
to the duration model was the same as the weight given to the lan-
guage model. The maximum likelihood (ML) training of the barge-
in model which consisted of several iterations of Viterbi training
on all the available data produced the initial performance reference,
expressed, as all the other results on the training data here, as an
ROC curve between false acceptance (detecting speech during non-
speech segments) and false rejection (failing to detect speech when
present). The model performance is adjusted using the very sim-
ple logic of detecting contiguous speech segments of n frames, with
n = {1, 5, 10, 15, 20, 25, 30}. If such a segment is detected within
the rst 350 ms, or 35 frames, than it is considered a correct detec-
tion. If it is detected too late it is a false rejection, and if a speech
segment is detected anywhere during the non-speech segments, it is
considered a false acceptance.

4. DISCRIMINATIVE TRAINING

The discriminative training of the barge-in model is based on the
Maximum Mutual Information criterion (MMI) [10]. We follow the
implementation as described in [11], except that our implementation
is based on the Viterbi alignments of the correct word sequence (one
best), rather than a lattice of the possible paths, given the reference
transcription for each of the utterances.

The problem of barge-in model training can be viewed as a
speech recognition training scenario. It can be represented in two
different ways. First, we can view it as a two word problem, with
speech being one word, and non-speech as the other. The different
HMMs can be viewed as the phoneme inventory, and any phoneme
sequence is a valid alternative pronunciation, as long as only speech
HMMs are used for the speech ”word”, and non-speech HMMs are
used for the non-speech ”word”. The other approach is to think of
the HMMs as the words, where any word sequence of the speech
”words” during the speech segment is valid, and similarly any se-
quence of non-speech ”words” is valid during the non-speech seg-
ment. In practice, this makes little difference as the training process

354



ends up doing the same steps.
In our implementation, we viewed HMMs as words. The in-

herent problem in training multi-HMM barge-in models is that there
are many valid HMM/word sequences that satisfy the reference se-
quence criterion. Thus it is impossible to de ne what the reference
transcription is, as it is based on the model being trained. The ref-
erence is de ned by using the model to force and alignment with a
valid set of alternatives in the network. As the training progresses,
the model changes and the reference sequence changes with it. To
alleviate this problem, the reference transcription forced alignment
is replaced with a restricted grammar recognition. The hypothesis
lattice is generated by allowing any sequence of the speech and non-
speech HMMs. The reference lattice is obtained by recognizing the
most likely HMM sequence, but allowing only speech HMMs for the
speech segments, and non-speech HMMs for the non-speech seg-
ments. This way, different iterations of the ML and MMI training
end up having different reference transcriptions. However, the re-
striction that the speech segments are only matched with the speech
HMMs and the non-speech segments are matched with the non-
speech HMMs is preserved. This is relaxed, slightly, to allow for
the non-speech HMM alignments during the possible mis-labeling
at the beginning and end of the speech segments as described earlier,
since the manual transcriptions in terms of speech and non-speech
were not available.

5. EXPERIMENTAL RESULTS

5.1. Testing on the Training Data

The test data used in these experiments is the same as the training
data, consisting of over a million utterances. As in the training, it
has been partitioned into speech and non-speech segments, as deter-
mined by forced alignment of the lexical reference transcriptions.
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Fig. 1. Baseline performance with the ML and MMI trained barge-in
models, trained and tested on all available data

The initial experiments utilized all the segments in training and
evaluating the model. In that respect it followed the VAD scenario
rather then the barge-in requirements. The barge-in performance of
the ML trained and the MMI trained model is shown in Figure 1. In
order for the barge-in performance to be considered acceptable, the
speech detection had to occur within the rst 350 ms (35 frames).

It clearly demonstrates the bene t of discriminative training, and
the trade off between false acceptance (FA) and false rejection (FR)
performance. The low FR end of the curve corresponds to detecting a
single speech frame by the decoding of the barge-in model. The low
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Fig. 2. Performance with the ML and MMI trained barge-in model,
trained and tested only on the initial non-speech and speech data
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Fig. 3. Performance with the MMI trained barge-in model when
trained on whole speech segments and with the rst 6 frames re-
moved

FA end is achieved by detecting the minimum of n = 30 frames,
both within the rst 350 ms of the speech segment, or within the
segment, regardless of length. In reality, most of the detections occur
much before the 350 ms are up, and many initial speech segments
are shorter than 350 ms, making the FR score at the high FR end of
the curve look worse than they are. However, close to the operating
point of 10-15 frames limit, the performance is depicted accurately.

Given that the intended use for the model was barge-in, the next
con guration used only the initial silence preceding the utterance to
train the non-speech HMMs, and only the initial speech segment,
before any pauses and only up to 50 frames (0.5 s in length). The
performance is shown in Figure 2.

The bene t of this approach is mostly re ected in much reduced
FR performance.

We next attempted to remove the problem of moderately fre-
quent addition of a few frames of non-speech to the beginning of the
initial speech segments. Also, few utterances appeared to be erro-
neous, as the initial speech segments had the length of only a few
frames. In the next results, the rst 6 frames of the speech segment
were removed from the training and testing speech segments. Also,
all the speech segments of less than 15 frames were discarded. Given
that the rst 6 frames were removed, the minimum segment length
was 9 frames. Fortunatelly, so few utterances were discarded due to
the short length that this change did not effect the ROC curves. The
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comparison of the performance by the MMI trained models before
and after these two changes is shown in Figure 3.

The improvement is at best modest and it appears that it is not
necessary to provide special handling for the infrequent inaccura-
cies of the segmentation into speech/non-speech segments by forced
alignment.

The nal experiment compares the effect of varying the cost
of inserting speech and non-speech HMMs. Given that the search
network already had costs associated with inserting any of the nine
HMMs, this is easily achieved by changing the network (language
model) cost weight when doing the decoding. The same can be done
with the duration model as well. We compare three different settings
in Figure 4.

The small loss in FR performance is more than offset by the
improvement in the FA performance as the LM and the duration
weights are increased.

5.2. Testing on Previously Unseen Test Data

Once the barge-in models were integrated into the AT&T Watson
recognition engine the performance was evaluated on a number of
diverse tasks, using recordings that were not used in creating the
barge-in models. The integrated barge-in system consists of only the
original energy-based VAD, or the combined energy based VAD and
the HMM based barge-in detector, with the HMMs trained using the
ML or the MMI criterion. The energy-based VAD [12] is based on
noise threshold adaptation for voice activity detection in nonstation-
ary noise environments. This is particularly useful as many hardware
platforms for dialog processing allow for too much prompt echo to
leak into the speaker channel, which would regularly trigger false
barge-ins without the noise threshold adaptation. Also, more sig-
ni cantly, the same problem plagues purely HMM based barge-in.
The simple solution of an ”AND” function on the decisions from
the energy based VAD and the HMM-based barge-in system sim-
ply removes the problem, and ultimately provides the best overall
performance. Additional optimization of the interaction between the
different barge-in components is likely to provide further modest im-
provements to the performance described here. The combining of
the energy-based VAD and the ML trained HMMs signi cantly im-
proves the performance of the HMM barge-in detector, and modestly
improves the energy-based VAD as a barge-in detector. On the other
hand, after MMI training, combining the two detectors marginally

improves the performance of the HMM detector alone, but signi -
cantly improves the performance of the VAD when it used in isola-
tion.

Unlike the experiments on the training data, where the only pa-
rameter was the number of consequtive frames labeled as speech that
were necessary to declare a barge-in event, the Watson implemtation
de nes a sensitivity parameter, which combines two metrics: the
likelihood difference between the speech and non-speech states, and
the length over which the difference in likelihood is accumulated.
The performance details are best observed in a form of a histogram,
with the vertical green line indicating the speech start position, and
the histogram indicates counts of detections at a particular frame in
the speech signal. The detection in general occurs 20-30 frames after
the speech starts. If the detection occurs before the speech started,
it clearly indicates a false barge-in event, and if it occurs more than
0.5 secs after the speech started (an arbitrarily chosen point) it is de-
clared to be a false rejection of a spech event. Examples of barge-in
histograms are shown in Figure 5.

The best way to interpret the performance of the barge-in system
described here is to compare the false barge-in (too early) false rejec-
tion (too late) or both added up as a percentage of the total number
of utterances relative to the barge-in sensitivity setting. The lower
the setting the lower the latency, however low latency should not be
achieved at the expense of accuracy. Figure 5 shows the histograms
with the sensitivity set to 50 (mid-point of the sensitivity scale). Fig-
ures 6, 7, 8, 9, 10 and 11 show the performance for the VAD alone,
VAD + ML HMMs and VAD + MMI HMMs respectively on six dif-
ferent tasks. The performance advantage of the MMI trained HMM
based approach is immediately obvious and is most signi cant at
low sensitivities which provide shortest latencies and best user expe-
rience during a barge-in event.

6. CONCLUSIONS

A barge-in system has been developed for use in dialog systems,
attempting to maximize the performance of the complete system.
In order to achieve this goal the barge-in model was designed to in
many ways mimic the ASR model, including using the same non-
speech HMMs, and similar number of HMMs to represent the speech
segments. The training followed the standard ML and MMI training
steps, except that the reference transcriptions were rede ned at every
iteration of training, since they are arbitrary for speech/non-speech
determination. The HMM based barge-in model can achieve very
low FR rates, and the MMI training reduces the FA acceptance rate
by a half at a given FR operating point. Given how often barge-in
problems affect the dialog system performance [7], such a large per-
formance improvement in false acceptance rate implies a signi cant
improvement in dialog completion rates and customer satisfaction
scores.
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