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ABSTRACT

Adaptive training under a Bayesian framework addresses some
limitations of the standard Maximum Likelihood approaches. Also,
the adaptively trained system can be directly used in unsupervised
inference. The Bayesian framework uses a distribution of the trans-
form rather than a point estimate. A continuous transform distribu-
tion makes the integral associated with the Bayesian framework in-
tractable and therefore various approximations have been proposed.
In this paper we model the transform distribution via a mixture of
transforms. Under this model, the likelihood of an utterance is com-
puted as a weighted sum of the likelihoods obtained by transform-
ing its features based on each of the transforms in the mixture, with
weights set to the transform priors. Experimental results on Arabic
broadcast news exhibit increased likelihood on acoustic training data
and improved speech recognition performance on unseen test data,
compared to speaker independent and standard adaptive models.

Index Terms— adaptive training, Bayesian inference

1. INTRODUCTION

The task of acoustic modeling is to provide a stochastic model that
captures the phonetically relevant variation of the speech signal. One
of the prominent problems in modeling the process of speech com-
munication is that of unwanted variability, due to the wide range
of speakers and acoustic conditions in the speech signal. A well-
established technique aiming at reducing the unwanted variability
within the training corpus is adaptive training.

Adaptive training tackles variability by hypothesizing two mod-
els: amodel of phonetically relevant variation and a model of speaker
or acoustic variations, where each speaker or acoustic variation is
modeled by a separate transform. Regardless of the precise formu-
lation of the transform, these techniques, until recently, have been
based on maximum likelihood (ML) estimation, such as Speaker
Adaptive Training (SAT) [1], or discriminative criteria, such as Max-
imum Mutual Information SAT (DSAT) [2] and Minimum Phone
Error SAT (MPE-SAT) [3]. Although these adaptive training tech-
niques alleviate the problem of unwanted variability, their applica-
tion in speech recognition systems exhibits some limitations.

One issue is that during decoding, the transforms used in these
adaptive training models are being discarded and a new set of trans-
forms is being estimated with respect to the speakers in the test set.
Consequently, the transforms are not fully integrated in the train-
ing and decoding procedure. Moreover, it has been shown that dis-
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criminative versions of supervised adaptive training and supervised
adaptation perform better than those found by ML training [2, 3, 4].
However, discriminative training for unsupervised adaptation is not
as effective as ML training due to the errors in the training hypoth-
esis [4]. Therefore, since the training-set transforms are not inte-
grated into the decoding procedure, discriminatively-trained trans-
forms cannot benefit the decoding process.

Recently, adaptive training procedures within a Bayesian frame-
work have been proposed [5] which provide an integrated training
and decoding procedure. Under this framework, the parameters of
the transform are assumed to be random variables and therefore are
described by their probability density function. The marginal like-
lihood of each hypothesis is calculated by integrating out over the
transform distribution. Thus, the Bayesian approach provides a frame-
work that allows the transform model, estimated in training, to be
used directly in decoding. The integration of the transform model
in decoding enables the use of discriminatively-trained transforms
into the decoding process. Furthermore, since there is no need to
perform adaptation to the test set, issues with limited adaptation data
and over-tuning to the hypothesis can be avoided. However, in the
general case, the integral associated with the transform distribution
is intractable and therefore approximations are required [5].

In this work, we propose a special case of the Bayesian-based
adaptive procedure [5] that does not involve the use of approxi-
mations in the calculation of the integral. The intractable integral
is avoided by modeling the transform distribution by a finite mix-
ture of point transform estimates. The transforms employed in this
model are feature-based, that is, they act on the observation features.
Under this model, the likelihood of an utterance is computed as a
weighted sum of the likelihoods obtained by transforming its fea-
tures based on each of the transforms in the mixture, with weights
set to the transform priors. The proposed adaptive training proce-
dure is termed Bayesian Speaker Adaptive Training (BSAT). BSAT
applies an incremental training of the transforms in a way similar to
the Gaussian mixture training. Contrary to SAT, BSAT does not rely
on fixed speaker-clusters but rather allows the transforms to act on
the training and test data dynamically. We will describe in subse-
quent sections the BSAT framework and derive the estimation pro-
cedure under the ML criterion. Also, we will provide alternative
transform splitting techniques that gradually increase the number of
transforms in the mixture. Finally, we will present experimental re-
sults in Arabic broadcast news that assess the effectiveness of BSAT.

2. BSAT FRAMEWORK

The goal of speech recognition is to find the word sequence w™ that
has the highest posterior probability, given the sequence of observa-
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tions X = {z1,...,zn}

w* = argmax P (w| X) )

The posterior probability P(w | X') depends on the choice of param-
eterization for the acoustic and language model. The language model
parameters are the n-gram probabilities. The acoustic model param-
eters consist of the hidden Markov model (HMM) state transition
probabilities, state distributions (mixture weights, Gaussian means
and variances), and speaker transforms. Let £,,M, and T denote the
sets of language model, HMM, and speaker transform parameters,
respectively. Then, Equation 1 can be written as follows

. / P(w, X, T,M,L)
w =argmax —_—
w T.M,L

P(X)
:argmax/ P(w, X |T,M,L)P(T, M, L£)dT dMdL
T,M,L

w

AT dMdL @)

For a known sequence of observations, the marginal distribution
P(X) is constant. Therefore it was ignored since it does not affect
the criterion of Equation 2. Assuming that the model parameters are
independent and that there is only a single HMM and single LM,
ie, P(M)=6(M—Ag)and P(L) = § (L — Ar), where §(-)
denotes the Dirac delta function, we get

w' = argmax/ P(w,X | T, Az, AL)P(T)dT 3)
w T

In the general case, the integral over the transform distribution in
Equation 3 is intractable and therefore approximations are required [5].
Here we assume that P (7") has the discrete form

M
P(T)=> ok (T — 1) )

k=1
where vy, are the mixture coefficients that satisfy Z,]CVI:I v = 1.

Hence, the transform distribution in BSAT is a mixture of Dirac delta
functions with 7 as the mode. The mixture coefficients vg can be
thought of as prior probabilities of the transform component 7. The
integral in Equation 3 becomes tractable and reduces to

M
argmaxz v P(w, X | T, Al AL)

Yo k=1

*
w

M
= argmaxP(w|)\L)kaP(X|w,7'k,)\H) 5)

k=1

Note that the transform component remains constant over the whole
observation sequence. In other words, the transform does not vary
from one time instance to another. The values P(w | Ar) and
224:1 v P(X |w, 7%, Ar) are provided from the language model
and acoustic model respectively. In the following section we will
show how the ML criterion can be used to estimate the parameters
of the acoustic model.

3. MAXIMUM LIKELIHOOD ESTIMATION OF BSAT
PARAMETERS

Maximum likelihood estimation of the acoustic model parameters is
performed using the expectation-maximization (EM) [6] algorithm
where the function to maximize, based on Equation 5, is
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M
L(X,w) = > v P(X |w, 7, Ar) (©6)
k=1

The entire parameter set for the BSAT model is defined as § =
{Am,v1,...,0M,T1,..., T }. Let S = {s1,...,sn} denote the
sequence of unobserved HMM state sequences and the random scalar
variable k£ denote the unobserved component of the transform mix-
ture. The auxiliary function of interest is

Q6,9 =E{1og P(X,S,k|0)] X,e}
=Y P(S,k|X,6)log P(X, S, k|6) (7

S.k

where 6 are the current parameter estimates that we use to evaluate
the expectation and 6 are the new parameters that we optimize to in-
crease Q(@ ,8). Note that without loss of generality, we represent the
entire acoustic observation training data by X even when it consists
of independent utterances. Given that

P(X,5,k|8) = P(X|S,k,8)P(k|S,0)P(S|6)  (8)

and since the transform component k& remains constant over the ut-
terance, that is P(k|S,6) = P(k|6), we may write the auxiliary
function as (ignoring all terms not involving 6)

Q(8,6) =" P(S, k| X,6) (log in +log P(X| S,k,6)) (9)
S,k

Here we used the shorthand 9, = P(k | §) since the mixture coeffi-
cients 9y can be thought of as prior probabilities of each transform
component.

Our goal is to estimate the transform priors, transforms and Gaus-
sian parameters under the ML criterion. This estimation is per-
formed as a three-stage iterative procedure. We first maximize the
ML criterion with respect to the transform priors while keeping the
transforms and Gaussian parameters fixed. Subsequently, we esti-
mated the transforms using the updated values of the transform pri-
ors. Finally, we compute the Gaussian parameters using the updated
values of the transform and transform priors.

3.1. Transform prior estimation

In the first part of the three stage estimation procedure we fix the
Gaussian parameters and transforms and maximize the auxiliary func-

tion Q(é, #) with respect to the transform priors. To find the update
formula for the transform prior vy, we use the first term in Equation

9 (denoted by Q1 (6, §))

Q1(8,6) =) P(S,k| X,6)log ik
S,k

=Y " P(k| X,6)log i (10)
k

Adding the Lagrangian multiplier and setting the derivative of Q1 (é, )
with respect to 95 equal to zero, we get



o =P(k| X, 6)
_ wP(X|7e,\n)
22 viP(X |75, Am)

an

where P(X | 7, Am) is the likelihood of the sequence of observa-
tions X under transform 75 and can be computed via a forward pass.

3.2. Transform estimation

In the second part of the estimation procedure we use the updated
values of the transform priors and maximize the auxiliary function
Q(é, ) with respect to the transforms. To find the update formula
for the transforms 75, we use the second term in Equation 9 (denoted

by Q2(6,6))

Q2(6,6)=>_ P(S,k|X,6)log P(X| S, k,6)

S,k

N
:ZZP(S‘ =s,k|X,0)logq(z:|s,Tr)

k,s t=1

N
=) vax(t;6)logq(zs | s, 7) (12)

k,s t=1

Here, 7s,k(t;6) is the posterior probability of being at state s in
frame ¢, given transform k, the observations and transcript. This pos-
terior can be obtained using the forward-backward algorithm using
the new transform prior estimates and the old transform and Gaus-
sian model parameters. Also, g(x¢ | s, 7%) is the emission density of
state s under transform 7, . Although this Bayesian modeling frame-
work is quite general and can be extended to a variety of normaliza-
tion techniques, in this paper we study only feature-based acoustic
normalization in HMMs, which is commonly termed as Constrained
Maximum Likelihood Linear Regression (CMLLR) [7].

The CMLLR technique applies affine transforms to the m di-
mensional observation vector  so that a normalized feature vector
is found as Az + b, where A is a nonsingular m x m matrix and b is
an m-dimensional vector. The emission density of state s is assumed
to be Gaussian and is therefore reparameterized as

| Ax|

aClem) =]

Here, 71, denotes the extended transformation matrix [by Ag]; ¢ is
the extended observation vector [1 z7]7; and ps and X are the
mean and variance for the observation distribution of state s. The
Y, are constrained to be diagonal covariance matrices. The reesti-
mation formula for the transform 7 is found by differentiating Q-
with respect to [7%] and solving for its zeros, where [7%]; denotes the
ith row of 7%. A detailed derivation of the transformation parame-
ters is contained in the work of Gales [7] where each row of 7 is
optimized given the current value of all the other rows.

exp{ 3 (red — )" (¢~ o))

3.3. Gaussian parameter estimation

This section describes the estimation scheme for the Gaussian means
and variances under the ML criterion. With the transforms and trans-
form priors estimated as described in sections 3.1 and 3.2 the Gaus-
sian parameters can be derived in a similar fashion. That is, by taking
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the gradient of Qz(é, 8), given by Equation 12, with respect to the
Gaussian mean and variance and solving for its zeros gives

fis = Skt ey Yok (£ 6) TG a3

Eljc\/[:l Zi\’:1 Vs.k(t;0)

and

M N A
. t; 0
5, = Dokt oyt Yok (85 0) TG Gy T, — fisfiT (14)

ZkM:1 Zivzl Zk Ys,k (t; 6)

Here, the posterior s,k (¢; ) is estimated using the new transform
and transform prior estimates and the old Gaussian model parame-
ters.

3.4. Transform splitting

BSAT treats the mixture of transforms similar to Gaussian mixture
training. The process that increases the number of Gaussian compo-
nents in a mixture is called Gaussian mixture splitting [8]. In this
process, the Gaussian with the maximum variance is split in two by
a random perturbation of the mean vector. The splitting process is
repeated until the required number of components is obtained. The
Gaussian with the largest variance is the one for which the training
data likelihood is minimum. Therefore, splitting this Gaussian is
intuitively consistent with the ML criterion.

While Gaussian splitting is a straightforward procedure, trans-
form splitting is an open question. A transform is a full matrix and
the computation of its variance is impractical. The challenge is to
find meaningful perturbations of a transform to obtain the initial es-
timates. A random perturbation of the transform parameters may
not be the most judicious choice. As an alternative to random per-
turbation, we considered to cluster the utterances and estimate initial
transforms for each cluster. We investigated two possible utterance
clustering schemes: bias clustering and feature clustering.

The idea behind bias clustering is to group the utterances based
on the similarity of the transform that is most suitable for each utter-
ance under the ML criterion. In this way, the transforms estimated
over each cluster of utterances can capture distinct acoustic phenom-
ena and increase the discriminatory capability of the features across
clusters. However, since the estimation of a full matrix for each
utterance is impractical, we estimate only a bias term for each utter-
ance. The bias term is estimated on top of the transform chosen to be
splited. Then we cluster the utterances based on the similarity of the
biases and finally we estimate an initial transform for each cluster of
utterances.

Preliminary experimental results showed that the resulting bi-
ases have almost zero variance. This behavior is attributed mainly
to the application, in the front-end, of mean normalization of the
features. As we will describe in Section 5.2, we perform cepstral
mean normalization over each speaker turn. We observed that the
speaker turns, in the acoustic training corpus used in this work (see
Section 5.1), are relatively short and effectively equivalent to the av-
erage length of the utterances. Hence, given that we already have
normalized the utterances, the bias term of the feature-normalizing
transform becomes nearly zero. This greatly diminishes the discrim-
inatory capability of the bias term.

In an effort to improve upon bias clustering we also employed
the commonly used k-means clustering procedure to cluster the ut-
terances. In our approach, termed feature clustering, each sample in
the k-means algorithm corresponds to an utterance. The centroids



are defined as Gaussian distributions estimated from the sequence of
feature vectors. The distance measure between a sample (utterance)
and a centroid (Gaussian) is defined as the likelihood of the utterance
evaluated by the Gaussian associated with the centroid.

Although in BSAT transform splitting can be applied concur-
rently with Gaussian splitting, in this paper we are incrementing only
the transforms according to the following iterative scheme:

1. Initialize the HMM parameters of BSAT from a speaker in-
dependent (SI) model that has already a mixture of Gaussian
components as emission densities. In the first iteration, BSAT
uses a single transform component, initialized by the identity
matrix.

2. Atthe first 5 iterations split every transform in two; in subse-
quent iterations split only the top 75% transforms, according
to the amount of training data associated with each transform.
This approach effectively creates a set of transforms that has
a fairly uniform distribution of associated training data.

3. Smooth the newly created transforms with their correspond-
ing parent transform.

4. Use the resulting transforms as initial estimates.

4. EFFICIENT BSAT TRAINING AND DECODING

According to Equation 5 the likelihood of an utterance is computed
as a weighted sum of the likelihoods obtained by transforming its
features based on each of the transforms in the mixture, with weights
set to the transform priors. However, this procedure increases the
computational load and time efficiency by a factor that equals the
number of transforms in the mixture. To alleviate this problem, it is
possible to extend the standard decoding procedure by adding a new
dimension in the search space that corresponds to the transforms.
That is, we can run a synchronous decoding procedure by consider-
ing all transforms in the mixture in parallel and use a beam threshold
to prune transforms dynamically. Given that, preliminary experi-
mental results on the evaluation set (defined in Section 5) showed
that the dynamic range of the likelihoods obtained under each trans-
form in the mixture is very wide, the search space after the first few
steps can be dramatically reduced. Similarly, we can apply a syn-
chronous training procedure during the forward-backward algorithm
by considering all transforms in the mixture in parallel.

Although, the aforementioned synchronous decoding procedure
is time efficient and practical, for faster turnaround in this paper we
adopted a different decoding procedure that only required to rescore
lattices of word hypotheses. The lattices were created by running
unadapted decoding using the baseline SI model. As we mentioned
above the dynamic range of the likelihoods obtained under each
transform is very wide. Thus, the weighted sum of likelihoods, de-
fined in Equation 5, can be approximated by the highest likelihood
in the mixture with almost no loss

M
kaP(X | w, Tk, Ar) = argmax v P(X |w, Tk, Ag)  (15)
k

k=1

Therefore, we can rescore the SI lattice only once using the trans-
form in the mixture that yields the highest likelihood. Then, the
key issue is to predict for each utterance which transform yields the
highest likelihood. This was achieved by using the BSAT model to
compute the likelihood of the utterance under each transform via a
forward pass given the 1-best SI hypothesis. The transform with the
highest likelihood on the 1-best SI hypothesis was used to rescore
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the SI lattice. The decoding procedure used for BSAT in this paper
is summarized in the following steps:

1. Run unadapted decoding using the SI baseline model and cre-
ate the word lattice. Also, find the 1-best SI hypothesis.

2. Using the BSAT model compute the likelihood of the utter-
ance under each transform via a forward pass given the 1-best
SI hypothesis. Select the transform in the mixture that yields
the highest likelihood.

3. Rescore the SI lattice using the BSAT model and the trans-
form selected in step 2.

5. EXPERIMENTAL SETUP

5.1. Training and test data

The acoustic training corpus used in this work consists of 150 hours
of Arabic broadcast news speech data. These include 28 hours of
data from the FBIS corpus, 67 hours of data selected from the TDT4
Arabic corpus available from LDC and the remaining 55 hours of
speech data selected from an in-house broadcast news database that
contains data from various sources. The language model training
corpus is a pool of around 400 million-word text. It includes the
data from the Gigaword Arabic corpus, TDT4 Arabic corpus, and a
few other sources. We also downloaded some data from the website
of Aljazeera. All the training data cover various time periods from
1994 to October 2003. To evaluate the recognition performance, we
used the BBN 2005 Arabic development set (bnat05) as the test set.
It consists of 3.8 hours of data from 9 episodes broadcast by A4/-
jazeera, Dubai Television and Lebanese Broadcasting Corporation
in November 2003. The decoding lexicon was created using mor-
phological decomposition [9] and consisted of 64K words selected
based on the occurring frequency in the 400M-word language train-
ing corpus.

5.2. System architecture

The baseline system uses a PLP front-end, computing 14 cepstral co-
efficients and normalized energy per frame of speech. Cepstral mean
normalization was performed over each speaker turn. The actual 60-
dimensional features used in acoustic model training are produced
by applying LDA+MLLT on sets of 9 contiguous cepstral frames
(135 dimensions). The baseline decoding experiments were carried
out in a multi-pass search strategy. The forward pass uses a simple
acoustic model, a State Tied Mixture (STM) model with 190 state
clusters, and a bigram language model, and outputs the most likely
wordends at each frame together with their scores. The backward
pass then uses the output of the forward pass to guide a Viterbi beam
search with a state clustered within-word quinphone acoustic model
(1548 state clusters) and a trigram language model. A lattice is also
generated. Finally, we do lattice rescoring using a state clustered
cross-word quinphone model with 1762 state clusters. The top scor-
ing hypothesis represents the system’s recognition output.

6. EXPERIMENTAL RESULTS

6.1. Speaker independent decoding

Initial baseline experiments were performed to measure the perfor-
mance of SI models by varying the number of Gaussian mixtures.
The rationale behind these experiments was twofold. First, recall
that in BSAT we incrementally build the mixture of transforms. There-
fore, for fair comparison a SI system should have relatively the same



Gaussians / State 12 21 30 64 128
Unadapted WER || 23.6 | 22.5 | 21.8 | 20.9 | 20.5

Table 1. Word Error Rate (%) of baseline SI systems trained by
varying the number of Gaussian components per state as evaluated
on the bnat05 test set. Results are reported without unsupervised
speaker adaptation.

number of total parameters as the BSAT system. Second, we wanted
to assess the effectiveness of BSAT as we vary the complexity, and
therefore the power, of the seed SI models. That is, we explored
whether a SI system with a relative large number of Gaussian mix-
tures is capable to model both speech and non-speech variabilities.
Table 1 summarizes the performance of SI systems as we increase
the number of Gaussian mixtures. Not surprisingly, the performance
of the SI models increases as the number of Gaussian components
per state cluster increases.

6.2. BSAT unadapted decoding

We then conducted a series of experiments to assess the effective-
ness of BSAT as proposed in Section 2. Throughout the BSAT ex-
periments we used a single-class CMLLR transform. We first inves-
tigated the BSAT training behavior under the three different trans-
form splitting procedures: random perturbation, bias clustering and
feature clustering. Following the transform splitting procedures, de-
scribed in Section 3.4, all BSAT training experiments were seeded by
the 12 Gaussian mixture ST model. Figure 1 shows the log-likelihood
per frame across training iterations of each BSAT model. It is appar-
ent that all three splitting procedures yield comparable likelihood.
These results show that bias clustering and feature clustering do not
improve upon the naive random perturbation procedure.

We then run BSAT decoding using the three BSAT systems de-
scribed above. Note that BSAT decoding, described in section 4,
is an integrated process, where the training-set transforms are being
directly used in decoding. To distinguish from the standard adapta-
tion in decoding, where a set of transforms is being estimated with
respect to the speakers in the test set, we term this procedure un-
adapted BSAT decoding. The top part of Table 2 compares the per-
formance of the three BSAT systems as we increment the transform
mixture. It is apparent that all three transform splitting procedures
yield comparable WER, which is consistent with their behavior dur-
ing training. BSAT yields a 4% relative gain over the SI baseline by
using only 16 transforms, and an overall 7% by using 98 transforms.
We also observe that a further increase in the number of transforms
(i.e. more than 98) does not give additional gains.

Finally, we trained a BSAT model seeded by the 64 Gaussian
mixture SI model in order to explore whether the gains from BSAT
hold in the presence of a large number of Gaussian components. The
bottom part of Table 2 shows the WER on the bnat05 set as we in-
crement the transform mixture. Since all three transform splitting
procedures yielded the same performance when BSAT was seeded
by the 12 Gaussian mixture SI model, for this experiment we have
only used feature clustering. Two observations can be made from
the results: First, the BSAT gains (7% relative overall) remain, even
when BSAT is seeded from the much larger SI model. Second, un-
like the BSAT model with 12 Gaussians mixtures, the BSAT model
with 64 Gaussians mixtures consistently increases its performance
on the test set as the size of the transform mixture increases. Finally,
the BSAT system seeded by the 64 Gaussian mixture SI model out-
performs the 128 Gaussian SI model by 5% relative, even though
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Fig. 1. Log-likelihood per frame against iteration number of BSAT
models for the the three different transform splitting procedures: ran-
dom perturbation, bias clustering and feature clustering. The num-
bers in boxes indicate the number of transforms. The likelihood of
the seed 12 Gaussian mixture SI model and the SAT model is shown
for reference. The SAT model uses 3394 speaker clusters.

the BSAT system has 30% fewer total parameters (Gaussians and
transforms) relative to the 128 Gaussian SI model.

6.3. BSAT adapted decoding

In the previous section we explored the efficacy of BSAT in un-
adapted decoding, where the training-set transforms were integrated
into the decoding procedure. However, it is well known that signifi-
cant gains in performance can be obtained if we reduce the mismatch
between the training and test speech data during recognition. This
is the goal of the standard transformed-based acoustic normalization
and adaptation techniques in decoding, where the transforms are es-
timated from the speech to be recognized. The amount of the test
data used for the estimation of the transformation parameters is usu-
ally much lower than the one used for training the initial models.
This sometimes leads to poorly trained transforms and over-fitting
problems to the initial hypothesis.

To avoid such problems in adapted decoding, we can further uti-
lize the BSAT transforms. For example, the BSAT transforms can
be used as initial estimates in CMLLR or as prior information in
Maximum a Posteriori Linear Regression (MAPLR) [10] adaptation
algorithm. Furthermore, we can introduce lower order adaptation pa-
rameters that can act on the BSAT transforms with the goal to adapt
them on a test speaker. Although all these issues are of great interest
they are not addressed in this paper.

All adapted decoding experiments described in this section esti-
mate first a single-class CMLLR transform and then a 2-class MLLR
[11] transform for each speaker in the test set. Table 3 compares the
recognition performance of SAT and BSAT models by incorporat-
ing unsupervised speaker adaptation on the bnat05 test set. The two
baseline SAT models used 3394 speaker clusters and were seeded
by the 12 and 64 Gaussian mixture SI models of section 6.1, re-
spectively. The corresponding BSAT models, selected for decoding,
were the ones that gave the best unadapted performance according to
the results of Table 2. That is, we selected the 12 Gaussian mixture
BSAT model with 171 transform components and the 64 Gaussian



Unadapted BSAT WER
Gaussians /State | Unadapted SI WER Transform Splitting #Transforms
16 56 98 171 | 299 | 523
Random Perturbation | 22.5 | 22.1 | 22.0 | 22.0 - -
12 23.6 Bias Clustering 22.6 | 22.1 | 22.0 | 22.0 - -
Feature Clustering 223 1221|219 | 219 - -
64 20.9 Feature Clustering 20.1 | 199 | 198 | 19.7 | 19.6 | 19.5

Table 2. Unadapted Word Error Rate (%) results of BSAT systems trained by varying the number of Gaussian and transform mixtures as
evaluated on the bnat05 test set. The Word Error Rate (%) results of the seed SI models are shown as the baseline.

mixture BSAT model with 523 transform components.

The BSAT adapted decoding experiments of this section used
a modified version of the BSAT unadapted decoding described in
section 4 and is summarized in the following steps:

1. Using the BSAT model compute the likelihood of the utter-
ance under each transform via a forward pass given the 1-
best BSAT unadapted hypothesis. Select the transform in the
mixture that yields the highest likelihood.

2. Estimate a single-class CMLLR transform on top of the BSAT
transform found in step 1.

3. Apply the cascaded BSAT and CMLLR transforms.

4. Estimate a 2-class MLLR transform for the BSAT model given
the transformed features from step 3.

5. Adapt the Gaussian parameters of the BSAT model using the
MLLR transform found in step 4 and transform the features of
the utterance by the cascaded BSAT and CMLLR transform.

6. Rescore the lattice created via adapted decoding of the SAT
model.

Gaussians / State | Adapted WER
SAT | BSAT

12 19.4 19.1

64 17.8 17.3

Table 3. Adapted Word Error Rate (%) results of SAT and BSAT
systems trained under various number of Gaussian components as
evaluated on the bnat05 test set. Results are reported with unsuper-
vised speaker adaptation.

The results of Table 3 show that adapted decoding with the BSAT
models outperforms by 1.5% and 3% relative the SAT models, in
systems with 12 and 64 Gaussian components per state cluster, re-
spectively. Moreover, the results indicate that BSAT is more effec-
tive when we use more Gaussian components per state cluster. Fi-
nally, note that the 12 Gaussian BSAT model uses a mixture of 171
transforms whereas the 12 Gaussian SAT model uses 3394 trans-
forms. However, the training likelihood of the BSAT system is close
to the training likelihood of the SAT model, as illustrated in the Fig-
ure 1. The same observation is true for the BSAT and SAT systems
with 64 Gaussian components per state cluster.

7. DISCUSSION

In this paper we proposed a Bayesian adaptive training and decod-
ing technique that uses a mixture of feature-based transforms. We
presented ML reestimation formulae for the parameters of the BSAT
model and developed various transform splitting procedures. Also,
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we discussed training and decoding approximations needed for their
effective application. BSAT experimental results on Arabic broad-
cast news exhibited increased likelihood on acoustic training data
and improved speech recognition performance on unseen test data,
compared to speaker independent and standard adaptive models.

The Bayesian framework adopted in this work allowed the full
integration of the transforms into the training and decoding proce-
dure. Therefore, discriminatively-trained transforms which directly
aim to minimize recognition performance criteria can be used in de-
coding. Hence, in the future we are planning to develop BSAT under
discriminative criteria. Moreover, we are planning to address several
issues in BSAT training and decoding, such as, improved transform
splitting techniques, the concurrent splitting of transforms and Gaus-
sians, and more elaborate adaptive decoding procedures.
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