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ABSTRACT
Divergence measures are widely used tools in statistics and pat-
tern recognition. The Kullback-Leibler (KL) divergence between
two hidden Markov models (HMMs) would be particularly useful
in the fields of speech and image recognition. Whereas the KL di-
vergence is tractable for many distributions, including gaussians, it
is not in general tractable for mixture models or HMMs. Recently,
variational approximations have been introduced to efficiently com-
pute the KL divergence and Bhattacharyya divergence between two
mixture models, by reducing them to the divergences between the
mixture components. Here we generalize these techniques to ap-
proach the divergence between HMMs using a recursive backward
algorithm. Two such methods are introduced, one of which yields an
upper bound on the KL divergence, the other of which yields a recur-
sive closed-form solution. The KL and Bhattacharyya divergences,
as well as a weighted edit-distance technique, are evaluated for the
task of predicting the confusability of pairs of words.
Index Terms: Kullback-Leibler divergence, variational methods,
mixture models, hidden Markov models (HMMs), weighted edit dis-
tance, Bhattacharyya divergence.

1. INTRODUCTION

The Kullback-Leibler (KL) divergence, also known as the relative
entropy, between two probability density functions f(x) and g(x),

D(f‖g)
def
=

�
f(x) log

f(x)

g(x)
dx, (1)

is commonly used in statistics as a measure of similarity between
two density distributions [1]. The KL divergence satisfies three di-
vergence properties:
1. Self similarity: D(f‖f) = 0.
2. Self identification: D(f‖g) = 0 only if f = g.
3. Positivity: D(f‖g) ≥ 0 for all f, g.

The KL divergence is used in many aspects of speech and image
recognition, such as determining if two acoustic models are similar,
[2], measuring how confusable two words or hidden Markov mod-
els (HMMs) are, [3, 4, 5], computing the best match using pixel
distribution models [6], clustering of models, and optimization by
minimizing or maximizing the divergence between distributions.
The KL divergence has a closed form expression for many proba-
bility densities. For two gaussians, f and g, it reduces to the well-
known expression,

D(f‖g) =
1

2

�
log

|Σg|

|Σf |
+ Tr[Σ−1

g Σf ]− d (2)

+ (μf − μg)T Σ−1
g (μf − μg)

�
.
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In fact, the same is true if f and g are any of a wide range of
useful distributions known as the exponential family, of which the
gaussian is the most famous example. These densities are defined as
f(x)

def
= exp(θT

f φ(x))/z(θf ), where θf is a vector of parameters,
and z(θf ) =

�
exp(θT

f φ(x)) dx, and φ(x) is a vector-valued func-
tion of x [7]. This formulation makes the KL divergence between
two such densities surprisingly simple:

D(f‖g) = log
z(θf )

z(θg)
+ (θf − θg)T Efφ(x), (3)

which requires only that Efφ(x) be known [8].
In general, however, for more complex distributions such as mix-
ture models and hidden Markov models, the integral involves the
logarithm of sums of component densities, and no such simple ex-
pression exists. In the following sections we review two variational
approximations to the KL divergence between two mixture mod-
els. Throughout the paper we use the example of gaussian mixture
models (GMMs), and HMMs with gaussian mixtures as observation
models, although the same techniques directly apply to any densi-
ties for which we can compute the KL divergences between pairs of
mixture components.
For an observation of a given sequence length an HMM can be con-
strued as a mixture model in which each HMM state sequence is a
mixture component. In theory, the variational approximations for
the KL divergence between two mixture models directly carries over
to HMMs in this sense. However, the direct application of the vari-
ational approximation yields one set of state sequences inside the
logarithm, and another outside the logarithm. This prevents us from
using a recursive formulation to sum over the exponential number of
pairs of state sequences generated by typical HMMs.
Therefore we derive a new variational approximation that is
amenable to standard forward and backward algorithms. The varia-
tional approximations contain variational parameters that serve to as-
sociate sequences of one HMM with similar sequences of the other.
We constrain these parameters by factorizing them into a Markov
chain, which allows us to recursively solve for the variational para-
meters and evaluate the approximation.
One weakness of the KL divergence between HMMs is that, in many
common cases, the divergence becomes infinite. If the HMM f gen-
erates sequences of lengths that the HMM g cannot generate, then
the KL divergence is infinite. Such is the case, for instance, in left-
to-right models where g is longer than f , despite the fact that the
precise length of such models may be an artifact of the phonetic sys-
tem of the recognizer, rather than an important modeling assump-
tion. In [9], this was addressed by connecting the final state to the
initial state to make the HMM ergodic, and substituting the KL di-
vergence rate for the KL divergence. Here we propose methods for
approximating KL divergences of non-ergodic HMMs, and instead
we consider symmetric versions of the KL divergence that yields fi-
nite meaningful values. We consider two symmetrized versions of

323978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



the KL divergence:

Dmin(f, g) = min{D(f‖g), D(g‖f)}

Dresistor(f, g) =
�
D−1(f‖g) + D−1(g‖f)

�−1

The resistor average symmetrized KL divergence was first intro-
duced in [10]. This problem can also be addressed by computing the
KL divergence over the intersection of the sets of sequence lengths
allowed by the HMMs.
In addition to the KL divergence, there exist other useful measures of
dissimilarity between distributions. In particular, the Bhattacharyya
divergence

DB(f, g)
def
= − log

� �
f(x)g(x) dx, (4)

is closely related to the KL divergence and can be used to bound the
Bayes error, Be(f, g)

def
= 1

2

�
min(f(x), g(x)) dx ≤ 1

2
e−DB(f,g).

The Bhattacharyya divergence is symmetric, and has the advantage
that it does not diverge to infinity for HMMs which support different
sets of sequence lengths, so long as both HMMs can generate some
sequences of the same length. The variational approximations for
the KL divergence can also be applied to compute a variational ap-
proximation to the Bhattacharyya divergence, without factorizing the
variational parameters. It also turns out that the Bhattacharyya diver-
gence is closely related to a heuristic method known as the weighted
edit distance, which we include here in our experiments. To validate
these approaches we compare numerical predictions with empirical
word confusability measurements (i.e., word substitution error rates)
from a speech recognizer.

2. VARIATIONAL METHODS FOR MIXTURE MODELS

In [11] variational methods were introduced that allow the KL di-
vergence to be approximated for mixture models. Without loss of
generality, we consider the case where f and g are gaussian mixture
models, with marginal densities of x ∈ R

d under f and g given by

f(x) =
�

a πaN (x; μa; Σa)
g(x) =

�
b ωbN (x; μb; Σb).

(5)

Here πa is the prior probability of each state, andN (x; μa; Σa) is a
gaussian in x with mean μa and variance Σa. We use the shorthand
notation fa(x) = N (x; μa; Σa) and gb(x) = N (x; μb; Σb). Our
estimates of D(f‖g) will make use of the KL-divergence between
individual components, which we thus write asD(fa‖gb).
The Variational Approximation for Mixture Models: A varia-
tional lower bound to the likelihood was introduced in [11]. We
define variational parameters φb|a > 0 such that

�
b φb|a = 1. By

Jensen’s inequality we have

L(f‖g)
def
=

�
f(x) log g(x) dx

=
�

a

πa

�
fa(x) log

�
b

φb|a
ωbgb(x)

φb|a
dx

≥
�

a

πa

�
b

φb|a

�
log

ωb

φb|a

+ L(fa‖gb)

	
(6)

def
= Lφ(f‖g), (7)

where L(fa‖gb)
def
=
�

fa(x) log gb(x) dx. Since this is a lower
bound on L(f‖g), we get the best bound by maximizing Lφ(f‖g)

with respect to φ. If we define DVA(f‖g) = Lψ̂(f‖f)− Lφ̂(f‖g)

and substitute the optimal variational parameters, φ̂b|a and ψ̂a′|a, the
result simplifies to

DVA(f‖g) =
�

a

πa log

�
a′ πa′e−D(fa‖fa′ )�

b ωbe−D(fa‖gb)
. (8)

DVA(f‖g) satisfies the similarity property, but it does not in general
satisfy the positivity property. Note that this variational approxima-
tion is the difference of two bounds, and hence is not itself a bound.
In terms of accuracy, however, it performs somewhat better than the
bound described below perhaps because some of the error cancels
out in the subtraction, as shown in [11].
The Variational Bound for Mixture Models: A direct upper bound
on the divergence is also introduced in [11] for mixture models. We
define the variational parameters φab ≥ 0 andψab ≥ 0 satisfying the
constraints

�
b φab = πa and

�
a ψab = ωb. Using the variational

parameters we may write

f =
�

a πafa =
�

ab φbafa

g =
�

b ωbgb =
�

ab ψabgb.
(9)

With this notation we use Jensen’s inequality to obtain an upper
bound of the KL divergence as follows

D(f‖g) =

�
f log(f/g)

= −

�
f log

��
ab

ψabgb

φabfa

φabfa

f

�
dx

≤
�
ab

φab

�
fa log

�
φabfa

ψabgb

�
dx (10)

def
= Dφψ(f‖g).

The best possible upper bound can be attained by finding the varia-
tional parameters φ̂ and ψ̂ that minimize Dφψ(f‖g). The problem
is convex in φ as well as in ψ so we can fix one and optimize for the
other. Fixing φ the optimal value for ψ is seen to be

ψab =
ωbφab�
a′ φa′b

. (11)

Similarly, fixing ψ the optimal value for φ is

φab =
πaψabe

−D(fa‖gb)�
b′ ψab′e

−D(fa‖gb′ )
. (12)

At each iteration step the upper bound Dφψ(f‖g) is lowered, and
we refer to the convergent as DVB(f‖g). Since any zeros in φ
and ψ are fixed under the iteration we recommend starting with
φab = ψab = πaωb. In practice it converges sufficiently in a few it-
erations [11]. This iterative scaling scheme is of the same type as the
Blahut-Arimoto algorithm for computing the channel capacity and
also arises in maximum entropy models (see [11] for references).

3. HIDDEN MARKOVMODELS

To formulate the KL divergence for hidden Markov models, we must
take care to define them in a way that yields a distribution (inte-
grates to one) over all sequence lengths. To this end the HMM must
terminate the sequence when it transitions to a special final state.
For an HMM, f , emitting an observation sequence of length n, as
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a1:n
def
= (a1, . . . , an) be a sequence of hidden state discrete ran-

dom variables, at taking values in E, where E is the set of emit-
ting states. Let x1:n

def
= (x1, . . . , xn) be a sequence of observa-

tions, with xt ∈ R
d. For the observations we use the shorthand

fat(xt)
def
= N (xt; μat , Σat). We also define non-emitting initial

and final state values (i.e., not random variables) I, and F. The
state sequence probabilities are thus formulated as a Markov chain
πa1:n

def
= πa1|I πF|an

�n
t=2 πat|at−1

, where πa1|I is an initial dis-
tribution, πat|at−1

are transition probabilities, and πF|an
are the fi-

nal state transitions. The transition probabilities are normalized such
that
�

a1
πa1|I = 1, and πF|at−1

+
�

at
πat|at−1

= 1, for t ≥ 2. It
bears emphasizing here that the transitions to emitting states do not
in general sum to one (i.e.,

�
at

πat|at−1
≤ 1), because there may

also be a transition to the non-emitting final state. Hence it is as if
the HMM is gradually leaking probability away to paths which ter-
minate before the path in question. This allows the HMM to describe
a distribution over all sequence lengths. In general, the transition to
the final state can occur at any time; however, for a given sequence
length n, we only consider paths that reach the final state after ex-
actly n observations. The density assigned to signals of particular
length can thus be written:

f(x1:n) =
�
a1:n

πa1:nfa1:n(x1:n)

=
�
a1:n

πa1|IπF|an
fa1

(x1)
n�

t=2

πat|at−1
fat(xt).

The probability of a particular sequence length n is pf (n) =�
f(x1:n) dx1:n =

�
a1:n

πa1|IπF|an

�n
t=2 πat|at−1

≤ 1. Since
the set of all sequences is x ∈ ∪∞n=1R

n×d, the integration over all
sequences is perhaps an unfamiliar operation. It amounts to sepa-
rately integrating over sequences of each length and then summing
over the individual results. To see that f is a distribution over all
sequences it is enough to verify that indeed

�
f(x)dx =

∞�
n=1

�
f(x1:n) dx1:n =

∞�
n=1

pf (n) = 1. (13)

4. THE VARIATIONAL APPROXIMATION FOR HMMS

We extend the variational approximation for mixture models to
HMMs by defining variational parameters in the form of a con-
ditional Markov chain, φb1:n|a1:n

def
= φb1|a1

�n
t=2 φbt|atbt−1

where
�

b1
φb1|a1

= 1 and
�

bt
φbt|atbt−1

= 1, so that�
b1:n

φb1:n|a1:n
= 1.

For a given sequence length n, by Jensen’s inequality we have

Ln(f‖g)
def
=

�
f(x1:n) log g(x1:n) dx1:n

≥
�
a1:n

πa1:n

�
b1:n

φb1:n|a1:n
log

ωb1:neL(fa1:n
‖gb1:n

)

φb1:n|a1:n

def
= Lφ(f‖g), (14)

where L(fa1:n‖gb1:n)
def
=
�

fa1:n(x1:n) log gb1:n(x1:n) dx1:n.
Note that

L(fa1:n‖gb1:n) =
n�

t=1

L(fat‖gbt) (15)

where L(fat‖gbt)
def
=
�

fat(xt) log gbt(xt) dxt

Since this is a lower bound on L(f‖g), we get the best bound by
maximizing Lφ(f‖g) with respect to φb1:n|a1:n

. To do so, we first
expand the objective function into a recursive formula, by pulling
earlier terms out of the sums over later variables.

Lφ(f‖g) =
�
a1

πa1|I

�
b1|I

φb1|a1

�
1

(
�
a2:n

πa2:n|a1
) log

ωb1eL(fa1
‖gb1

)

φb1|a1

+
�
a2

πa2|a1

�
b2

φb2|a2b1

�
2

(
�
a3:n

πa3:n|a2
) log

ωb2|b1eL(fa2
‖gb2

)

φb2|a2b1

+ . . .

+
�

an−1

πan−1|an−2

�
bn−1

φbn−1|an−1bn−2

�
n−1

(
�
an

πan|an−1
πF|an

) log
ωbn−1|bn−2

e
L(fan−1

‖gbn−1
)

φbn−1|an−1bn−2

+
�
an

πan|an−1

�
bn

φbn|anbn−1

�
n

πF|an
log

ωbn|bn−1
ωF|bn

eL(fan‖gbn
)

φbn|anbn−1

�
n

. . .
�
2

�
1

, (16)

where we can use the following recursion to compute the nested
sums over the priors

pn−t(at)
def
=

�
at+1:n

πat+1:n|at
=
�

at+1:n

πF|an

n�
τ=t+1

πaτ|τ−1

=
�
at+1

πat+1|at
pn−t−1(at+1) (17)

is the probability that a sequence in state at will terminate in n − t

steps. The recursion terminates with p0(an)
def
= πF|an

.
Then we can write (16) recursively as

Lφ
t (at−1, bt−1)

def
=
�
at

πat|at−1

�
bt

φbt|atbt−1

�

pn−t(at) log
ωbt|bt−1

eL(fat
‖gbt

)

φbt|atbt−1

+ Lφ
t+1(at, bt)

�
,

beginning the recursion with

Lφ
n(an−1, bn−1) =

�
an

πan|an−1

�
bn

φbn|anbn−1

�

p0(an) log
ωbn|bn−1

ωF|bn
eL(fan‖gbn

)

φbn|anbn−1

�
,

and terminating it with

Lφ(f‖g) =
�
a1

πa1|I

�
b1

φb1|a1

�

pn−1(a1) log
ωb1|IeL(fa1

‖gb1
)

φb1|a1

+ Lφ
2 (a1, b1)

�
.
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Note that Lφ
t (at−1, bt−1) is the only term containing φbt|atbt−1

, so
the derivative is

∂Lφ(f‖g)

∂φbt|atbt−1

= φ̃bt−1
π̃at

�

pn−t(at) log
ωbt|bt−1

eL(fat
‖gbt

)

φbt|atbt−1

+ Lφ
t+1(at, bt)− pn−t(at)

�
.

Where φ̃bt−1
π̃at are some priors that are independent of bt. Equat-

ing to zero and solving for φbt|atbt−1
yields

φ̂bt|atbt−1
=

ωbt|bt−1
eL(fat

‖gbt
)eL

φ
t+1

(at,bt)/pn−t(at)�
bt

ωbt|bt−1
eL(fat

‖gbt
)eL

φ
t+1

(at,bt)/pn−t(at)
.

The variational parameters for the end points are:

φ̂bn|anbn−1
=

ωbn|bn−1
ωF|bn

eL(fan‖gbn
)�

bn
ωbn|bn−1

ωF|bn
eL(fan‖gbn

)
.

and

φ̂b1|a1
=

ωb1|IeL(fa1
‖gb1

)eL
φ
2
(a1,b1)/pn−1(a1)�

b1
ωb1|IeL(fa1

‖gb1
)eL

φ
2
(a1,b1)/pn−1(a1)

.

Substituting back in, we can simplify and eliminate the variational
parameters altogether.

Lφ̂
t (at−1, bt−1) =�

at

πat|at−1
log
�
bt

ωbt|bt−1
eL(fat

‖gbt
)eL

φ̂
t+1

(at,bt)/pn−t(at).

The recursion begins with

Lφ̂
n(an−1, bn−1) =�

an

πan|an−1
πF|an

log
�
bn

ωbn|bn−1
ωF|bn

eL(fan‖gbn
),

and ends with

LVA(f(x1:n)‖g(x1:n))
def
= Lφ̂(f‖g) =�

a1

πa1|I log
�
b1

ωb1|IeL(fa1
‖gb1

)eL
φ̂
2
(a1,b1)/pn−1(a1).

Thus we have a single-pass backward algorithm. The KL divergence
is then approximated using

DVA(f‖g)
def
=

∞�
n=0

LVA(f(x1:n)‖f(x1:n))−LVA(f(x1:n)‖g(x1:n)),

which in practice is truncated to a finite series. Note that this sum
can also be computed recursively by saving intermediate results.
In some situations a forward algorithm may be useful. In such cases
an easy option is to make change of parameters to reverse the HMM
itself, using time-dependent state transitions that condition on the
future rather than the past. Reversing the HMM entails a forward
algorithm to produce the reversed parameters. Then the above back-
ward algorithms can be applied on the time-reversed HMM, yield-
ing a second forward algorithm. The two forward algorithms can be
done simultaneously, deriving the next parameters from the rever-
sal algorithm just in time for the next forward step of the variational
recursion.

5. THE VARIATIONAL BOUND FOR HMMS

To upper-bound the divergence we employ two variational para-
meters, again factorized into a Markov chain. A different upper
bound is proposed in [12], in which the closest pair of paths is
used instead of summing over all paths. In this section we define
ct = (at, bt) to simplify the notation. For HMMs we formulate the
variational parameters as φc1:n

def
= φc1|IφF|cn

�
t=2:n φct|ct−1

, and
ψc1:n

def
= ψc1|IψF|cn

�
t=2:n φct|ct−1

. We also have the constraints
that

�
bt

φatbt|at−1bt−1
= πat|at−1

and
�

at
ψatbt|at−1bt−1

=
ωbt|bt−1

. The variational parameters for the final state transitions
are constrained to be φF|cn

= πF|an
ψF|cn

= ωF|bn
.

For the variational bound we have

D (f(x1:n)‖g(x1:n)) ≤ Dφψ(f‖g)
def
=�

c1:n

φc1:n

�
log

φc1:n

ψc1:n

+ D(fa1:n‖gb1:n)

�
,

where

D(fa1:n‖gb1:n)
def
=

�
fa1:n(x1:n) log

fa1:n(x1:n)

gb1:n(x1:n)
dx1:n.

Note that, due to the conditional independence of the xt given the
at, we have

D(fa1:n‖gb1:n) =
n�

t=1

D(fat‖gbt), (18)

whereD(fat‖gbt)
def
=
�

fat(xt) log
fat

(xt)

gbt
(xt)

dxt.
We unroll this in time as

Dφψ(f1:n‖g1:n) = (19)�
c1

φc1|I

�
1

(
�
c2:n

φc2:n|c1) log
φc1|IeD(fa1

‖gb1
)

ψc1|I

+
�
c2

φc2|c1

�
2

(
�
c3:n

φc3:n|c2) log
φc2|c1eD(fa2

‖gb2
)

ψc2|c1

+ . . . +

�
cn

φcn|cn−1

�
n

φF|cn
log

φcn|cn−1
φF|cn

ψcn|cn−1
ψF|cn

+ D(fan‖gbn)
	
n

. . .
	
2

	
1

.

Because of the variational constraints we have the following equality

�
ct+1:n

φct+1:n|ct
=
�

at+1:n

�
bt+1:n

φF|cn

n−1

τ=t

φcτ+1|cτ
(20)

=
�

at+1:n

πF|an

n−1

τ=t

πaτ+1|aτ
=
�

at+1:n

πat+1:n|at
= pn−t(at).

Using (20) we can directly write the recursive form of (19) as

Dφψ
t (ct−1) =

�
ct

φct|ct−1

�

pn−t(at)

�
log

φct|ct−1
eD(fat

‖gbt
)

ψct|ct−1

�
+Dφψ

t+1(ct)
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Beginning the recursion with

Dφψ
n (cn−1) =

�
cn

φF|cn
φcn|cn−1

�
�

log
φF|cn

φcn|cn−1
eD(fan‖gbn

)

ψF|cn
ψcn|cn−1

��

and terminating it with

Dφψ(f‖g) =
�
c1

φc1|I

�

pn−1(a1)

�
log

φc1|IeD(fa1
‖gb1

)

ψc1|I

�
+Dφψ

2 (c1)
�

To optimize we must iterate between solving for φct|ct−1
and

ψct|ct−1
, holding the other constant. The optimal value of φct|ct−1

given ψct|ct−1
is

φ̂ct|ct−1
=

πat|at−1
ψct|ct−1

e−D(fat
‖gbt

)−D
φψ
t+1

(ct)/pn−t(at)

�
b′t

ψatb′t|atbt−1
e
−D(fat

‖g
b′
t
)−D

φψ
t+1

(at,b′t)/pn−t(at)
.

Similarly the optimal value for ψct|ct−1
given φct|ct−1

is

ψ̂ct|ct−1
=

ωbt|bt−1
pn−t(at)φct|ct−1�

a′
t
pn−t(a′t)φa′

tbt|ct−1

.

The iteration can be done to convergence for each step in a backward
algorithm. Analogously to the variational approximation we need
corresponding starting and terminating iterations too.
Let DV B(f1:n‖g1:n) be the convergent value of Dφψ

φ̂,ψ̂
. Then

DV B(f‖g) =
�∞

n=1 DV B(f1:n‖g1:n). Factoring the φ and ψ dif-
ferently leads to a family of related approximations. Factorizations
that constrain the variational parameters more will in general require
less storage for variational parameters, and yield less accurate re-
sults. In addition, the values of the variational parameters can be
constrained. Constraining them to be sparse leads to Viterbi-style
dynamic programming algorithms for the KL divergence, which may
have some computational advantages.

6. WEIGHTED EDIT DISTANCES

Various types of weighted edit distances have been applied to the
task of estimating spoken word confusability, as discussed in [3] and
[4]. A word is modeled in terms of a left–to–right HMM, see Fig. 1.

I F

K AO L

Fig. 1. An HMM for call with pronunciation K AO L. In practice,
each phoneme is composed of three states, although here they are
shown with one state each.

The confusion between two words can be heuristically modeled in
terms of a cartesian product between the two HMMs as seen in Fig.
2. This structure is similar to that used for acoustic perplexity [3]
and the average divergence distance [4].
Weights are placed on the vertices that assign smaller values when
the corresponding phoneme state models are more confusable. The
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Fig. 2. Product HMM for the words call (K AO L) and dial (D AY
AX L)

weighted edit distance (WED) is the shortest path (i.e., the Viterbi
path) from the initial to the final node in the product graph.

DWED(f, g) = min
n

min
a1:n,b1:n

C(a1:n, b1:n)

where C(a1:n, b1:n) =
�n

t=1(wfat|at−1
+ wgbt|bt−1

+ wfat
,gbt

)

is the cost of the path, and the w are costs assigned to each transi-
tion. In our experiments we definewfat|at−1

= − log πat|at−1
, and

wgbt|bt−1
= − log ωbt|bt−1

. The wfat
,gbt

are dissimilarity mea-
sures between the acoustic models for each pair of HMM states. For
the KL divergenceWED, we definewfat

,gbt

def
= D(fat‖gbt), and for

the Bhattacharyya WED, we define wfat
,gbt

def
= DB(fat‖gbt). An

interesting variation, which we call the total weighted edit distance
TWED, is to sum over all paths and sequence lengths:

DTWED(f, g) = − log
�

n

�

a1:n,b1:n

e−C(a1:n,b1:n). (21)

That is, we sum over the similarities (probabilities), rather than the
costs (negative log probabilities), since this corresponds to the inter-
pretation as a product HMM.
It turns out that when we apply the variational techniques intro-
duced above to the Bhattacharyya divergence, the resulting measure
DB(f‖g) can be seen as a special case of the total weighted edit
distance. These are formulated for mixture models in [13] and the
same methods apply directly to HMMs. In addition, the TWED with
Bhattacharyya weights, wfat

,gbt

def
= DB(fat‖gbt) is in fact a simple

Jensen’s bound on the HMM Bhattacharyya divergence. Because
the Bhattacharyya approximations and weighted edit distances are
not in general zero for f = g, we subsequently normalize them
using: Dnorm(f, g) = D(f, g) − 1

2
D(f, f) − 1

2
D(g, g), which

improves the performance. The derivations of the variational Bhat-
tacharyya divergence bounds and the details of their relationship to
the weighted edit distances are beyond the scope of this paper and
are to be published elsewhere.

7. WORD CONFUSABILITY EXPERIMENTS

In this section we briefly describe some experimental results where
we use the HMM divergence estimates to approximate spoken word
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confusability. To measure how well each method can predict recog-
nition errors we used a test suite consisting of spelling data, mean-
ing utterances in which letter sequences are read out, i.e., ”J O N” is
read as ”jay oh en.” There were a total of 38,921 instances of the
spelling words (the letters A-Z) in the test suite with an average letter
error rate of about 19.3%. A total of 7,500 recognition errors were
detected. Given the errors we estimated the probability of error for
each word pair as E(w1, w2)

def
= 1

2
P(w1|w2) + 1

2
P(w2|w1), where

P(w1|w2) is the fraction of utterances of w2 that are recognized as
w1. We discarded cases where w1 = w2, since these dominate the
results and exaggerate the performance. We also discarded unreli-
able cases where the counts were too low. Continuous speech was
used, so it is possible that some errors were due to mis-alignment.
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Fig. 3. The negative log error rate for all spelling word pairs com-
pared to the variational HMM KL divergence.

Method Score
VA Min KL Divergence 0.365
VA Resistor KL Divergence 0.433
MC 100K Min KL Divergence 0.450
MC 100K Resistor KL Divergence 0.442
KL Divergence Weighted Edit Distance 0.571
Bhattacharyya Weighted Edit Distance 0.610
VA Bhattacharyya Divergence 0.631
Bhattacharyya Total Weighted Edit Distance 0.646

Table 1. Squared correlation scores between the various model-
based divergence measures and the empirical word confusabilities
− log E(w1, w2). VA refers to the variational HMM approximation
of KL divergence or Bhattacharyya divergence. Min and Resistor are
the two symmetrization methods. MC 100K refers to Monte Carlo
simulations with 100,000 samples of HMM sequences.

Figure 3 shows a scatter plot of the variational KL divergence score
for each pair of letters, versus the empirical error measurement. Note
that similar-sounding combinations of letters appear on the lower left
(e.g. ”c·z”), and dissimilar combinations appear in the upper right
(e.g. ”a·p”). We also computed the HMM KL divergence by direct

Monte-Carlo sampling of the HMM state sequences, as well as the
Bhattacharyya and weighted edit distance methods. The variational
bound was excluded because it did not perform as well as the varia-
tional approximation. Table 1 shows the results using all the different
methods. The variational HMM KL divergence is about as good as
the more accurate and time-consuming Monte Carlo estimates of KL
divergence. Unfortunately, the HMM KL divergence itself is appar-
ently not as well suited to the confusability task as the weighted edit
distances and the Bhattacharyya divergence. This is natural since the
Bhattacharyya divergence is known to yield a tighter bound on the
Bayes error than the KL divergence. It is a bit surprising, though,
that the Bhattacharyya total weighted edit distance outperforms the
variational Bhattacharyya divergence, since it is actually a looser
bound on the Bayes error. However, the confusability measurements
produced by the recognizer are only loosely related to the Bayes er-
ror, because for example, the recognizer computes the Viterbi path
instead of summing over paths.
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