
A COMPACT SEMIDEFINITE PROGRAMMING (SDP) FORMULATION
FOR LARGE MARGIN ESTIMATION OF HMMS IN SPEECH RECOGNITION

Yan Yin, Hui Jiang

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario M3J 1P3, CANADA

{yyin,hj}@cse.yorku.ca

ABSTRACT

In this paper, we study a new semidefinite programming (SDP) for-
mulation to improve optimization efficiency for large margin esti-
mation (LME) of HMMs in speech recognition. We re-formulate
the same LME problem as smaller-scale SDP problems to speed up
the SDP-based LME training, especially for large model sets. In the
new formulation, instead of building the SDP problem from a sin-
gle huge variable matrix, we consider to formulate the SDP problem
based on many small independent variable matrices, each of which is
built separately from a Gaussian mean vector. Moreover, we propose
to further decompose feature vectors and Gaussian mean vectors ac-
cording to static, delta and accelerate components to build even more
compact variable matrices. This method can significantly reduce
the total number of free variables and result in much smaller SDP
problem even for the same model set. The proposed new LME/SDP
methods have been evaluated on a connected digit string recognition
task using the TIDIGITS database. Experimental results show that it
can significantly improve optimization efficiency (about 30-50 times
faster for large model sets) and meanwhile it can provide slightly
better optimization accuracy and recognition performance than our
previous SDP formulation.

Index Terms— Automatic Speech Recognition, Discriminative
training, Large Margin Estimation (LME), Convex Optimization,
Semidefinite Programming (SDP), Convex Relaxation

1. INTRODUCTION

In the past few years, it has been shown that discriminative training
techniques, such as maximum mutual information (MMI) and min-
imum classification error (MCE), can significantly improve speech
recognition performance over the conventional maximum likelihood
(ML) estimation. Recently, we have proposed a magin-based dis-
criminative training method, namely large margin estimation (LME),
for speech recognition [8, 4, 11], where Gaussian mixture continu-
ous density hidden Markov models (CDHMM) are estimated based
on the principle of maximizing the minimum margin. From the the-
oretical results in machine learning, a large margin classifier implies
good generalization power and generally yields much lower gener-
alization errors in unseen test data. As shown in [8], estimation of
large margin HMMs turns out to be a constrained minimax opti-
mization problem. After we approximate the problem with differ-
entiable functions, the constrained minimax optimization problem
can be solved by gradient descent methods, such as iterative local-
ized optimization (ILO) in [8], constrained joint optimization (CJO)
method in [4]. However, the gradient descent method can only lead
to locally optimal solution which highly depends on the initial mod-

els and it is also hard to run in practice because it is necessary to
manually tune a number of sensitive parameters in experiments.

More recently, we have proposed to solve the LME problem us-
ing convex optimization. In convex optimization problems, any lo-
cal optimum is also globally optimal. Because of this, it is relatively
simple and efficient to solve very large scale convex optimization
problems with guaranteed convergence to good solutions. In [11],
we have formulated the LME problem of Gaussian mixture HMMs
as a semidefinite programming (SDP) under some relaxation condi-
tions. Then the derived SDP problem can be solved by many SDP
algorithms, such as [1] and many others, which lead to the globally
optimal solution since SDP is a well-defined convex optimization. It
has been demonstrated that the SDP method outperforms all other
methods and it has achieved one of the best performances on the
TIDIGITS task [11]. However, optimization time of the LME/SDP
method increases dramatically as model size grows because size of
the SDP variable matrix in [11] (i.e., Z) roughly equals the square of
total number of Gaussians in the model set. In [11], we have success-
fully managed to handle an HMM set consisting of about 4k Gaus-
sians but the LME/SDP method in [11] is unlikely to extend directly
to other larger scale speech recognition tasks which involve tens or
even hundreds of thousands of Gaussians. To apply the LME method
to larger scale speech recognition tasks, in [13], we have proposed
to formulate LME as another simpler convex optimization problem,
i.e. second order cone programming (SOCP), under some different
relaxation conditions. It has been shown that the LME/SOCP for-
mulation in [13] significantly improves optimization efficiency and
it yields a much faster LME training method, especially for large
model sets. As demonstrated in many engineering problems, the
SDP relaxation is normally tighter than its SOCP counterpart. As
the result, the SDP method yields better modeling and optimization
accuracy than an SOCP method. For example, the LME/SOCP gives
slightly lower recognition accuracy than the LME/SDP method as
shown in [13] due to the looser relaxation condition in SOCP.

In this paper, we study a different way to improve optimiza-
tion efficiency for the LME training of Gaussian mixture HMMs in
speech recognition. As opposed to formulating LME as another sim-
pler convex optimization problem, we still rely on the SDP frame-
work due to its inherent high accuracy but we consider to formulate
the same LME problem into a smaller SDP problem than the one
in [11] in number of free variables and constraints. More specifi-
cally, in this work, we propose to re-formulate LME as a different
SDP problem based on many small variable matrices instead of us-
ing only a single large matrix as in [11]. In the new formulation,
each small matrix is constructed based on one Gaussian mean vec-
tor in the model set and the resultant SDP is performed with respect
to all these small matrices subject to the constraint that all of these
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small matrices are symmetric and positive semi-definite. In this way,
we can significantly reduce the total number of free variables in the
SDP problem, especially for large model sets. Moreover, when we
construct the variable matrix for each Gaussian, we can also further
decompose feature vectors and Gaussian mean vectors according to
static, delta, acceleration components to build an even more compact
matrix for each Gaussian component. The newly proposed com-
pact LME/SDP formulation has been examined in a connected digit
string recognition task on the TIDIGITS database. Experimental re-
sults show that the LME/SDP method can significantly improve op-
timization efficiency (about 30-50 times faster for large model sets)
and also yield slightly better optimization accuracy and recognition
performance than our previous SDP formulation.

2. LARGE MARGIN ESTIMATION (LME) OF HMMS

As in [8, 4], separation margin for a speech utterance Xi in speech
recognition is defined as:

d(Xi) = F(Xi|λWi) − max
j∈Ω j �=Wi

F(Xi|λj)

= min
j∈Ω j �=Wi

h
F(Xi|λWi) −F(Xi|λj)

i
(1)

where Ω denotes the set of all possible words, λW denotes HMM
representing a word or word sequence W , Wi is the true word iden-
tity for Xi and F(X|λW ) is called the discriminant function, which
is usually calculated in the logarithm scale: F(X|λW ) = log[p(W )·
p(X|λW )]. In this work, we are only interested in estimating HMM
λW and assume p(W ) is fixed.

Given a set of training data D = {X1,X2, · · · ,XR}, we usu-
ally know the true word identities for all utterances in D, denoted as
L = {W1, W2, · · · , WR}. The support vector set S is defined as:

S = {Xi | Xi ∈ D and 0 ≤ d(Xi) ≤ γ} (2)

where γ > 0 is a pre-set positive number. All utterances in S are
relatively close to the classification boundary even though all of them
locate in the right decision regions.

The large margin principle leads to estimating all HMM mod-
els, denoted as Λ, based on the criterion of maximizing the mini-
mum margin of all support tokens, which is named as large margin
estimation (LME) of HMM.

Λ∗ = arg max
Λ

min
Xi∈S

d(Xi)

= arg min
Λ

max
Xi∈S j∈Ω j �=Wi

h
F(Xi|λj) −F(Xi|λWi)

i
(3)

Assume that the entire model set Λ consists of a total of K Gaus-
sian mixtures, each of which is denoted as N (μk, Σk) with k ∈
(1, 2, . . . ,K). For simplicity, we only consider diagonal covariance
matrix, i.e., Σk = diag(σ2

k1, · · · , σ2
kD) where D stands for feature

dimension. Given any speech utterance Xi = {xi1, xi2, · · · ,xiT },
if we only estimate Gaussian mean vectors, discriminant function
F(Xi|λ) in eq.(1) can be approximated based on the Viterbi path
as:

F(Xi|λWi) ≈ ci − 1

2

TX
t=1

DX
d=1

h (xitd − μitd)
2

σ2
itd

i
(4)

where the optimal Viterbi path of Xi against λWi is denoted as a
sequence of Gaussians along the path, i.e., i = {i1, i2, · · · , iT } with
it ∈ (1, 2, . . . ,K), and ci is a constant independent of all Gaussian
means.

Since the margin as defined in eq.(1) is actually unbounded for
Gaussian mixture HMMs, as in [11] we adopt the following spheri-
cal constraint to guarantee the boundedness of margin:

R(Λ) =
KX

k=1

DX
d=1

(μkd − μ
(0)
kd )2

σ2
kd

≤ r2
(5)

where r is a pre-set constant, and μ
(0)
kd is also a constant which is

set to be the value of μkd in the initial models. As shown in [11],
the minimax optimization problem in eq.(3) becomes solvable under
the constraint eq.(5). Following [11], if we introduce a new vari-
able −ρ (ρ > 0) as the common upper bound for all terms in the
minimax optimization, we can convert the minimax optimization in
eq.(3) into an equivalent minimization problem as follows:

Problem 1
Λ∗ = arg min

Λ,ρ
−ρ (6)

subject to

F(Xi|λj) −F(Xi|λWi) ≤ −ρ (7)

for all Xi ∈ S and j ∈ Ω and j �= Wi ,

R(Λ) =

KX
k=1

DX
d=1

(μkd − μ
(0)
kd )2

σ2
kd

≤ r2, (8)

ρ ≥ 0. (9)

3. PREVIOUS SDP FORMULATION FOR LME

In [10, 11, 12], we have formulated the above LME Problem 1 as an
SDP problem. In this section, we first briefly review the LME/SDP
formulation previously proposed in [10, 11, 12].

As we know, semidefinite programming (SDP) is a class of con-
vex optimization problems and SDP can be viewed as a generaliza-
tion of linear programming. In an SDP problem, we minimize a lin-
ear function of symmetric matrices in a positive semidefinite matrix
cone subject to some affine constraints:

Minimize

JX
j=1

Cj · Xj (10)

subject to

JX
j=1

Aij · Xj ≤ bi, i = 1, . . . , I, Xj � 0. (11)

where Xj � 0 means each variable Xj is a symmetric positive
semidefinite matrix. Aij and Cj are real symmetric matrices with
the same dimension as Xj , bi is a scalar constant, and X · Y de-
notes the inner product of two symmetric matrices as: X · Y =P

i,j xijyij .

Here, we introduce some notation: ei is a K-dimensional vector
with −1 at the i-th position, and zero everywhere else. A column
vector x is written as x = (x1; x2; . . . ; xn) and a row vector as
x = (x1, x2, . . . , xn). ID is a D × D identity matrix.

For notational convenience, we denote each normalized Gaus-
sian mean vector (in column), μ̃k for all k ∈ (1, · · · ,K) as:

μ̃k :=
“μk1

σk1
;

μk2

σk2
; . . . ;

μkD

σkD

”
. (12)
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Then, we construct a matrix U by concatenating all normalized Gaus-
sian mean vectors as columns:

U := (μ̃1, μ̃2, . . . , μ̃K). (13)

Next, we represent discriminant function F(X|λ) in eq.(4) in
matrix form using U :

F(X|λ) = c − 1

2

TX
t=1

(x̃t − μ̃it
)′(x̃t − μ̃it

)

= c − 1

2

TX
t=1

(x̃t; eit)
′(ID, U)′(ID, U)(x̃t; eit)

= −A · Z + c (14)

where the Viterbi path is denoted as i = {i1, · · · , iT } and x̃t de-
notes a column feature vector normalized with Gaussian variance
along the path as:

x̃t :=
“ xt1

σit1
;

xt2

σit2
; . . . ;

xtD

σitD

”
(15)

and

A =
1

2

TX
t=1

(x̃t; eit)(x̃t; eit)
′

(16)

Z =

„
ID U
U ′ Y

«
Y = U ′U. (17)

It is straightforward to convert the constraint in eq. (7) into the
following form:

F(Xi|λj) −F(Xi|λWi) = Aij · Z − cij ≤ −ρ (18)

where Aij = Ai − Aj with Ai and Aj calculated according to
eq.(16) based on the Viterbi decoding paths i in λWi and j in λj ,
respectively.

Similarly, R(Λ) in eq.(8) can also be re-written as the following
matrix form using Z:

R(Λ) =
LX

k=1

(μ̃k − μ̃
(0)
k )′(μ̃k − μ̃

(0)
k )

= Q · Z ≤ r2
(19)

where Q =
PK

k=1(μ̃
(0)
k ; ek)(μ̃

(0)
k ; ek)′, and μ̃

(0)
kd is calculated in

eq. (12) by using initial model parameters.
To convert the LME problem into an SDP, we must ensure all

constraints are convex. However, the constraint Y = U ′U in eq.(17)
is not convex. Following [3], if we relax the constraint Y = U ′U to
Y −U ′U � 0, we are able to make Z a positive semidefinite matrix

since Y − U ′U � 0 and Z =

„
ID U
U ′ Y

«
� 0 are equivalent.

Finally, we can convert the original LME problem as the follow-
ing SDP program:

Problem 2
Λ∗ = arg min

Λ,ρ
−ρ (20)

subject to
Aij · Z + ρ ≤ cij , (21)

for all Xi ∈ S and j ∈ Ω but j �= Wi

Q · Z ≤ r2, (22)

Z � 0 ρ ≥ 0, (23)

Z1:D,1:D = ID. (24)

The constraint in eq.(24) is imposed to ensure that the top-left cor-
ner of Z is an identity matrix as required in eq.(17). As shown in
[10, 12], this constraint can be equivalently formulated as D2 linear
constraints.

Since Problem 2 is a standard SDP problem, it can be solved
efficiently by many SDP algorithms. However, due to the relaxation
in eq.(23), this SDP problem is just an approximation to the original
LME problem. In problem 2, the optimization is carried out w.r.t. Z
(which is constructed from all HMM Gaussian means) and ρ while
Aij and cij and Q are constants calculated from training data, initial
models, and r is a pre-set parameter.

4. THE NEW COMPACT LME/SDP FORMULATION

In the above LME/SDP formulation, we construct a single variable
matrix Z from all Gaussian means and size of Z is roughly propor-
tional to square of total number of Gaussians in the model set. As
a result, it leads to a very large scale SDP problem, especially for a
large model set. Since a large-scale SDP problem is still relatively
expensive to solve, in this work, we propose two novel methods to re-
formulate the LME problem. Compared with the above LME/SDP
formulation, both methods result in much smaller SDP problems in
number of free variables.

4.1. LME/SDP Formulation with Multiple Small Matrices

Instead of constructing a single variable matrix Z for all Gaussian
mean vectors, we propose to construct many small variable matrices
for all Gaussians in the model set. As a result, we will have an
SDP problem with multiple small variable matrices. To elucidate the
idea, we start from representing discriminant function F(Xi|λWi)
in matrix form. Starting from μ̃k in eq.(12) and x̃it in eq.(15), we
construct two matrices as follows:

Zk :=

„
1 μ̃′

k

μ̃k μ̃kμ̃′
k

«
(25)

Xt
i :=

1

2

„
x̃′

itx̃it −x̃′
it

−x̃′
it ID

«
. (26)

It is easy to verify that Xt
i · Zit = 1

2
(x̃it − μ̃it

)′(x̃it − μ̃it
).

Therefore, we can represent discriminant function F(Xi|λWi) in
the following matrix form:

F(Xi|λWi) = ci − 1

2

TX
t=1

(x̃it − μ̃it
)′(x̃it − μ̃it

)

= ci −
TX

t=1

Xt
i · Zit . (27)

As the result, we can convert the constraint in eq.(7) into the
following form:

F(Xi|λj) −F(Xi|λWi) =
TX

t=1

h
Xt

i · Zit − Xt
j · Zjt

i
− cij

=

KX
k=1

Xk
ij · Zk − cij (28)
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where Xk
ij =

PT
t=1

h
Xt

i ·δ(it−k)−Xt
j ·δ(jt−k)

i
with Kronecker

delta function δ(·) and Xt
i and Xt

j calculated according to eq.(26)
based on the Viterbi decoding paths i and j respectively.

Similarly, R(Λ) in eq.(8) can be re-written using Zk as follows:

R(Λ) =
KX

k=1

(μ̃k − μ̃
(0)
k )′(μ̃k − μ̃

(0)
k )

=

KX
k=1

Qk · Zk ≤ r2
(29)

where Qk is built as in eq.(26) using normalized initial mean vector

μ̃
(0)
k in place of x̃it.

In this way, we have a number of small variable matrices Zk

(1 ≤ k ≤ K), each of which is constructed from a Gaussian mean
vector μ̃k as in eq.(25). Obviously, rank of Zk equals to one. Fol-
lowing [2], in order to transform it into an SDP problem, we relax the
rank-one condition to a semidefinite condition for all Zk as follows:

rank(Zk) = 1 =⇒ Zk � 0 k ∈ (1, 2, · · · ,K). (30)

Moreover, we must impose another constraint that the top-left
element of Zk equals to unity, i.e. {Zk}1,1 = 1. This constraint can
be easily cast as a linear constraint in matrix form.

Obviously, we can formulate the original LME problem as the
following SDP problem after the relaxation in eq.(30):

Problem 3
Λ∗ = arg min

Λ
−ρ (31)

subject to
KX
k

Xk
ij · Zk + ρ ≤ cij (32)

for all Xi ∈ S and j ∈ Ω but j �= Wi.

KX
k=1

Qk · Zk ≤ r2
(33)

ρ ≥ 0 Zk � 0 for all k ∈ (1, 2, · · · ,K) (34)

{Zk}1,1 = 1 for all k ∈ (1, 2, · · · ,K) (35)

Apparently, Problem 3 is also an SDP problem, where optimiza-
tion is performed with respect to all variable matrices Zk and ρ. If
we compare Problem 3 with Problem 2, their problem size varies
significantly. As we know, problem size of an optimization problem
is decided by the total number of free variables and the total number
of constraints. For instance, the number of free variables (i.e., size of
Z) in Problem 2 roughly equals to (K+ D)(K + D + 1)/2. Mean-
while, we have K different matrices in Problem 3 and each one is
only (D+1)(D+2)/2 in size, which amounts toK(D+1)(D+2)/2
free variables in total. As we know, in most speech recognition sys-
tems, K 	 D always holds. Thus, number of free variables in
Problem 3 is significantly less than that of Problem 2. Next, we in-
vestigate the number of constraints in Problem 2 and Problem 3. In
addition to constraints imposed by support tokens and model, as in
eqs. (21), (22), (32) and (33), which are the same for both problems,
we only compare extra constraints imposed for structure of variable
matrices, such as those in eqs.(24) and (35). Obviously, we have D2

extra constraints in Problem 2 while there are K extra constraints
in Problem 3. As the result, in Problem 3, we have largely reduced
number of free variables but only slightly increased number of con-
straints. Overall, problem size of Problem 3 is much smaller than
that of Problem 2, especially for large model sets.

4.2. LME/SDP Formulation with Decomposed Feature Vectors

From above, we can see that the key point to reduce problem size
of SDP is to construct small variable matrices. In this section we
propose another method to formulate LME as an even smaller SDP
problem by decomposing feature vectors in construction of matrices.

As we know, in speech recognition, each D-dimension feature
vector, xit, is normally composed of three equal-size parts, namely
static feature x̄it, delta feature ẋit and acceleration feature ẍit, i.e.,
xit = (x̄it; ẋit; ẍit). We can fold each feature vector xit into a
D
3
× 3 matrix as follows:

Vit :=
`

x̄it ẋit ẍit

´
D
3 ×3

(36)

Next, we construct a matrix based on Vit as follows:

bXt
i :=

„
V ′

itVit V ′
it

Vit I D
3

«
. (37)

Similarly, we can also fold each Gaussian mean vector, μk, into
a matrix according to its static μ̄k, delta μ̇k and acceleration μ̈k as
follows:

Uk =
`

μ̄k μ̇k μ̈k

´
D
3 ×3

(38)

In the same way, we construct a new variable matrix, bZk based
on Uk as follows:

bZk =

„
I3 U ′

k

Uk UkU ′
k

«
. (39)

Again, it is easy to verify that bXt
i · bZit = 1

2
(x̃it − μ̃it

)′(x̃it −
μ̃it

). Therefore, we have

F(Xi|λWi) = c −
TX

t=1

bXt
i · bZit . (40)

Then, we can convert the constraint in eq.(7) into the following
form:

F(Xi|λj) −F(Xi|λWi) =

KX
k=1

bXk
ij · bZk − cij (41)

where bXk
ij =

PT
t=1

h bXt
i · δ(it − k)− bXt

j · δ(jt − k)
i

with bXi
rt andbXj

rt calculated according to eq.(37) based on the Viterbi decoding
paths i and j respectively.

In the same way, R(Λ) in eq.(8) can be re-written as follows:

R(Λ) =
KX

k=1

bQk · bZk ≤ r2
(42)

where bQk is constructed as in eq.(37) by decomposing the initial

Gaussian mean vector, μ̃
(0)
k , instead of feature vector.

Obviously, rank of each variable matrix, bZk, constructed as in
eq.(39), equals to three. Similarly, we relax the rank-three constraint
in eq.(39) into a positive semidefinite constraint:

rank( bZk) = 3 =⇒ bZk � 0 k ∈ (1, 2, · · · ,K). (43)

At last, the LME problem can be formulated as the following
SDP problem after the relaxation in eq.(43):
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Problem 4
Λ∗ = arg min

Λ,ρ
−ρ (44)

subject to
KX

k=1

bXk
ij · bZk + ρ ≤ cij (45)

for all Xi ∈ S and j ∈ Ω j �= Wi.

KX
k=1

bQk · bZk ≤ r2
(46)

ρ ≥ 0 bZk � 0 for all k ∈ (1, 2, · · · ,K) (47)

{ bZk}1:3,1:3 = I3 for all k ∈ (1, 2, · · · ,K) (48)

Obviously, in Problem 4, the total number of free variables has

been further reduced since each variable matrix bZk, (D
3

+3)×(D
3

+
3) in size, is smaller than Zk, (D +1)× (D+1) in size, in Problem
3.

5. EXPERIMENTS

The proposed compact LME/SDP methods are evaluated on the TIDIG-
ITS database for continuous speech recognition in the string level[4].
The database consists of digits of ’1’ to ’9’, plus ’oh’ and ’zero’, for
a total of 11 words. The length of digit strings varies from 1 to
7 (except 6). Only adult portion of the corpus is used in our ex-
periments. It contains a total of 225 speakers (111 men and 114
women), 112 of which (55 men and 57 women) are used for train-
ing and 113 (56 men, 57 women) for test. The training set has 8623
digit strings and the test set has 8700 strings. Our model set consists
of 11 whole-word CDHMMs representing all digits. Each HMM
has 12 states and uses a simple left-to-right topology without state-
skipping. Acoustic feature vectors consist of standard 39 dimen-
sions (12 MFCC’s and the normalized energy, plus their first and sec-
ond order time derivatives). Different numbers of Gaussian mixture
components (ranging from 1 to 32 Gaussians per state) are tested.
We first train models based on maximum likelihood (ML) criterion.
Then, the best ML model is used as seed model for MCE training.
All HMM model parameters (except transition probabilities) are up-
dated during the MCE training process. At last, we re-estimate the
models with the LME method by using the previous SDP method as
well as the newly proposed compact SDP approaches. In this work,
we mainly compare complexity and optimization time of all differ-
ent LME/SDP formulations. In LME, we use the best MCE model
as the initial models and only HMM mean vectors are re-estimated.
In each iteration of LME, a number of competing string-level mod-
els are computed for each utterance in the training set based on its
N-best decoding results (N = 5). Then we select support tokens
according to eq.(2) and obtain the optimal Viterbi sequence for each
support token according to the recognition result. Then, the relaxed
SDP optimization, e.g. Problems 2, 3, 4, are conducted with re-
spect to variable matrices and ρ. At last, all HMM mean vectors
are updated based on the optimization solution by projecting Z onto
the appropriately constrained space of rank-one or rank-three matri-
ces. If not convergent, next iteration starts again from recognizing
all training data to generate N-Best competing strings. In our work,
Problem 2, Problem 3 and Problem 4 are all solved by an open soft-
ware, DSDP v5.6 [1], running under Matlab.

Table 1. Problem sizes for all three different SDP formulations for
the model set 32-mix, where SDP0 means our previous LME/SDP
method in [11] and SDP1 denotes the LME/SDP formulation in sec-
tion 4.1 and SDP2 stands for the LME/SDP formulation in section
4.2.

SDP0 SDP1 SDP2
# variables 9,088,716 3,463,680 574,464

# constraints 1,521 4,224 38,016

5.1. Problem Size Comparison for Various LME/SDP Formula-
tions

First of all, we will take the largest model set, i.e., 32-mix per state,
as an example to compare problem sizes in number of total free vari-
ables and constraints. The model set 32-mix includes roughly 4,224
Gaussians. We have roughly estimated total number of free vari-
ables and constraints for three different SDP formulations in Table 1,
where SDP0 denotes the previous LME/SDP formulation in section
3 originally proposed in [11], SDP1 denotes the new LME/SDP for-
mulation with multiple small matrices in section 4.1 and SDP2 rep-
resents the compact LME/SDP formulation with decomposed fea-
ture vectors in section 4.2. From Table 1, it is clear that the new
SDP formulations greatly reduce problem size of SDP, especially to-
tal number of free variables. For example, given the same model
set, e.g. 32-mix per state, our previous formulation SDP0 forms an
SDP problem consisting of about 9 million free variables. How-
ever, SDP1 reduces the total number of free variables to about 3
million (over 60% reduction) and SDP2 further decreases the num-
ber to about 0.6 million (about 94% relative reduction). Next, we
also compare number of extra constraints related to structure of vari-
able matrices for various LME/SDP formulations. From Table 1, we
can see that SDP1 only needs slightly more constraints than SDP0
but the number of extra constraints significantly increases in SDP2
(about 30 times). On the whole, problem size of SDP1 and SDP2 has
been largely reduced when compared with that of SDP0. Since op-
timization time and memory consumption of most SDP algorithms
is related to a polynomial function of problem size, it is expected
that optimization resources needed to solve SDP1 and SDP2 may be
considerably reduced.

5.2. Performance and Optimization Time

Next, we investigate recognition performance of the two new LME/SDP
formulations, namely SDP1 and SDP2. Both methods have been ex-
amined for different model sizes and their final recognition perfor-
mance is compared with the previous approach SDP0 in [11] and the
SOCP approach in [13]. The final results are summarized in Table
2. For reference, we also list recognition performance of baseline
systems trained with ML and MCE criteria. From Table 2, we can
clearly see that both SDP1 and SDP2 achieve good recognition per-
formance especially for large model sets. Particularly, for the largest
model set 32-mix, both new methods yield string error rate 0.51%
(word error rate 0.17%), which is the best performance we have ever
achieved on this task. It is slightly better than 0.53% string error rate
obtained by SDP0. When we compare them with the SOCP method
in [13], both SDP1 and SDP2 maintain good optimization accuracy
due to the fact that the inherent SDP relaxation is much tighter than
the SOCP relaxation used in [13]. This is particularly true for those
large model sets such as 8-mix, 16-mix and 32-mix.

At the end, we compare optimization time needed by the opti-
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Table 2. String error rates (in %) of various training methods on the
TIDIGITS test data.

ML MCE SDP0 SOCP SDP1 SDP2
1-mix 12.61 6.72 2.75 2.10 2.67 2.56

2-mix 5.26 3.94 1.24 1.13 1.25 1.28

4-mix 3.48 2.23 0.89 0.98 0.94 0.92

8-mix 1.94 1.41 0.68 0.76 0.69 0.70

16-mix 1.72 1.11 0.63 0.66 0.63 0.64

32-mix 1.34 0.90 0.53 0.59 0.51 0.51

mizer software to solve all three SDP problems, i.e. SDP0, SDP1
and SDP2, and SOCP. The average optimization time per iteration
(measured in second) are summarized in Table 3. From the results,
we can see that the SOCP method still gives the best optimization
efficiency, e.g. over hundreds times faster than SDP0 for the large
model sets. Both SDP1 and SDP2 run slightly slower than SOCP
but both methods show a huge improvement over SDP0 in terms
of optimization time. For the large model sets, both methods run
about tens of times faster than the previous SDP0 method because
they have considerably reduced problem size of SDP. If we compare
SDP1 with SDP2, we can see that SDP2 is about two times faster
because SDP2 involves much less free variables even though it in-
troduces more extra constraints.

Table 3. Average optimization time (in seconds) per iteration of
various optimization methods on the TIDIGITS task. The numbers
in parentheses indicate optimization speed ratio relative to SDP0.

SDP0 SOCP SDP1 SDP2
1-mix 1276 57 (x22) 511 (x2.5) 286 (x5)

2-mix 1068 58 (x18) 835 (x1.3) 372 (x3)

4-mix 3556 141 (x25) 1211 (x3) 483 (x8)

8-mix 12398 192 (x64) 1520 (x8) 758 (x16)

16-mix 40691 324 (x125) 2212 (x18) 1335 (x30)

32-mix 113110 506 (x223) 3173 (x36) 2343 (x48)

In summary, the newly proposed LME/SDP formulation (both
SDP1 and SDP2) show a huge advantage in optimization efficiency
compared with the previous SDP0 method and both SDP1 and SDP2
yield slightly better optimization accuracy and recognition perfor-
mance than SDP0. On the other hand, both SDP1 and SDP2 are
still slightly slower than the SOCP method but they can normally
provide a much more precise solution and in turn yield better recog-
nition performance.

6. CONCLUSIONS

In this work, we have proposed a new method to formulate large
margin estimation (LME) of HMMs as smaller SDP problems. It
can considerably reduce the total number of free variables in the
resultant SDP problems and in turn significantly improve optimiza-
tion efficiency in the SDP-based LME training, especially for large
model sets. Meanwhile, the new methods still can achieve very good
optimization accuracy since the problem is relaxed under the SDP
framework, which is typically tighter than other types of convex re-
laxation, such as SOCP in [13]. The new methods open up a possible
door to apply SDP-based LME to large vocabulary speech recogni-
tion tasks.
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