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ABSTRACT 

We propose a new speech recognition method (HMM-trajectory 
method) that generates a speech trajectory from HMMs by 
maximizing their likelihood while accounting for the relationship 
between the MFCCs and dynamic MFCCs. One major advantage 
of this method is that this relationship, ignored in conventional 
speech recognition, is directly used in the speech recognition phase. 
This paper improves the recognition performance of the HMM-
trajectory method for dealing with mixture Gaussian distributions. 
While the HMM-trajectory method chooses the Gaussian 
distribution sequence of the HMM states by selecting the best 
Gaussian distribution in the state during Viterbi decoding and 
calculating HMM trajectory likelihood along with the sequence, 
the proposed method compensates for HMM trajectory likelihood 
using ordinary HMM likelihood. In speaker-independent speech 
recognition experiments, the proposed method reduced the error 
rate about 10% for the task compared with HMMs, proving its 
effectiveness for Gaussian mixture components. 

Index Terms— HMM, Trajectory 
 

1. INTRODUCTION 
Since HMMs model the acoustic feature vector sequence as a 
piecewise stationary process, the probability of a given acoustic 
feature is independent of the sequence of acoustic features 
preceding and following the current feature. This means that 
statistics in a HMM state are stationary, and thus HMMs cannot 
treat the time-dependent characteristics of speech within that state. 
This is a widely recognized drawback of speech recognition using 
HMMs, even though several methods have introduced time 
dependency to overcome this drawback [1][2][3][4][5]. To 
introduce the speech dynamics ignored by the HMM assumption 
in speech recognition, we propose a new method (hereafter the 
HMM-trajectory method) that employs smoothed speech feature 
trajectory generated from HMM statistics [6][7][8][9]. The HMM-
trajectory method uses the relationship between the static and 
dynamic features (delta features and delta-delta features), which is 
ignored in the conventional speech recognition phase despite their 
important speech dynamics information. The HMM-trajectory 
method generates a smooth feature vector trajectory by a Kalman 
smoother that maximizes HMM likelihood while simultaneously 
considering the relationships [9].  
We also extended the method for dealing with mixture Gaussian 
distributions [8]. The method chooses the sequence of Gaussian 
distributions by selecting the best Gaussian distribution in the 
state during ordinary HMM Viterbi decoding. Although in that 
paper, speaker-independent speech recognition experiments 
reduced error rates, when we performed an additional experiment 
with a large amount of data, the error rate improvement decreased. 
Perhaps our previous method only considered the best Gaussian 
distribution sequences and ignored the other Gaussian 
distributions in a state. In this paper, we propose a new method 
that improves this drawback, explain an overview of the HMM-

trajectory method, and formulate Gaussian mixture distributions in 
it. Then compensated likelihood, which combines HMM trajectory 
and ordinary HMM likelihoods, is introduced into the HMM-
trajectory method.  
 

2. OVERVIEW OF HMM-TRAJECTORY METHOD 
This section describes an overview and the theoretical aspects of 
the HMM-trajectory method based on [6][7][9] as well as HMM 
and HMM trajectory likelihoods. To simplify the equations, this 
section treats one-dimensional speech features and a single mixture 
HMM. 
2.1. Definition and assumptions 
Since the HMM-trajectory method uses almost identical 
parameters as in a HMM, the basic variables used in HMM are 
defined as: 

ty : Static feature vector (one-dimension) at frame t 

tS :  HMM state in frame t 

[ , , ]'t t t tY y y y= Δ ΔΔ : Static and dynamic features at frame t 

[ ]2 1 1 2 't
t t t t tY y y y y y+ + − −= :  Five frame static feature vector 
t

tY CY= : Matrix equation to generate speech recognition features 

from a five frame static feature vector 

0 0 1 0 0

1/5 1/10 0 1/10 1/ 5

1/14 1/ 28 1/14 1/ 28 1/14

C = − −

− − −

: An operator that 

generates a set of static and dynamic features: tY  from tY  (This 

matrix is one realization for this purpose),  

1:TY : 1 2, ,..., TY Y Y , 
where T is the final frame of the data and ' means the transpose of 
the matrix.  
After a HMM is trained, the following HMM probabilities are 
obtained: 

( | )t tP Y S : Emission probability at state tS  

1( | )t tP S S − : Transition probability from 1tS − to tS   

2.2. HMM likelihood 
Viterbi likelihood calculation is widely used in speech recognition 
as an approximation of trellis likelihood. The likelihood 
calculation for a HMM is formulated by  

[ ]
1: 1:

1:

1: 1: 1: 1: 1: 1:

1 1 1 1
2

( ) ( , ) ( | ) ( )max max

( ) ( | ) ( | ) ( | ) ,max

T T

T

T T T T T T
S S

T

t t t t
S

P Y P Y S P Y S P S

P S P Y S P Y S P S S −

=≈

∏=
  (1) 

where ( | )t tP Y S is emission probability that can be calculated by 
2 2

2

( | ) ( ; , ) ( ; , )
( ; , )

t t t t

t t

t t t S S t S S

t S S

P Y S N y N y

N y

μ ρ μ ρ

μ ρ

= Δ Δ Δ

ΔΔ ΔΔ ΔΔ
.     (2) 
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2( ; , )
t tt S SN y μ ρ is the Gaussian distribution of ty  whose mean and 

variance are 
tSμ 2

tSρ .  , ,
t t tS S Sμ μ μΔ ΔΔ  are the HMM mean values 

at tS . 2 2 2, ,
t t tS S Sσ σ σΔ ΔΔ  are the HMM variance values at tS . 

To discuss the relationship between HMM and HMM trajectory 
likelihoods, we modify ( | )t tP Y S  into  

( | , ) ( | )
t

t t t t t
X

P Y X S P X Sδ ,             (3) 

 where tX  is a hidden variable and ( | )t tP X Sδ  is the 

multiplication of the delta functions defined as: 
( | ) ( ) ( ) ( )

t t tt t t S t S t SP X S x x xδ δ μ δ μ δ μ= − Δ − Δ ΔΔ − ΔΔ .    (4) 

( | , )t t tP Y X S  is defined as 

2 2 2

( | , )
( ; , ) ( ; , ) ( ; , )

t t t

t t t

t t S t t S t t S

P Y X S
N y x N y x N y xρ ρ ρ

=

Δ Δ Δ ΔΔ ΔΔ ΔΔ
 .    (5)  

Using this formulation, 1: 1:( | )T TP Y S  can be reformulated by 

1:

1:

1: 1:

1: 1: 1: 1: 1:

( | ) ( | , ) ( | )

( | , ) ( | )

( | , ) ( | ).

t

T

T

T T t t t t t
t X

t t t t t
t tX

T T T T T
X

P Y S P Y X S P X S

P Y X S P X S

P Y X S P X S

δ

δ

δ

= ∏

= ∏ ∏

=

  (6) 

This equation denotes that 1: 1:( | )T TP X Sδ selects the HMM mean 
sequence from 1:TX using the HMM assumption�that each state 
generates the time independent mean value, and then 

1: 1: 1:( | , )T T TP Y X S calculates the likelihood using the selected mean 
sequence.  
 
2.3. HMM trajectory likelihood 
As shown in 2.2., in HMM likelihood calculation, 1: 1:( | )T TP X Sδ  
selects the mean values from 1:TX  by assuming that they don’t 
change in a state. If we use this assumption, for example, the mean 
sequences have a contradiction: the mean values stay at the same 
value while delta mean values are not zero. We believe that this 
contradiction reduces recognition accuracy. To avoid this 
contradiction, we introduce the following constraints for the 
hidden states: 

[ ]2 1 1 2 't
t t t t tX x x x x x+ + − −= ,       (7) 

[ , , ]t t t tX x x x ′= Δ ΔΔ ,                 (8) 
t

tX CX=  .                  (9) 
These constraints denote that the means of delta features and delta-
delta features are generated from the sequence of the static feature 
means; this assumption is quite natural considering the definition 
of delta and delta-delta features. Introducing the above constraints 
dynamically changes the mean values. To obtain the hidden states, 

1: 2

1: 2 1: 1: 1:ˆ ( ) ( | )argmax
T

T T T T
x

x S P X S
− +

− + =                              (10) 

is performed under constraints (7), (8), and (9), where 1: 1:( | )T TP X S  
is the HMM probability of 1:TX . This calculation was originally 
used for speech synthesis [10]. We introduced another formulation 
that uses a Kalman filter [11], which is shown in the appendix (see 
also [9]). We call 1: 2 1:ˆ ( )T Tx S− +  the trajectory and define a 
likelihood function along the state sequence of 1:TS  as follows: 

1:

1: 1: 1: 1: 1: 1: 1:
ˆ ˆ ˆ( | ) ( | , ) ( | )

T

T T T T T T T
X

P Y S P Y X S P X Sδ= ,          (11) 

where we define 1: 1:
ˆ ( | )T TP X Sδ as 

1: 1:

1: 1: 1:

ˆ ( | )
ˆ ˆ ˆ( ( )) ( ( )) ( ( ))

T T

t t T t t T t t T
t

P X S
x x S x x S x x S

δ

δ δ δ
=

− Δ − Δ ΔΔ − ΔΔ∏
.  (12) 

1: 1: 1:
ˆ ( | , )T T TP Y X S is obtained by 

1: 1: 1:
ˆ ˆ( | , ) ( | , )T T T t t t

t
P Y X S P Y X S= ∏ , and   (13) 

2 2 2

ˆ ( | , )
( ; , ) ( ; , ) ( ; , )

t t t

t t t

t t S t t S t t S

P Y X S
N y x N y x N y xρ ρ ρ

=

Δ Δ Δ ΔΔ ΔΔ ΔΔ
,  (14) 

whose means and variances are tx txΔ txΔΔ  and 
2

tSρ 2

tSρΔ
2

tSρΔΔ , respectively. Note that we introduce new 
variances, 2

tSρ 2

tSρΔ
2

tSρΔΔ , for each HMM state. We assume that 
from here tx , txΔ , and txΔΔ are independent of each other. 
Although if the state sequence is given, likelihood can be 
calculated, and the actual state sequence is unknown. Assuming 
that the state transition probability is identical to HMM, the 
formulation of the obtained state sequence can be calculated by  

1: 1:
1:

1:
1:

1:
1:

1:

1: 1: 1: 1: 1:

1: 1: 1:

1: 1: 1: 1: 1: 1:

1: 1: 1: 1: 1:

ˆ ˆmax ( , ) max ( , , )

ˆmax ( , , )

ˆ ˆmax ( | , ) ( | ) ( )

ˆ ˆmax ( | ( ), ) ( ).

T T
T

T
T

T
T

T

T T T T T
S S X

T T T
S X

T T T T T T
S X

T T T T T
S

P Y S P S Y X

P S Y X

P Y X S P X S P S

P Y X S S P S

δ

=

=

=

=

   (15) 

1:
ˆ ( )t TX S is obtained by 

1: 1:
ˆ ˆ( ) ( ),t

t T TX S CX S=  and     (16) 

[ ]1: 2 1: 1 1: 1: 1 1: 2 1:
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 't

T t T t T t T t T t TX S x S x S x S x S x S+ + − −= (17) 

from the sequence of 1:ˆ ( )t Tx S  calculated by Equation (10). 

However, no efficient algorithm, such as the Viterbi algorithm, 
effectively searches for the best state sequence. To approximate the 
state sequence, we use the state sequence obtained by the Viterbi 
algorithm using ordinary HMMs as  

 
1:

1: 1: 1: 1:( | ) ( )arg max
T

T T T T
S

S P Y S P S= .                                (18) 

Therefore the approximate trajectory and the corresponding 
likelihood are calculated as 

1: 2

1: 2 1: 1: 1:ˆ ( ) ( | )arg max
T

T T T T
x

x S P X S
− −

− + =  and                   (19) 

1:
1: 1: 1: 1: 1: 1:

1: 1: 1: 1: 1:

ˆ ˆ ˆ( ) max ( | ( ), ) ( )

ˆ ˆ( | ( ), ) ( ).
T

T T T T T T
S

T T T T T

P Y P Y X S S P S

P Y X S S P S

≈

≈
       (20) 

2.4 Training in trajectory likelihood 
The method described in Section 2 requires training variables 

2 2 2[ , , ]'
t t t ts S S SM σ σ σ= Δ ΔΔ . A simple training method called Viterbi 

training is introduced to calculate variances 
tsM  for each state 

along with the trajectory. The following is the basic procedure:  

(1) Calculate Viterbi paths with HMM for all training data using  

1:

,1: ,1: 1: 1:( | ) ( )arg max
n n n n

Tn

n T n T T T
S

S P Y S P S= ,                             (21) 

where n is the amount of data. 
(2) Generate trajectories for the training data using the Kalman 
smoother whose objective function is 

1: 2

, 1: 2 ,1: 1: ,1:ˆ ( ) ( | )arg max
n n n n

T

n T n T T n T
x

x S P X S
− +

− + = .                       (22) 

(3) Calculate equation 

2 2 2

2 2 2

,1: ,1: ,1: ,1: ,1:
, ,

, ,
ˆ ˆlog[ ( | ( ), ) ( )]arg max

n n n n n

i i i

i i i
N

n T n T n T n T n T
n

P Y X S S P S
ρ ρ ρ

ρ ρ ρ

Δ ΔΔ

Δ ΔΔ

=   (23) 

to obtain 2 2 2, ,i i iρ ρ ρΔ ΔΔ , where N  denotes the amount of 
training data.  
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3. EXTENTION TO MIXTURE GAUSSIAN 
COMPONENTS 
In this section, we discuss an extension of the HMM-trajectory 
method for treating a mixture Gaussian component framework. 
Before addressing the new likelihood, an ordinary HMM 
likelihood for mixture Gaussian components is discussed in 3.1, 
and our previous method described in [8] is explained in 3.2. Then 
we discuss the new method that compensates for HMM trajectory 
likelihood in 3.3. 
3.1. HMM likelihood for mixture Gaussian components 
HMM likelihood for Gaussian mixture components is obtained by  

1: 1: 1:

1: 1:

1: 1: 1: 1: 1: 1:

1 1 1 1 1
2

( ) ( , ) ( , , )max max

( , ) ( | ) ( | , ) ( , | ) ,max

T T T

T T

T T T T T T
S S K

T

t t t t t t
S K

P Y P Y S P Y S K

P S K P Y S P Y S K P S K S −

≈ =

∏=
  (24) 

where 1:TK  is a sequence of mixture component numbers. 
( | , )t t tP Y S K is the emission probability for each Gaussian 

component defined as 

, , , , , ,

( | , )
( ; , ) ( ; , ) ( ; , ),

t t t t t t t t t t t t

t t t

t S K S K t S K S K t S K S K

P Y S K
N y N y N yμ ρ μ ρ μ ρ

=
Δ Δ Δ ΔΔ ΔΔ ΔΔ

        (25) 

1( , | )t t tP S K S − is the multiplication of transition probability from 
1tS −  to tS  and the weight for the tK -th mixture component in tS . 
,t tS Kμ , ,t tS KμΔ , and ,t tS KμΔΔ are the mean values for the tK -th 

component in state tS . 2
,t tS Kρ , 2

,t tS KρΔ , and 2
,t tS KρΔΔ are the 

variance values for the tK -th component in state tS . 
3.2. HMM trajectory likelihood for mixture Gaussian 
components 
We define the likelihood for the mixture Gaussian components as 

1: 1: 1: 1: 1:

1: 1: 1:

1:

1: 1: 1: 1: 1: 1: 1: 1:
, ,

1: 1: 1: 1: 1: 1: 1: 1: 1:
,

1: 1: 1: 1: 1: 1: 1: 1:
,

ˆ ˆ ˆ( ) ( , , ) ( , , , )

ˆ ˆ( | , , ) ( | , ) ( , )

ˆ ˆ( | ( , ), , ) ( , )

T T T T T

T T T

T

T T T T T T T T
S K S K X

T T T T T T T T T
S K X

T T T T T T T T
S K

P Y P Y S K P Y X S K

P Y X S K P X S K P S K

P Y X S K S K P S K

δ

= =

=

=
1:

,
T

(26) 

where 1: 1: 1:
ˆ ( , )T T TX S K can be obtained by 

1: 2

1: 2 1: 1: 1: 1: 1:ˆ ( , ) ( | , )arg max
T

T T T T T T
x

x S K P X S K
− +

− + =       (27) 

with conditions (7), (8), and (9). Probability density for input 
feature 1:TY ��given 1: 1:,T TS K , is defined as 

1: 1: 1: 1: 1: 1: 1: 1:
ˆ ˆ ˆ ˆ( | ( , ), , ) ( | ( , ), , )T T T T T T t t T T t t

t
P Y X S K S K P Y X S K S K= ∏ ,(28) 

where frame-wise probability density 1: 1:
ˆ ˆ( | ( , ), , )t t T T t tP Y X S K S K  is 

defined as 

1: 1:

1: 1: , 1: 1: ,

1: 1: ,

ˆ ˆ( | ( , ), , )
ˆ ˆ( ; ( , ), ) ( ; ( , ), )

ˆ( ; ( , ), )
t t t t

t t

t t T T t t

t t T T S K t t T T S K

t t T T S K

P Y X S K S K
N y x S K N y x S K
N y x S K

ρ ρ
ρ

=
′ ′Δ Δ Δ

′ΔΔ ΔΔ ΔΔ

. (29) 

1: 1:( , )T TP S K  is the multiplication of state transition probabilities 
and Gaussian component weights, whose values are identical to the 
mixture Gaussian HMM. We introduce new 
variances, 2

,t tS Kρ 2
,t tS KρΔ

2

tSρΔΔ , for each HMM Gaussian 
component. 
Obtaining Equation (26) for all combinations of 1: 1:,T TS K  requires 
much calculation. Instead of calculating Equation (26) for all 
possible 1: 1:,T TS K , we selected 1: 1:,T TS K to maximize HMM 
probability, given 1: 1:,T TS K , as 

1: 1:

1: 1: 1: 1: 1: 1: 1:, ( | , ) ( , )arg max
T T

T T T T T T T
S K

S K P Y S K P S K= .                (30) 

Using 1: 1:,T TS K , in [8] we calculated the trajectory and likelihood 

as 
1: 2

1: 2 1: 1: 1: 1: 1:( , ) ( | , )arg max
T

T T T T T T
x

x S K P X S K
− +

− + =  and        (31) 

1: 1: 1: 1: 1: 1: 1: 1: 1:
ˆ ˆ ˆ( ) ( | ( , ), , ) ( , )T T T T T T T T TP Y P Y X S K S K P S K≈ .     (32) 

3.3. Compensated likelihood for HMM-trajectory method 
After we evaluated the method described in 3.2. with a large 
amount of data, the error rate improvement decreased, presumably 
for the following reason. If the trajectory is near the sequence of 
input speech features, Equation (32) might work well. However, if 
the obtained trajectory is far from the sequence of input speech 
features, the likelihood value decreases, and consequently 
recognition accuracy decreases because the likelihood described in 
3.3. ignores term 

1: 1: 1: 1:

1: 1: 1: 1: 1: 1: 1: 1:
ˆ ˆ( | ( , ), , ) ( , )

T T T T

T T T T T T T T
K K andS S

P Y X S K S K P S K
≠ ≠

. The 

trajectories in 
1: 1: 1: 1:

1: 1: 1: 1: 1: 1: 1: 1:
ˆ ˆ( | ( , ), , ) ( , )

T T T T

T T T T T T T T
K K andS S

P Y X S K S K P S K
≠ ≠

are smoothed 

sequences of HMM mean sequences along 1: 1:,T TS K . This means 

the ignored likelihood values are similar to the HMM likelihood (if 
we neglect the probability density for the HMM best path). We 
believe that the ignored likelihood can be approximated by the 
HMM likelihood. Therefore, we compensate for HMM-trajectory 
likelihood with HMM likelihood in the log domain and propose a 
new likelihood equation: 

1:

1: 1: 1: 1: 1: 1: 1: 1: 1:

1: 1:

1ˆ ˆ ˆlog ( ) log( ( | ( , ), , ) ( , ))
2

1
log( ( , ))max

2 T

T T T T T T T T T

T T
S

P Y P Y X S K S K P S K

P Y S

≈

+
(33) 

Although a weight for the compensated likelihood might generally 
be effective, we do not use one here.  
 

4. RECOGNITION EXPERIMENTS 
We performed city name recognition experiments to evaluate our 
method. Table 1 shows the experimental conditions. The 
evaluation task was the recognition of 100 city names. About 
20,000 training utterances were used to train the tri-phone HMMs 
using only male speakers. Each HMM had three states. The test 
data were recognized using HMMs�by a full search. State-based 
segmentation was performed by the Viterbi algorithm for each 
candidate to obtain state alignments for the input utterances. The 
trajectory for each candidate was then generated using a Kalman 
smoother. Frame-wise likelihood between the generated trajectory 
and the input speech MFCC features was calculated. We used 
three types of likelihood to reorder the candidates: HMM, HMM-
trajectory� calculated by Equation (32), and HMM-trajectory 
calculated by Equation (33).  
 

Table 1  Conditions in experiments 
 Condition 
Number of training sentences 20,093 
Test data  7198 city names uttered by 75 speakers 
Feature parameters MFCC 1-12 

16 kHz sampling rate 
10 msec frame shift 

Gender  Male  
 
We performed experiments under two conditions; the numbers of 
mixture components in the state were either two or three.  
Table 2 shows the word error rates of the experiment using two 
Gaussian mixture components. To increase the experiment’s 
reliability, we used three different amounts of states in the tri-
phone HMMs: 2859, 1992, and 1611. While the baseline system 
obtained 2.33%, 2.27%, and 2.36% error rates at 2859, 1992, and 
1611 states, respectively, HMM trajectory likelihood obtained 
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2.22%, 2.13%, and 2.27%, respectively. For this task, HMM 
trajectory likelihood outperforms HMM likelihood. Compensated 
HMM trajectory likelihood obtained 2.06%, 2.00%, and 2.14% 
error rates for the same task. Error reduction rates from HMMs 
were 11.8%, 11.9%, and 9.3%, respectively. Compared with the 
previous method, compensated HMM trajectory likelihood shows 
better results. These results indicate that compensated likelihood 
significantly improves recognition accuracy.  
Table 3 shows the word error rates for the experiment for three 
mixture Gaussian HMMs. We evaluated using tri-phone HMMs 
with only 1992 states.  
The baseline system obtained 1.89% error, and HMM trajectory 
likelihood obtained 1.89%. While these two methods show 
identical error rates, the proposed HMM trajectory likelihood 
obtained an 1.72% error rate for the same task. The error reduction 
rate was 9.0%, showing that the proposed likelihood improved 
recognition accuracy more than our previous HMM trajectory 
likelihood.  
We compared the proposed method’s memory and calculation with 
ordinary HMMs. The proposed method requires an extra variance 
matrix for each HMM distribution. This means that in 1992 state 
HMMs with three mixture components, 5976 extra diagonal 
variance matrices are required. In this case, a full search of the 
proposed method was about 10 times slower than the HMM 
Viterbi full search (note that this comparison was performed using 
different computer languages for two methods and full search is an 
exhausted method in speech recognition). 
 

Table 2 Word error rates (for two mixture components) 
Number 
of states 

HMM trajectory 
likelihood 

Compensated 
HMM trajectory 

likelihood 

HMM 
likelihood 
(Baseline) 

2859 2.22% 2.06% 2.33% 
1992 2.13% 2.00% 2.27% 
1611 2.27% 2.14% 2.36% 

 
Table 3 Word error rates (for three mixture components) 

Number 
of states 

HMM trajectory 
likelihood 

Compensated 
HMM trajectory 

likelihood 

HMM 
likelihood 
(Baseline) 

1992 1.89% 1.72% 1.89% 

 
5. CONCLUSION 

This paper proposed a new speech recognition method that 
improves the HMM-trajectory method and enhances the 
performance of Gaussian mixture distributions. The previous 
HMM-trajectory method obtained state and mixture 
component sequences using the Viterbi algorithm with 
ordinary HMMs, generated the trajectory using the 
information, and calculated likelihood along the trajectory. 
However since this method ignores the likelihood generated 
by the other sequences of the states and mixture components, 
the method degraded recognition accuracy. To improve 
performance, we compensated for HMM trajectory 
likelihood using ordinary HMM likelihood. Our proposed 
method was evaluated with speaker independent speech 
recognition experiments that yielded about a 10% reduction 
in error rate for evaluations with two mixture Gaussian 
components and three mixture components, proving that our 
method improved the recognition performance for Gaussian 
mixture components.  
 

6. REFERENCES 
[1] J. S. Bridle, L. Deng, J. Picone, H. B. Richards, J. Ma, T. Kamm, M. 

Schuster, S. Pike, and R. Regan, “An investigation of segmental 

hidden dynamic models of speech coarticulation for automatic speech 
recognition,” 
http://www.clsp.jhu.edu/ws98/projects/dynamic/presentations/final/
WS98 final report, 1998. 

[2] H. B. Richards and J. S. Bridle, “The HDM: A segmental hidden 
dynamic model of coarticulation,” Proc. ICASSP, 357-360, 1999. 

[3] J. Picone, S. Pike, R. Reagan, T. Kamm, J. Bridle, L. Deng, Z. Ma, H. 
Richards, and M. Schuster, “Initial evaluation of hidden dynamic 
models on conversational speech,” Proc. ICASSP, pp. 109-112, 1999.  

[4] L. Deng, “A dynamic, feature-based approach to the interface between 
phonology and phonetics for speech modeling and recognition,” 
Speech Communication, 24 (4), pp. 299-323, 1998. 

[5] V. Digalakis, J. R. Rohlicek, and M. Ostendorf, “A dynamical system 
approach to continuous speech recognition,” IEEE Trans. Speech 
Audio Processing, Vol. 1, No. 4, pp. 431-442, 1993. 

[6] Y. Minami, E. McDermott, A. Nakamura, and S. Katagiri, “A 
recognition method using synthesis-based scoring that incorporates 
direct relations between static and dynamic feature vector time 
series,” Workshop for Consistent & Reliable Acoustic Cues for 
Sound Analysis, 2001. 

[7] Y. Minami, E. McDermott, A. Nakamura, and S. Katagiri, “A 
recognition method with parametric trajectory synthesized using 
direct relations between static and dynamic feature vector time 
series,” Proc. ICASSP, pp. 957-960, 2002. 

[8] Y. Minami, E. McDermott, A. Nakamura, and S. Katagiri, “A 
recognition method with parametric trajectory generated from 
mixture distribution HMMs,” Proc. ICASSP, pp. 124-127 2003. 

[9] Y. Minami, E. McDermott, A. Nakamura, and S. Katagiri, “A 
Theoretical Analysis of Speech Recognition based on Feature 
Trajectory Models,” Proc. ICSLP, vol. I, 2004. 

[10] K. Tokuda, T. Kobayashi, and S. Imai, “Speech parameter generation 
from HMM using dynamic features,” Proc. ICASSP, pp. 660-663, 
1995. 

[11] T. Kailath, A. H. Sayed, and B. Hassibi, “Linear estimation,” Prentice 
Hall, 2000. 

 
APPENDICES 

To calculate Equation (10), we used a Kalman smoother that 
models state space as 

t t

t
S SM C X W= +  and      (34) 

1t t
tX AX N+ = + ,            (35) 

where matrix A is a shift operator: 

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

A = .               (36) 

tSW  is a random variable vector whose mean vector and covariance 
matrix are defined as: [0,0,0]',             

2 2 2 .
t t t tS S S Sdiag σ σ σΣ = Δ ΔΔ � � �           (37) 

tSM  is defined as 
[ , , ]'.

t t t tS S S SM μ μ μ= Δ ΔΔ     (38) 
[ ]2 1 1 2, , , ,t t t t t tN n n n n n+ + − −

′=  are random variables whose mean 
vectors and covariance matrixes are defined as: 
[ ]0 0 0 0 0 ′ , and 

0 0 0 0

0 0 0 0 0

,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

θ

Θ =     (39) 

where θ  is a large positive number. 
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