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ABSTRACT

Recently, we proposed a novel optimization algorithm called con-
strained line search (CLS) to train Gaussian mean vectors of HMMs
in the MMI sense. In this paper, we extend and re-formulate it in
a more general framework. The new CLS can optimize any dis-
criminative objective functions including MMI, MCE, MPE/MWE
etc. Also, closed-form solutions to update all Gaussian mixture pa-
rameters, including means, covariances and mixture weights, are ob-
tained. We investigate the new CLS on several benchmark speech
recognition databases, including TIDIGITS, Switchboard mini-train
and Switchboard full h5train00 sets. Experimental results show that
the new CLS optimization method outperforms the conventional EBW
method in both performance and convergence behavior.

Index Terms— Discriminative training, Optimization algorithm,
Line search, Kullback-Leibler divergence

1. INTRODUCTION

In past few years, discriminative training (DT) has been a very active
research area in automatic speech recognition (ASR). Most discrim-
inative training methods have been formulated to estimate parame-
ters of Gaussian mixture continuous density hidden Markov mod-
els (CDHMM) in different speech recognition tasks, ranging from
small vocabulary, isolated word recognition to large vocabulary, con-
tinuous speech recognition tasks. Discriminative training is a typi-
cal optimization problem, where an objective function is optimized,
usually in an iterative manner. Popular DT criteria including max-
imum mutual information (MMI)[1], minimum classification error
(MCE)[2], minimum word or phone error (MWE or MPE) [8], min-
imum divergence (MD)[6], etc. Once the objective function is cho-
sen, an effective algorithm is used to optimize the objective function
by adjusting CDHMM parameters. In speech recognition, various al-
gorithms have been proposed to optimize the objective function, in-
cluding the generalized probabilistic descent (GPD) algorithm based
on the first-order gradient descent, the approximate second-order,
Hessian based Quickprop method, and the extended Baum-Welch
(EBW) algorithm, etc. The GPD and Quickprop methods are mainly
used for optimizing the MCE objective function. The EBW method
has been initially proposed to optimize a rational objective function
and later extended to Gaussian mixture CDHMMs for the MMI and
MPE (or MWE) objective functions. Recently, the EBW method
has also been generalized for optimizing the MCE objective func-
tion [9] as well as the MD objective function [6]. Nowadays, the
EBW method has been widely accepted for discriminative training
because it is relatively easy to implement the EBW algorithm on

word graphs for large scale ASR tasks and it has been demonstrated
that the EBW algorithm performs quite well on many ASR tasks.

Recently, we proposed a novel optimization method, called con-
strained line search (CLS), to optimize Gaussian mean vectors for
discriminative training, based on the MMI criterion[7]. We cast
discriminative training of CDHMMs as a constrained optimization
problem, where a constraint is explicitly imposed for DT based on
the Kullback-Leibler divergence (KLD) between model parameters.
The constraint is motivated by the fact that all collected estimation
statistics are only reliable in a close neighborhood of the original
model. Under this constraint, the objective function can be approxi-
mated as a smooth function of CDHMM parameters and its sole crit-
ical point, if existing, can be easily obtained by setting the derivative
to zero. Then, a novel constrained line search (CLS) algorithm is
proposed to solve the constrained optimization problem. Subject to
the KLD constraint, the line search is performed either along a line
segment joining the initial model parameters and the critical point of
the smoothed objective function, if the critical point exists, or along
gradient direction of the objective function, if the critical point does
not exist. In this paper, we extend the original CLS formulation to
a more general framework, where the proposed CLS method is ca-
pable of optimizing any objective function, derived from many pop-
ular DT criteria in speech recognition, such as MMI, MCE, MPE
(or MWE), MD and so on. After approximating the KLD con-
straint as quadratic form, we can derive simple closed-form formula
to efficiently update all parameters of Gaussian mixture CDHMMs
based on the same idea of line search, including not only Gaussian
mean vectors but also covariance matrices and mixture weights. The
proposed CLS method has been evaluated in discriminative train-
ing of Gaussian mixture CDHMMs on several speech recognition
tasks, including connected digit string recognition using the TIDIG-
ITS database and large vocabulary continuous speech recognition
on the Switchboard task. We have examined several different dis-
criminative training critera in our experiments, including MMI, MPE
and MD. Experimental results clearly show that the proposed CLS
method consistently outperforms the popular EBW method in all
evaluated ASR tasks in terms of final recognition performance and
convergence behavior.

2. DISCRIMINATIVE TRAINING AS CONSTRAINED
OPTIMIZATION PROBLEM

2.1. Criteria of discriminative training

We assume that acoustic model set Λ consists of many individ-
ual Gaussian mixture CDHMMs, each of which is represented as
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λ = (π, A, B), where π = {π1, π2, ..., πN} is the initial state dis-
tribution and N is the number of states in HMM, A = {aij}N×N

is transition matrix, and B is state output distribution set, consisting
of Gaussian mixture distributions for all states: bi(x) =

�K
k=1

ωikN (x; μik,Σik), where K stands the number of Gaussian mix-
ture components in state i (1 ≤ i ≤ N ), and N (x; μ,Σ) represents
a multivariate Gaussian distribution with mean vector μ and covari-
ance matrix Σ.

Assume that the whole training set consists of R different train-
ing utterances X1, X2, · · · , XR along with their corresponding
transcriptions, denoted as W1, W2, · · · , WR. As shown in [6] and
[11], objective functions of CDHMMs derived from various discrim-
inative training criteria can be formulated in the following form:

F(Λ) = p(Λ | {Xr, Wr,Mr}R
r=1, f, κ, G) =

1

R

R�
r=1

f

�
�log

��
W∈Mr

pκ(Xr|W )p(W )G(W, Wr)�
W ′∈Mr

pκ(Xr|W ′)p(W ′)

� 1
κ

�
� (1)

where 0 < κ ≤ 1 is acoustic scaling factor, and Mr stands for all
competing hypotheses of utterance Xr which is compactly approxi-
mated by a word lattice generated in Viterbi decoding, f(·) is a map-
ping function to transform the objective function, and G(W, Wr) is
the so-called gain function to measure dissimilarity between refer-
ence Wr and a hypothesis W . Both the mapping function f(·) and
the gain function G(W, Wr) take different functional forms in vari-
ous discriminative training criteria (see [6]). In this study, we assume
that language model score p(W ) is fixed.

2.2. Constrained optimization for discriminative training

From eq.(1), we can see that the general DT objective function,
F(Λ), is a highly complicated nonlinear function, which is diffi-
cult to optimize directly. Therefore, we normally make the follow-
ing assumptions: i) all competing hypothesis spaces Mr remain un-
changed during optimization; ii) all collected estimation statistics,
such as state occupancies and Gaussian kernel occupancies, remain
unchanged during optimization. Meanwhile, we also use a suffi-
ciently small scaling factor κ (κ � 1) to smooth the original objec-
tive function. Because of these, it makes sense to explicitly impose a
constraint that HMM model parameters Λ do not deviate too much
from their initial values, Λ0. This constraint ensures that all of the
above assumptions remain valid during optimization since the initial
models, Λ0, have been used to generate all word lattices {Mr} and
to accumulate statistics from training data prior to optimization.

Obviously, this kind of constraint can be quantitatively defined
with the Kullback-Leibler divergence (KLD) between models. There-
fore, given an initial model set Λ0, we propose to formulate dis-
criminative training of CDHMMs as the following constrained max-
imization problem:

Λ∗ = arg max
Λ

F(Λ) (2)

subject to D(Λ||Λ0) ≤ ρ2, (3)

where D(Λ || Λ0) is the KLD between Λ and Λ0, and ρ > 0 is a
pre-set constant to control the search range. The constraint in eq.(3)
intuitively specifies a trust region for objective function optimiza-
tion.

3. KLD CONSTRAINTS FOR CDHMMS

First of all, we consider to formulate the KLD-based model con-
straint in eq.(3) for different CDHMM parameters.

3.1. Constraint Decomposition for Gaussian Mixtures

Assume the whole model set Λ is composed of many physical states,
the overall KLD constraint in eq.(3) can be relaxed into many local
constraints for all individual state output distributions, e.g., D(bi||b0

i )
(1 ≤ i ≤ N). Based upon the inequality of KLD between two mix-
ture densities [12], we have:

D(bi||b0
i ) ≤ D(ωi||ω0

i ) +
K�

k=1

ωikD(N (μik,Σik)||N (μ0
ik,Σ0

ik))

(4)
where ωi = (ωi1, ωi2, · · · , ωiK)′ denotes all Gaussian mixture
weights.

We can further break down the above constraint into separate
independent constraints for Gaussian mean vectors, covariance ma-
trices, and weights, respectively:

D(μik || μ0
ik) = (μik − μ0

ik)′(Σ0
ik)−1(μik − μ0

ik) ≤ ρ2

D(Σik || Σ0
ik) = tr

	
(Σ0

ik)−1Σik



+ log |Σ−1

ik Σ0
ik| − D ≤ ρ2

D(ωi || ω0
i ) = ω′

i · (log ωi − log ω0
i ) ≤ ρ2

(5)

where D is the dimension of feature space.
Obviously, the constraints of Gaussian mean vectors follow quadratic

form which can be represented as:

(μik − μ0
ik)′(Σ0

ik)−1(μik − μ0
ik) ≡ Q(μik − μ0

ik,Σ0
ik) (6)

where Q(μ,Σ) stands for a standard quadratic form with a positive-
definite matrix Σ.

3.2. Quadratic Approximation for KLD Constraints

As we will show in section 4, for a quadratic form constraint, eq.(2)
can be easily solved. Based on the assumption that model parameters
stay in a close neighborhood of the original model, we can use Taylor
series to approximate the constraints of covariance and weights into
quadratic form as well.

In this study, we assume all Gaussian covariance matrices Σik

are diagonal: Σik = diag(σ2
ik1, · · · , σ2

ikD). For computational con-
venience, we represent each diagonal covariance matrix as a vector
in the logarithm domain: σik = (log σ2

ik1, · · · , log σ2
ikD)′. Then,

we have:

D(Σik||Σ0
ik) = tr[Σik(Σ0

ik)−1] + log |Σ−1
ik Σ0

ik| − D

=

D�
d=1

(eyikd − yikd − 1) ≈
D�

d=1

y2
ikd/2

=
1

2
(σik − σ0

ik)′(σik − σ0
ik)

≡ Q(σik − σ0
ik, I) (7)

where we denote yikd = log(σikd/σ0
ikd)2 and we have used the

second-order Taylor series to approximate exponential function as
ey − y − 1 ≈ y2/2.

For Gaussian weights ωi, we denote zik = ωik/ω0
ik. Adopting

the Taylor series approximation log z ≈ z − 1, we have:

D(ωi||ω̃i) = ω′
i · (log ωi − log ω̂i)

=

K�
k=1

ωik log zik ≈
K�

k=1

ωik(zik − 1)

= (ωi − ω0
i )

′(Π0
i )

−1(ωi − ω0
i )

≡ Q(ωi − ω0
i ,Π

0
i ) (8)
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where Π0
i = diag(ω0

i1, · · · , ω0
iK) is a K × K diagonal positive-

definite matrix. In additional to the above quadratic constraint, mix-
ture weights, ωi, must satisfy an affine constraint

�K
k=1 ωik = 1.

Note that we have explicitly applied the constraints
�K

k=1 ωik =�K
k=1 ω0

ik = 1 to derive the approximation in eq.(8).
In summary, we approximate the original KLD-based model

constraints by the following positive-definite quadratic constraints
for all of the model parameters:��
�

Q(μik − μ0
ik,Σ0

ik) ≤ ρ2 (1 ≤ i ≤ N) (1 ≤ k ≤ K)
Q(σik − σ0

ik, I) ≤ ρ2 (1 ≤ i ≤ N) (1 ≤ k ≤ K)
Q(ωi − ω0

i ,Π
0
i ) ≤ ρ2 (1 ≤ i ≤ N).

(9)

4. CONSTRAINED LINE SEARCH

In this section, we consider how to solve the constrained optimiza-
tion problem in eqs. (2) and (3) and derive our closed-form solution
of Gaussian mixtures update in line search.

Firstly, we calculate partial derivatives of the general DT objec-
tive function F(Λ) with respect to any CDHMM parameter λik.

∇F(λik) ≡ ∂

∂λik
F(Λ) =

1

R

R�
r=1

f ′
r · 1

κ
·
�

W∈Mr�
pκ(Xr|W ) · p(W )G(W, Wr)�

W ′∈Mr
pκ(Xr|W ′)p(W ′)G(W ′, Wr)� �	 


G(W,Wr|Xr)

−

pκ(Xr|W )p(W )�
W ′∈Mr

pκ(Xr|W ′)p(W ′)� �	 

p(W |Xr)

�
∂ log p(Xr|W )

∂λik
(10)

When the smoothing factor κ is sufficiently small (κ → 0) and the
models do not deviate too much in each iteration, we can assume
that all the three terms, i.e., f ′

r , G(W, Wr|Xr) and p(W |Xr), are
approximately constants. Accordingly, we have:

∇F(λik) =
1

R

R�
r=1

�
W∈Mr

Cr(W )
∂ log p(Xr|W )

∂λik
(11)

where we denote Cr(W ) =
f ′

r
κ
· [G(W, Wr|Xr)− p(W |Xr)] and

Cr(W ) is approximately regarded to be independent of model pa-
rameters. Furthermore, we have

∂ log p(Xr|W )

∂λik
=

T�
t=1

γW
ik (r, t) · ∂ log ωikN (xrt; μik,Σik)

∂λik

(12)
where γW

ik (r, t) denotes posterior probabilities collected for kth Gaus-
sian component in ith state of the composite HMM corresponding to
W based on Xr .

Next, if we substitute μik, σik or ωi in place of λik, we can de-
rive partial derivatives of F(Λ) w.r.t. Gaussian means μik, Gaussian
variances σik and Gaussian weight ωi as follows:

∇F(μik) = Σ−1
ik

�
Oik(x) −Oik(1)μik



∇F(σik) =

Σ−1
ik

2

�
Oik(x2) − O2

ik(x)

Oik(1)



−Oik(1) · μik

∇F(ωi) = Π−1
i · �Oi1(1), · · · ,Oik(1)

�′
(13)

where we denote Oik(g(x)) =
�

r

�
W Cr(W )

�
t γW

ik g(x).

Under the constraints in eq.(9), F(Λ) becomes a smooth func-
tion so that its unique critical point can be obtained by setting its
derivative to zero, i.e., ∇F(Λ) = 0. After solving the equations:
∇F(μik) = 0, ∇F(σik) = 0, we can easily derive the critical
point of the above smoothed objective for Gaussian mean and vari-
ances. For Gaussian weights, subject to the constraint of

�
k ωik =

1, we can use Lagrange multiplier to obtain the critical point. All
critical points are obtained as follows:

μ̂ik = Oik(x)/Oik(1)

σ̂ik = log
�Oik(1) · Oik(x2) −O2

ik(x)
�
/O2

ik(1)

ω̂i =
�
Oi1(1), · · · ,Oik(1)

�′��K
k=1Oik(1) (14)

However, the above critical point, λ̂, may be a maximum, a min-
imum, or a saddle point of F(Λ). It may not exist in some special
cases. We conceptually depict all possible situations in Figure 1. In

total, we may have five cases: i) λ̂ is maximum and it is located

inside the trust region , as shown in case 1; ii) λ̂ is maximum but

outside the trust region, as in case 2; iii) λ̂ is a minimum, as in case

3; iv) λ̂ is a saddle point, as shown in case 4; v) no critical point ex-

ists, as shown in case 5. Among these cases, even when λ̂ is indeed
a maximum, it may not be a good solution to eq.(2) since it may be
too far from the initial point so that the constraint in eq.(9) is not
satisfied, as in case 2.

Obviously, our ultimate goal is to optimize the objective func-
tion F(Λ) subject to the constraints given in eq.(9). In this work,
we propose to use a line search method to solve the constrained op-
timization problem. Firstly, we determine a search direction for the
line search. For cases 1, 2 and 3, it is reasonable to conduct line
search along the line segment joining the initial point, λ0, and the

calculated critical point, λ̂. However, for cases 4 and 5, it makes
more sense to conduct line search along the gradient direction of the
objective function calculated at the initial point, λ0. In summary, the
search direction d for the line search is selected as follows:

d =

�
λ̂ − λ0 λ̂ exists and is not a saddle point

∇F(λ0) otherwise.
(15)

Secondly, the problem in eq.(2) can be formulated as the fol-
lowing constrained line search problem to optimize an interpolation
weight ε along the pre-determined search direction d as:

ε∗ = arg max
ε

F [λ(ε)]

subject to D[λ(ε) || λ0] ≤ ρ2, (16)

where λ(ε) = λ0 + ε · d stands for model parameters linearly inter-
polated along the line specified in the direction of d.

As long as we adopt the quadratic constraints in eq.(9), the above
line search problem can be solved efficiently and the optimal inter-
polation weight ε∗ can be computed in a closed-form for all five
different cases in Figure 1 without any exhaustive search. For case
1, it is obvious that the optimal weight ε∗ = 1 since the computed

critical point, λ̂, is the solution to eq.(16). For all other cases, it is
clear that the optimal point is the intersection point of the search line
with the quadratic constraint surface. In other words, the optimal
interpolation weight ε∗ satisfies D(λ0 + ε∗ · d||λ0) = ρ2. After
substituting eq.(9) into it, we have

ε∗2 · Q(d, φ) = ρ2. (17)
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Therefore, ε∗ can be computed as ε∗ = ±ρ ·Q− 1
2 (d, φ). Obviously,

ε∗ = −ρ · Q− 1
2 (d, φ) for case 3 while ε∗ = ρ · Q− 1

2 (d, φ) for
cases 2, 4 and 5. The results are summarized in Table 1. In each
case, model parameter is updated as λ∗ = λ0 + ε∗ · d.

Fig. 1. Illustration of Constrained Line Search for maximizing the
objective function in different cases.
(© : λ0, the initial point; � : λ̂, the critical point; 	 : λ∗ = λ(ε∗),
the optimal point; — : contours of F ; · · · : the trust region; ← :
search direction; ��� : gradient direction)

Table 1. The CLS updating formula

case condition d ε∗

1 λ̂ is a maximum 1

Q(d, φ) ≤ ρ2

2 λ̂ is a maximum λ̂ − λ0 +ρ · Q− 1
2 (d, φ)

Q(d, φ) > ρ2

3 λ̂ is a minimum −ρ · Q− 1
2 (d, φ)

4 λ̂ is a saddle point ∇F(λ0) +ρ · Q− 1
2 (d, φ)

5 λ̂ doesn’t exist

4.1. Updating Gaussian Means

For Gaussian mean vectors, the critical point, μ̂ik, can be easily cal-
culated according to eq.(14). Now we need to examine conditions
under which the computed critical point is a maximum, minimum
or saddle point. From eq.(13), it is easy to show that ∇2F(μik) =
Oik(1) · Σ−1

ik . Since Σ−1
ik is always a positive definite matrix, μ̂ik

can not be a saddle point. It is a maximum or minimum point de-
pending on the sign of Oik(1). If Oik(1) > 0, it is a maximum
point; Otherwise it is a minimum point. If Oik(1) = 0, the objective
function, F(Λ), degenerates into a linear function of μik and the
critical point, μ̂ik, does not exist.

Furthermore, we can determine whether the critical point, μ̂ik,
satisfies the constraint in eq.(9) by checking Q(μ̂ik − μ0

ik,Σ0
ik): If

Q(μ̂ik − μ0
ik,Σ0

ik) < ρ2, μ̂ik locates inside the trust region, as in
case 1; Otherwise, it locates outside the trust region as in case 2.

In summary, if Oik(1) > 0 and Q(μ̂ik − μ0
ik,Σ0

ik) < ρ2,
update as in case 1; If Oik(1) > 0 and Q(μ̂ik − μ0

ik,Σ0
ik) ≥ ρ2,

update as in case 2; If Oik(1) < 0, update as in case 3; If Oik(1) =
0, update as in case 5.

Fig. 2. Illustration of solving CLS problems for weight vectors by
using the projected gradient

4.2. Updating Gaussian Variances

For Gaussian variances, the critical point, σ̂ik, can be calculated
according to eq.(14). We can see that σ̂ik exists only when the con-
dition Oik(1) ·Oik(x2)−O2

ik(x) > 0 holds. If Oik(1) ·Oik(x2)−
O2

ik(x) < 0, we have to conduct line search along gradient direction
as in case 5 since the critical point, σ̂ik, does not exist.

Furthermore, based on eq.(13), it is straightforward to show that
∇2F(σik) = −0.5 · Oik(1) ·Σ−1

ik · exp(σ̂ik). If the critical point,
σ̂ik, exist, i.e., Oik(1)Oik(x2) − O2

ik(x) > 0, we can easily de-
rive that Oik(1) > 0. As the result, the second partial derivative
∇2F(σik) is always negative-definite. Therefore, cases 3 and 4
never happen for Gaussian variances.

In summary, if Oik(1)Oik(x2) > O2
ik(x) and Q(σ̂ik−σ0

ik, I) <
ρ2, update as in case 1; If Oik(1)Oik(x2) > O2

ik(x) and Q(σ̂ik −
σ0

ik, I) ≥ ρ2, update as in case 2; If Oik(1)Oik(x2) ≤ O2
ik(x),

update as in case 5.

4.3. Updating Mixture Weights

For Gaussian weights ωi = (ωi1, ωi2, · · · , ωiK)′, we can obtain
the critical point ω̂i shown in eq.(14), subject to the constraint of�K

k=1 ωik = 1. Also, it is straightforward to verify that ω̂i is a
maximum when Oik(1) > 0 for all k, as in case 1 or 2; And ω̂i is a
minimum when Oik(1) < 0 for all k, as in case 3. Otherwise, ω̂i is
neither maximum nor minimum. In this case, we follow the gradient
to update ωi. To ensure that the weights remain a valid discrete
probability distribution, we need project the gradient, i.e. ∇F(ω0

i ),

onto the hyperplane
�K

k=1 ωik = 1, as shown in Figure 2:

∇F ||(ω0
i ) = ∇F(ω0

i ) −
�
∇F(ω0

i ) · u
�
u (18)

where u = ( 1√
K

, · · · , 1√
K

)′ is the normal vector of the hyperplane.

In summary, if Oik(1) > 0 and Q(ω̂i − ω0
i ,Π

0
i ) < ρ2, update

as in case 1; If Oik(1) > 0 and Q(ω̂i − ω0
i ,Π

0
i ) ≥ ρ2, update as

in case 2; If Oik(1) < 0, update as in case 3; Otherwise, update as
in case 5 along the projected gradient in eq.(18). In practice, we also
need check the boundary condition of 0 < ωik < 1(1 ≤ k ≤ K) to
ensure a valid discrete probability distribution.
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5. EXPERIMENTS

In order to verify the effectiveness of the proposed CLS optimization
method, we have evaluated it on several benchmark speech recogni-
tion tasks, including: connected digit string recognition using the
TIDIGITS database, large vocabulary continuous speech recogni-
tion using the Switchboard database. In the experiments, the CLS
method is compared with the popular EBW method for optimizing
the MMI and other DT criteria, such as MPE and MD. In our EBW
implementation, following [8], we use kernel dependent smoothing
factors which are set to be twice of the corresponding denominator
occupancy. When we use EBW for the MPE training, we also use
I-smoothing [8] with factor τ set to be 100 during each iteration. In
our experiments, the CLS algorithm is operated iteratively. In each
iteration, the known models are set as the initial model set, Λ0, in
the constraint in eq.(9) and then model parameters are updated ac-
cording to the CLS formula in section 4. The constant ρ2 is set to
0.1/n in the nth iteration.

When we evaluate the EBW algorithm, we update all the model
parameters (including mean, variance and weights). When we test
the CLS algorithm, we compare performance of updating Gaussian
means only with that of updating all the model parameters altogether.

5.1. TIDIGITS

The TIDIGITS database contains utterances from a total of 326 speak-
ers (111 men, 114 women and 101 children). In our experiments, we
have used all data from adults and children, which includes 12,549
training utterances and 12,547 testing utterances. The acoustic fea-
tures used are 39-dimension MFCCs. The vocabulary is composed
of 11 digits of ‘zero’ to ‘nine’, plus ‘oh’. The length of digit strings
varies from 1 to 7 digits. Each digit is modeled by a 10-state, left-
to-right, whole-word Gaussian mixture CDHMMs. The best ML-
trained model consists of 114 tied states with 6 Gaussians per state.
In the experiment, the best ML model is used as the seed model for
discriminative training, in either EBW or CLS method.

In Fig. 3, we compare learning curves of CLS and EBW meth-
ods in the MMI training. The results clearly show that the proposed
CLS method yields much better performance than the EBW method.
Firstly, the CLS algorithm shows faster convergence speed than the
conventional EBW method. Secondly, the CLS method achieves
much lower recognition error rate. For CLS, word error rate de-
creases from 1.16% to 0.42%, which represents about 63.8% relative
error reduction. On the other hand, the EBW method achieves only
44% relative error reduction.

From Fig. 3, we observe that the benefit of updating variances
and weights is marginal as long as the means are updated properly.

In addtion, we also compare CLS with EBW in optimizing the
MD criterion, which define errors with higher resolution. Here we
didn’t use MPE because it cannot be directly applied to whole word
models. The results are shown in Table 2, from which we can see
that the CLS method still outperforms the EBW method. In the MD
training, the CLS method achieves 0.4% word error rate which is
slightly better than 0.44% in the EBW method.

5.2. Switchboard

In the Switchboard task, we have used two different training sets:
the mini-train and the full h5train00 set, consisting of 18 and 265
hours of speech data, respectively. The acoustic features used are
39-dimension PLPs. Eval2000 set, which contains 1,831 utterances,
was used as the evaluation set. Context dependent tri-phone HMMs
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Fig. 3. WER Comparison of different optimization methods in MMI
training on the TIDIGITS task.

Table 2. Summary of recognition performance in TIDIGITS by us-
ing EBW or CLS optimization method for MMI and MD criteria.

Criterion Optimization WER (in %)

ML BW 1.16

MMI EBW 0.65
CLS 0.42

MD EBW 0.44
CLS 0.40

are used in this experiment. Tri-gram language model was used in
testing, and uni-gram language model was used in training. The
NIST scoring software was used to evaluate word error rates.

On mini-train task, the baseline ML models consists of 1500
physical states with 12 Gaussian kernels per state, while on h5train00
task, the baseline ML models consists of 6000 physical states with
16 Gaussian kernels per state.

We first compare the CLS method with the EBW method in
MMI training, as shown in 4 and 5. The results show again that
the proposed method achieves better word accuracy and more stable
convergence than EBW method on both mini-train and h5train00
training set. Compared with ML baselines, the word error rate de-
creases from 40.8% to 37.9%, or a 7.1% relative error reduction for
the mini-train set, and from 31.7% to 28.9%, or a 8.8% relative error
reduction for the h5train00 set, respectively, from the best MLE-
trained models.

It is remarkable that on the Switchboard task, the benefit of up-
dating variances and weights is significant. By using the proposed
CLS algorithm, we can effectively adjust all the model parameters
in the sense of discriminative training.

At last, we also compare CLS with EBW in optimizing the MPE
criterion on the full set of switchboard task. The results are summa-
rized in Table 3. Again, the CLS is demonstrated to be advantageous
over the EBW in optimizing MPE criterion as well.

6. CONCLUSIONS

In this paper, constrained line search (CLS), has been proposed as
discriminative training algorithm in speech recognition. The pro-

294



0 1 2 3 4 5 6
37.5

38

38.5

39

39.5

40

40.5

41
Switchboard (MMI; training set: mini train; test set: eval2000)

Iteration

W
or

d 
E

rr
or

 R
at

e 
(%

)
EBW (update all)
CLS (update mean)
CLS (update all)

Fig. 4. Comparison of word error rates of different optimization
methods on the Switchboard eval2000 test set, using mini-train train-
ing set, based on MMI criterion.
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Fig. 5. WER Comparison of different optimization methods in MMI
training on the Switchboard h5train00 task.

posed CLS method is general enough to optimize various popular
objective functions in discriminative training. In this work, discrim-
inative training of CDHMMs is first formulated as a constrained
optimization problem, where a constraint is imposed on the KLD
between models, which guarantees an equalized updating process
across all the parameters in the model set. Based upon some ap-
proximations on the KLD constraint, closed-form solutions can be
easily derived for updating all CDHMM parameters. We examined
the proposed CLS methods on several standard speech recognition
tasks, from small vocabulary digit string recognition to large vocab-
ulary continuous speech recognition. Experimental results clearly
show that our method can effectively update all model parameters
of Gaussian mixture CDHMM, and it consistently outperforms the
popular EBW method.

Table 3. Summary of recognition performance (WER in %) in
Switchboard by using EBW or CLS optimization method for MMI
and MPE training criteria.

Criterion Optimization mini-train full h5train00
ML BW 40.8 31.7

MMI EBW 38.5 29.6
CLS 37.9 28.9

MPE EBW w/ I-smooting 38.0 28.7
CLS 37.7 28.4
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