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ABSTRACT

This paper considers training data selection for
discriminative training of acoustic models for broadcast
news speech recognition. Three novel data selection
approaches were proposed. First, the average phone
accuracy over all hypothesized word sequences in the word
lattice of a training utterance was utilized for utterance-
level data selection. Second, phone-level data selection
based on the difference between the expected accuracy of a
phone arc and the average phone accuracy of the word
lattice was investigated. Finally, frame-level data selection
based on the normalized frame-level entropy of Gaussian
posterior probabilities obtained from the word lattice was
explored. The underlying characteristics of the presented
approaches were extensively investigated and their
performance was verified by comparison with the standard
discriminative training approaches. Experiments conducted
on the Mandarin broadcast news collected in Taiwan shown
that both phone- and frame-level data selection could
achieve slight but consistent improvements over the
baseline systems at lower training iterations.

Index Terms—speech recognition, discriminative training,
acoustic models, data selection, entropy

1. INTRODUCTION

Discriminative training algorithms, such as the maximum
mutual information (MMI) training [1, 2] and the
minimum phone error (MPE) training [3, 4], aiming at
estimating more accurate acoustic models, have
continuously been an active focus of much research in a
wide variety of large vocabulary continuous speech
recognition (LVCSR) tasks in the past few years.
Discriminative training was developed in an attempt to
correctly discriminate the recognition hypotheses for the
best recognition results rather than just to fit the model
distributions. In contrast to conventional maximum
likelihood (ML) training, discriminative training considers
not only the correct (or reference) transcript of the training
utterance, but also the competing hypotheses that are often
obtained by performing LVCSR on the utterance.

On the other hand, owing to the availability of huge
quantities of speech data, such as that in broadcast radio,
television programs, lecture notes, and so on, it is expected
that we can utilize more training data than before to reduce
recognition errors. However, manual transcripts may not
always accompany these speech data, and thus how to
obtain reliable automatic transcriptions for these speech
data for unsupervised (or lightly supervised) discriminative
training of acoustic models would become another
important issue. Most of the previous research work on
unsupervised discriminative training merely used word
posterior probability to filter out the unreliable recognized
transcriptions in either utterance-, or word-, or frame-levels
[5, 6].

Recently, the large or soft margin classifiers, motivated
by the support vector machine (SVM) successfully
developed in the machine learning community, have been
introduced in the field of speech recognition and
demonstrated with good results in small-vocabulary
recognition tasks [7, 8]. The concept of margin-based
methods is to select useful samples, i.e., the support vectors,
to train the classifiers for better model discrimination and
generalization. The large margin hidden Markov model
(HMM) [7] treated each speech utterance as a sample and
used a discriminant function to select positive samples
falling in a predefined margin for acoustic model training;
while in [8], the authors performed both frame- and
utterance-level data selection, for which label matching of
the reference and recognized word sequences of the training
utterance was first used to identify a candidate set of frame
samples and utterance-level data selection was then applied
based on the average frame-level log-likelihood ratios
obtained from these frames.

With these observations in mind, in this paper we
investigated three data selection approaches for
discriminative training of acoustic models for LVCSR. First,
the average phone accuracy over all hypothesized word
sequences in the word lattice of the training utterance was
utilized for utterance-level data selection for MPE training.
Second, phone-level data selection based on the difference
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between the expected accuracy of a phone arc and the
average phone accuracy of the word lattice was investigated
for MPE training. Finally, frame-level data selection based
on the normalized frame-level entropy of Gaussian
posterior probabilities obtained from the word lattice was
explored for both MMI and MPE training.

The rest of this paper is organized as follows. Section 2
briefly describes two popular discriminative training
algorithms that were used in this paper. The proposed data
selection approaches are elucidated in Section 3. The
experimental settings and the corresponding results are
described in Sections 4 and 5, respectively. Finally,
conclusions are drawn in Section 6.

2. DISCRIMINATIVE TRAINING APPROACHES

2.1. Basic MMI Formulation

Given a training set of R observation vector sequences
{ }Rr OOO ,..,,..,1=O , the MMI criterion for acoustic model

training aims to maximize the posterior probability of these
observation vector sequences using the following objective
function:

,)|(log)( 1∑= =
R
r rrMMI OWPF λ (1)

where rW is the corresponding correct transcription of rO .
MMI attempts not only to make the correct hypothesis more
probable, but also to make incorrect hypotheses less
probable at the same time. More detailed derivations of the
MMI training formulas can be found in [2].

2.2. Basic MPE Formulation

The MPE criterion for acoustic model training aims to
minimize the expected phone errors of these observation
vector sequences using the following objective function:

,)()|()( 1 W∑ ∑= = ∈
R
r W rMPE r

WRawAccOWPF λ (2)

where rW is the corresponding word lattice of rO ; W is
one of the hypothesized word sequences in rW ; )|( rOWP
is the posterior probability of hypothesis W given the
observation rO ; )(WRawAcc is the “raw phone accuracy” of
W in comparison with the corresponding reference
transcript rW , which is typically computed as the sum of
the phone accuracy measures of all phone hypotheses in W .
The objective function in Eq. (2) can be maximized by
applying the Extended Baum-Welch algorithm to update
the mean qmdμ and variance 2

qmdσ of each dimension d of
the m-th Gaussian mixture component of a phone arc q in
the word lattice rW using the following equations:
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where r
avgc is the average phone accuracy over all

hypothesized word sequences in the word lattice; r
qc is the

expected phone accuracy over all hypothesized word
sequences containing phone arc q ; ( )dot is the observation
vector component at time t ; qs and qe are the start and
end times of phone arc q ; )(tr

qmγ are the posterior
probability for Gaussian mixture component m of phone
arc q at time t ; num

qmγ , ( )Onum
qmdθ and ( )2Onum

qmdθ are the
accumulated training statistics for mixture component m
of phone arc q whose r

qc is larger than r
avgc , and vice

versa for den
qmγ , ( )Oden

qmdθ and ( )2Oden
qmdθ ; qmdμ and 2

qmdσ are
respectively the mean and variance estimated in the
previous iteration; and D is a constant used to ensure the
positive variance values. On the other hand, the calculation
of r

avgc and r
qc is actually based on the phone accuracies of

phone arcs in the word lattice. For example, the raw phone
accuracy for each word sequence W in the lattice can be
calculated in terms of the sum of the accuracy of each
phone contained in W :

,)()( ∑ ∈
=

Wq
qPhoneAccWRawAcc (10)

where )(qPhoneAcc is the raw phone accuracy for a phone
arc q in W , which can be defined as follows:
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where rZ is the set of phone labels in the corresponding
reference transcript, and ),( qze j is the overlap length in
time for a phone label jz in rZ and a hypothesized phone
arc q in W , )( jzl is the length in time for jz . More
detailed derivations of the MPE training formulas also can
be found in [4].

3. TRAINING DATA SELECTION APPROACHES

3.1. Utterance Selection

Training utterance selection based on the log-likelihood
ratio has been investigated previously, such as that in [10].
In this paper, we attempted an alterative approach by
conducting training utterance selection directly on the error
rate domain for MPE training. The word lattice (or
hypothesized space) rW of a training utterance r , which
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offers the competing information for the training objective
function, plays an important role in discriminative training.
It can help in filtering out the training utterance whose
hypothesized space is devoid of discrimination for
discriminative training. For example, in MPE training, the
normalized average phone accuracy r

avgĉ of each training
utterance r , obtained by dividing the average phone
accuracy r

avgc by the phone number of the reference
transcription of r , to some extent reveals the confusedness
of the hypothesis space rW . The utterance with a too high
normalized average phone accuracy implies that less
competing information might be provided by it (or its
hypothesis space), while with a too low normalized average
phone accuracy implies that it might probably be a
damaged training sample (or an outlier) and thus can be
left out. Inspired by this, we conducted training utterance
selection based on the normalized average phone accuracy

r
avgĉ . We first estimated the mean of r

avgĉ among all training
utterances, denoted as avgĉ , and then used it together with

r
avgĉ to select training utterance that falls in the interval

defined by the following equation for MPE training:
,ˆˆˆ δδ +≤≤− avg

r
avgavg ccc (12)

where δ is a predefined threshold value.

3.2. Phone Selection

In this paper, we proposed a phone-level data selection
approach for MPE training that was conducted as well on
the error rate domain. As we know, in MPE training, the
average phone accuracy r

avgc is taken as a decision
boundary for accumulating the training statistics of a phone
arc q into the numerator or denominator terms, as those
illustrated in Eq. (5)-(9). Thus, we can impose a margin on

r
avgc in order to select more critical phone arcs which are

relatively close to the decision boundary on the error rate
domain. As a result, the final auxiliary objective function
for MPE training can be defined as:
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where )(•N is a Gaussian distribution; )(•I is an indication
function; the positive parameters α and β form the
margin for training data selection; κ is a normalization
factor that makes ( )r

avg
r
q cc −κ approximately range from -1

to 1; rA is the set of phone arcs that fall in the margin
[ ]βα,− defined in the phone accuracy rate domain. Only
those phone arcs in rA would contribute their accumulated
statistics for MPE training.

3.3. Frame Selection

We also proposed the use of the entropy information to
select the frame-level training statistics for both MMI and

MPE training. The normalized entropy of a frame sample t
of a given training utterance r can be defined as:
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where )(tr
qmγ is the posterior probability for mixture

component m of phone arc q at frame t , which is
calculated from the word lattice rW ; )(tN is the total
Gaussian mixtures which have nonzero posterior
probabilities at frame t  ( 0)( >tr

qmγ ); and the value of
)(tEr will range from zero to one. Here we use a

hypothetical example of binary classification to illustrate
the relationship between the decision boundary and the
normalized entropy. As shown in Figure 1, the decision
boundary constructed based on the posterior probability of
the class 1C can discriminate most of the samples
belonging to 1C (depicted as squares) from that belonging
to 2C (depicted as circles). In general, the decision
boundary is at the value of 0.5 for the posterior probability
of 1C and the class posterior probabilities can be used to
calculate the normalized entropies of the samples. Thus, the
samples (solid circles or squares) located near around the
decision boundary will have normalized entropies close to
one, while those (hollow circles or squares) located far
away the decision boundary will have normalized entropies
close to zero.

For the speech recognition task, two extreme cases are
considered as follows. First, if the normalized entropy
measure of a frame sample t is close to zero, it means that
the corresponding frame-level posterior probabilities will be
dominated by one specific mixture component. From the
viewpoint of frame sample classification using posterior
probabilities, the difference of probabilities between the true
(correct) mixture component and the competing (incorrect)
ones is larger. That is, the frame sample t is actually
located far from the decision boundary. On the other hand,
if the normalized entropy measure is close to one, it means

1C
Decision Boundary

Threshold

2C

Normalized Entropy

Posterior Probability of

Thr

10

0 1

1C

Figure 1. A hypothetical example of binary classification
illustrating the relationship between the decision boundary
and the normalized entropy.
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that the posterior probabilities of mixture components tend 
to be uniformly distributed. Then, the frame sample t  is 
instead located nearly around the decision boundary. In a 
word, the normalized entropy measure to some extent can 
define a kind of margin for the selection of useful training 
frame samples. Therefore, we may take advantage of the 
normalized entropy measure to make the MPE training 
algorithm focus much more on the training statistics of 
those frame samples that center nearly around the decision 
boundary for better sample discrimination and model 
generalization [7, 9].  

A straightforward implementation of frame-level 
training data selection is to define a threshold of the 
normalized entropy measure and then completely discard 
the training statistics of those frame samples whose 
normalized entropy values fall below it. This can be viewed 
as a “hard version” of data selection. Another “soft version” 
of data selection is to emphasize the training statistics of 
those frame samples that are located nearly around the 
decision boundary according to their normalized entropy 
values [11]. Figure 2 shows the relationship between the 
normalized entropy and the number of training speech 
frame samples used in this study. For example, the leftmost 
vertical bar denotes the number of training speech frame 
samples whose normalized entropy values are in the range 
of 0 to 0.05. The large number of frame samples belonging 
to the leftmost vertical bar also reveals that most of the 
training frame samples in fact are located far from the 
decision boundary and thus can be discarded if the 
threshold is appropriately set. In this paper, only the 
experimental results on the “hard version” of frame-level 
data selection were reported. 
 

4. BROADCAST NEWS SYSTEM 

The large vocabulary continuous speech recognition system 
[12] as well as the experimental speech and language data 
used in this paper will be described in this section. 

4.1. Front-End Signal Processing 

The front-end processing was conducted with the 
HLDA(Heteroscedastic Linear Discriminant Analysis)-
based data-driven Mel-frequency feature extraction 
approach and then processed by MLLT (Maximum 
Likelihood Linear Transformation) for feature de-
correlation.  

4.2. Speech Corpus and Acoustic Model Training 

The speech corpus consists of about 200 hours of MATBN 
Mandarin television news (Mandarin Across Taiwan 
Broadcast News) [13], which were collected by Academia 
Sinica and Public Television Service Foundation of Taiwan 
during November 2001 and April 2003. All the 200 hours 
of speech data are equipped with corresponding 

orthographic transcripts, in which about 25 hours of 
gender-balanced speech data of the field reporters collected 
during November 2001 to December 2002 were used to 
bootstrap the acoustic training. Another set of 1.5 hour 
speech data of the field reporters collected within 2003 
were reserved for testing. On the other hand, the acoustic 
models chosen here for speech recognition are 112 right-
context-dependent INITIAL’s and 38 context-independent 
FINAL’s. 

The acoustic models were first trained at optimum 
settings using the ML criterion as well as the Baum-Welch 
training algorithm. The MMI-based and MPE-based 
discriminative training approaches were further applied to 
those acoustic models previously trained by the ML 
criterion. Unigram language model constraints were used in 
accumulating the training statistics from the word lattices 
for discriminative training. For the MPE training, both 
silence and short pause labels are also involved in the 
calculation of the accuracies of the hypothesized word 
sequences. 

4.3. Lexicon and N-gram Language Modeling 

The recognition lexicon consists of 72K words. The 
language models used in this paper consist of trigram and 
bigram models, which were estimated based on the ML 
criterion and using a text corpus consisting of 170 million 
Chinese characters collected from Central News Agency 
(CNA) in 2001 and 2002 (the Chinese Gigaword Corpus 
released by LDC). The n-gram language models were 
trained using the SRI Language Modeling Toolkit (SRILM). 

4.4. Speech Recognition 

The speech recognizer was implemented with a left-to-right 
frame-synchronous Viterbi tree search as well as a lexical 
prefix tree organization of the lexicon. The recognition 
hypotheses were organized into a word lattice for further 
language model rescoring. In this study, the word bigram 
language model was used in the tree search procedure while 
the trigram language model was used in the word lattice 
rescoring procedure. 
 

)10( 6× )10( 6×

 
Figure 2. A plot of the relationship between the normalized 
entropy and the number of training speech frame samples. 
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5. EXPERIMENTS RESULTS

As it is known that there are no explicit marks, such as the
spaces or blanks, separating words in the Chinese language,
the Chinese language thus often suffers from the word
tokenization problems. The performance evaluation metric
used in Mandarin speech recognition usually is the
character error rate (CER) rather than the word error rate
(WER).

5.1. Baseline Experimental Results

The acoustic models were trained with 24.5 hours of speech
utterances. The MMI and MPE training both started with
the acoustic models trained by 10 iterations of the ML
training, and used the information contained in the
associated word lattices of training utterances to accumulate
the necessary statistics for model training. The ML-trained
acoustic models yields a CER of 23.64% on the test set,
while the original MMI and MPE training indeed can
provide a great boost to the acoustic models initially trained
by ML consistently at all training iterations, as depicted in
Figures 3 and 4. The total frame number used in the
original MMI and MPE training is about 9 millions (24.5
hrs). In the following experiments, for fair comparison
between our proposed methods and the baseline MMI and
MPE training, the τ values of I-smoothing [3, 4] are set to
be the same as that used in the baseline MMI and MPE
training, respectively.

5.2. Experiments on Proposed Methods

The recognition results for our proposed methods,
including utterance-, phone- and frame-level training data
selection, are depicted in Figures 3 and 4, respectively. We
first evaluate the performance of the utterance- and phone-
level selection methods for MPE training, denoted as
MPE+US and MPE+PS, respectively. As can be seen from
Figure 3, MPE+PS outperforms the baseline MPE at most
of the training iterations. Thus, our argument that imposing
margin based on the average phone accuracy (or in the
error rate domain) to select confused samples for better
discriminative training is tenable. On the other hand,
MPE+US is only slightly better than the baseline MPE,
though the difference between them is almost negligible at
the lower training iterations. However, the training samples
used in the training process can be reduced by at least an
amount of 10% without any loss of performance in
recognition.

We then evaluate the effectiveness of frame-level
training data selection for MMI and MPE training, denoted
as MMI+FS and MPE+FS, respectively. The corresponding
results are shown in Figure 4. The threshold value Thr of
the frame-level normalized entropy-based training data
selection method is set to be 0.05, and the number of
training frame samples used is about 4 millions (45.88% of

the total training frame samples). As shown by the
preliminary experimental results in Figure 4, frame-level
data selection will improve the performance when the
acoustic models are trained with lower iterations. However,
when the acoustic models are trained with higher iterations
(e.g., 9 and 10 iterations), the performance of frame-level
data selection (MPE+FS) is slightly worse than the original
MPE training. One possible reason for this is that the data
selection method to some extent suffers from the data
sparseness problem which would make the acoustic models
over-trained. Therefore, we alternatively attempt to not only
apply the frame-level data selection method for MPE
training but meanwhile also decrease the threshold value
Thr as the iteration increases (denoted as MPE+FSv), for
the purpose of obtaining more training statistics and
alleviating the over-training problem. The corresponding
results of MPE+FSv are depicted in Figure 4, and they
signify the superiority over the baseline MPE. On the other
hand, we also apply random frame-level training sample
selection to both MMI and MPE (denoted as MMI+R and
MPE+R, respectively), which randomly selects about 45%
of the frame-level training samples for MMI and MPE
training at each training iteration, and the corresponding
results are depicted in Figure 4. The selecting capacity of

Figure 3. The best experimental results on proposed
methods, in comparison with standard MPE training.
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Figure 4. Experimental results on frame-level data
selection and random selection approach, in comparison
with standard MMI and MPE training.
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our proposed frame-level data selection method can be 
verified again by comparison with random selection. The 
above results indeed justify our postulation that with the 
proper integration of data selection into the acoustic model 
training process, we can make the discriminative training 
algorithms focus much more on the useful training samples 
to achieve a better discrimination capability on the new test 
set. 

Significance tests based on the standard NIST 
MAPSSWE [14] also have been conducted on the speech 
recognition results of the improved methods presented in 
this paper (for the acoustic models trained at all iterations). 
Due to the length constraint, only the results using frame-
level data selection are shown in Table 1. They indicate the 
statistical significance of CER improvements (with p-value 
<0.001) over the baseline MMI and MPE training when 
MMI+FS and MPE+FS, respectively, were exploited at the 
lower training iterations. 

In the meantime, we are extensively experimenting on 
the ways to combine the proposed data selection methods 
together for MPE training, including trying different 
training settings, investigating the joint training of feature 
transformation and acoustic models, etc. 
 

6. CONCLUSIONS 

In this paper, we have studied utterance and phone 
selection for MPE training, and frame-level selection for 
both MMI and MPE training of acoustic models for LVCSR. 
Promising and encouraging results on the recognition of 
Mandarin broadcast news speech have been initially 
demonstrated. More in-deep investigation of the proposed 
training data selection methods, as well as their integration 
with other discriminative acoustic model training 
algorithms, is currently undertaken. Meanwhile, we are 
also investigating the possibility of applying the proposed 
training data selection approaches to unsupervised 
discriminative training tasks. 
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Table 1. The speech recognition results (CERs) for the 
proposed improved approaches. 

 MMI+FS MPE+FSv 
Iteration CER(%) p-value CER(%) p-value 

1 23.28 <0.001 22.43 <0.001 
2 22.89 <0.001 21.8 <0.001 
3 22.58 <0.001 21.45 <0.001 
4 22.28 <0.001 21.34 <0.001 
5 22.16 <0.001 20.94 <0.001 
6 22.10 <0.001 20.82 <0.001 
7 22.08 <0.001 20.73 <0.001 
8 21.88 - 20.74 <0.001 
9 21.81 - 20.65 <0.001 
10 21.75 - 20.63 - 
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