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ABSTRACT

The Bayes decision theory [1] is the foundation of the classical sta-
tistical pattern recognition approach. For most of pattern recognition
problems, the Bayes decision theory is employed assuming that the
system performance metric is defined as the simple error counting,
which assigns identical cost to each recognition error. However, this
prevalent performance metric is not desirable in many practical ap-
plications. For example, the cost of “recognition” error is required
to be differentiated in keyword spotting systems. In this paper, we
propose an extended framework for the speech recognition problem
with non-uniform classification/recognition error cost. As the sys-
tem performance metric, the recognition error is weighted based on
the task objective. The Bayes decision theory is employed according
to this performance metric and the decision rule with a non-uniform
error cost function is derived. We argue that the minimum classifi-
cation error (MCE) method, after appropriate generalization, is the
most suitable training algorithm for the “optimal” classifier design to
minimize the weighted error rate. We formulate the weighted MCE
(W-MCE) algorithm based on the conventional MCE infrastructure
by integrating the error cost and the recognition error count into
one objective function. In the context of automatic speech recogni-
tion (ASR), we present a variety of training scenarios and weighting
strategies under this extended framework. The experimental demon-
stration for large vocabulary continuous speech recognition is pro-
vided to support the effectiveness of our approach.

Index Terms: non-uniform error cost, weighted MCE

1. INTRODUCTION

The Bayes decision theory [1] is the foundation of statistical pat-
tern recognition. This theory can be summarized as follows. First,
the performance of a pattern recognizer(i.e., how good the recog-
nizer’s decision of class identity is) is to be measured in statistical
terms, meaning that we are interested in the system’s expected per-
formance, not the performance towards any particular pattern. Sec-
ond, the recognizer’s decision or recognition policy has to be formed
based on full knowledge of the probability distribution of each and
every class. Third, the recognition decisions are made so that the
expected loss over the entire data set is minimized. Let us assume
that for an arbitrary observation X , a conditional loss for classifying
X into a class i event can be defined as [1]

R(Ci|X) =
M∑

j=1

eijP (Cj |X) (1)

where P (Cj |X) is the a posteriori probability. The error cost func-
tion can be denoted as an M × M matrix with entries eij where
i, j ∈ IM , signifying the cost in identifying a pattern from the jth

class as one of the ith class. Note that if eij = 0, for i = j and
eij = 1, for i �= j, the cost function is called uniform and leads to
simple error counting, which is one of the most intuitive and preva-
lent performance measures in pattern recognition. Hence, the ex-
pected loss function is written as

L =

∫
R(C(X)|X)p(X)dX (2)

where C(X) is the decision function. It is obvious that if for every
X , the classifier satisfies

R(C(X)|X) = min
i

R(Ci|X) (3)

the expected loss in (2) will be minimized. If we impose the assump-
tion that the error loss function is uniform (i.e., eij = 0, for i = j
and eij = 1, for i �= j), the conditional loss becomes

R(Ci|X) =
∑
i�=j

P (Cj |X) = 1 − P (Ci|X) (4)

This leads to the maximum a posteriori (MAP) decision rule [1], in
which the decision function is defined as

C(X) = i if P (Ci|X) = max
j

P (Cj |X) (5)

The minimum error rate achieved by the MAP rule is called the
Bayes risk. Based on (5), the minimum error rate can be achieved
if we can estimate P (Cj |X) precisely, which transforms the clas-
sifier design problem into a distribution estimation problem. The
maximum likelihood (ML) training criterion [1] and the expectation-
maximization (EM) algorithm [1] are usually employed in the distri-
bution estimation.

The classical pattern recognition approach has been applied to
many practical applications such as automatic speech recognition
(ASR). However, its optimality is often compromised due to several
substantial limitations rooted in the fundamental assumptions. One
important issue is that the MAP rule can not be effectively imple-
mented due to lack of full knowledge of the data distribution. Further
more, the data size is normally insufficient for reliable parameter es-
timation even when the correct distribution form is given. Hence, the
Bayes risk is generally unachievable and distribution estimation can
rarely lead to the optimal classifier design. This fact motivated the
minimum classification error (MCE) training method [2] [3] which
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aims at minimizing the empirical error rate directly. The other lim-
itation of the classical pattern recognition approach comes from the
fundamental assumption of the performance metric. By default, the
error cost function in the classical performance metric is uniform;
i.e., eij = 0, for i = j and eij = 1, for i �= j. However, to measure
a recognizer’s performance, the assumption of identical error cost
is not always reasonable in practice. In a variety of ASR applica-
tions, some errors should be considered more critical than others in
terms of the system objective. For example, a keyword spotting sys-
tem may consider a recognition error of a “key” word unacceptable,
while errors of functional words such as “a” or “the” may not be
considered consequential. Another example is the composite system
of speech recognition and understanding. The speech understanding
system does not need a perfect transcription of the whole utterance.
The performance is affected seriously by the correctness of some es-
sential words/phones. In these cases, the differentiation of the signif-
icance of the recognition error is necessary and a nonuniform error
cost function becomes appropriate.

With the change in the performance metric to a non-uniform
cost, the use of the Bayes decision theory needs to be revised ac-
cordingly. The objective of the classifier design is still to minimize
the expected loss in (2) via Eq.(3). However, since eij is no longer
uniform, the MAP rule is not applicable and the decision rule is re-
stated as

C(X) = Ci = arg min
i

M∑
j=1

eijP (Cj |X) (6)

From (6), we see that the right decisions are made to minimize a
weighted combination of the error probabilities instead of simply
maximizing the a posteriori probability. If we revisit the rationale
of the formulation of pattern recognition problems, the conditional
loss of (1) which consists of the class-dependent error loss function
and the a posteriori probability is the root of the derivation of any
specific decision rule. The MAP rule imposes a strong constraint of
uniform error loss function and highly relies on the precise estima-
tion of the a posteriori probability. The decision rule of (6), on the
contrary, relaxes the constraint of the error loss function and trans-
forms the classifier design into an error cost minimization problem
instead of a distribution estimation problem. Therefore, a training
algorithm that can minimize the weighted error rate effectively is
needed.

As pointed out by [2], the distribution estimation methods can
not really achieve the MAP rule due to lack of knowledge of the
distribution forms, not to mention to be suitable for the generalized
decision rule of (6). The discriminative training (DT) methods [4] re-
cently arose as an important family of alternative training methods,
especially for speech recognition problems. Conventionally, there
are three types of popular training algorithms in ASR. They are: the
maximum mutual information (MMI) [5], the minimum phone/word
error (MPE/MWE) [6] and the minimum classification error (MCE)
method [2][3]. The MMI algorithm aims at maximizing the mu-
tual information between the data observation distribution and the
distribution of the corresponding label. Though being employed in
many practical applications, it does not follow the MAP rule and is
not aiming at the minimum error rate. The MMI method is also not
applicable for the optimal classifier design under the generalized de-
cision rule with non-uniform loss functions. The MCE method is a
suitable training algorithm for the decision rule of (6) after appropri-
ate generalization. First, the objective function of the MCE method
is constructed to approximate the recognition error explicitly on a
token-by-token basis. It is easy to integrate a non-uniform error cost

function or other weighting functions into the MCE objective func-
tion since each training toke has a known class label. Second, the
MCE method computes the contribution of each training token to
the expected loss over the entire training set (if uniform error loss is
assumed, the expected loss equals the expected error rate), maintain-
ing the use of an empirical estimate of the system performance even
when error weighting is included. We will see in this paper later that
the MPE/MWE method could be viewed as a special version of the
weighted MCE method.

In this paper, we propose an extended pattern recognition frame-
work in which the performance metric is generalized to non-uniform
cost functions. The minimum risk (MR) decision rule and its prac-
tical implementation strategy are constructed according to the error
weighting mechanism in the performance metric. Based on the gen-
eralized performance metric and the extended decision rule, an effec-
tive training algorithm called weighted MCE (W-MCE) is developed
for minimizing the weighted error rate. Two important training sce-
narios and corresponding error weighting mechanisms are discussed
in the context of ASR applications.

The rest of paper is organized as follows. In the next section,
we provide a justification example of the non-uniform error rate as
the performance metric. The non-uniform error cost framework and
the weighted MCE method are introduced in Section 3. In Sec-
tion 4, we summarize a variety of weighting mechanisms under dif-
ferent training scenarios in ASR. In addition, the relationship be-
tween the weighted MCE method and the minimum phone/word
error (MPE/MWE) method is discussed. In Section 5, we report
some experimental results to demonstrate the effectiveness of the
non-uniform error cost and the W-MCE method. A comprehensive
conclusion and discussion of future work are finally presented in
Section 6.

2. AN EXAMPLE FOR NON-UNIFORM ERROR RATE

Here is an example for using the non-uniform error rate as the recog-
nition performance measure for better information understanding.
Two recognized strings with an identical equal-significance word er-
ror rate are displayed as follows:

0 AT N. E. C. THE NEED FOR INTERNATIONAL MANAGERS
WILL KEEP RISING

1 AT ANY < del > SEE THE NEED FOR INTERNATIONAL
MANAGERS WILL KEEP RISING

2 AT N. E. C. < del > NEEDS FOR INTERNATIONAL MAN-
AGER’S WILL KEEP RISING

Item 0 is a transcription of the first utterance (440c0201.lab) in
the test set of the Wall Street Journal (WSJ0) [7] database. Item
1 displays a recognition result with two substitution errors and one
deletion error. Item 2 is another recognition result with the same
error counts. These two recognition results contributed to identi-
cal error statistics in terms of the equal-significance word error rate.
However, we can retrieve the correct information from the second
string with almost no difficulty but the company name is totally lost
in the first one. Hence, the second string should be viewed as a better
recognition result because it has retained useful information.

Consider the task of acoustic modeling for words and the dif-
ferentiation in error significance is being applied to words. One
straightforward error significance weighting function in this scenario
is the Shannon information of word − log P (word) in the whole
training corpus. This weighting function reasonably assumes that
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the less frequently a word appears, the more information it contains.
The weighted word error rate (WWER) can thus be calculated as

WWER =

−[

S∑
s=1

log P (ws) +
D∑

d=1

log P (wd) +
I∑

i=1

log P (wi)]

N∑
n=1

[− log P (wn)]

(7)
where N is the total number of words, and S, D, and I are the
number of substitution, deletion and insertion errors, respectively.
ws,wd, and wi are the words in the corresponding errors in substitu-
tion, deletion and insertion, respectively. We obtain the following ta-
ble in which the Shannon information − log P (word) of each word
is listed below for each word sequence:

0 AT N. E. C. THE NEED FOR INTERNATIONAL MANAGERS
WILL KEEP RISING

2.317 3.138 3.135 2.784 1.275 3.675 2.027 3.259 3.797 2.481 3.689
3.925

1 AT ANY < del > SEE THE NEED FOR INTERNATIONAL
MANAGERS WILL KEEP RISING

2.317 3.038 < del > 3.503 1.275 3.675 2.027 3.259 3.797 2.481
3.689 3.925

2 AT N. E. C. < del > NEEDS FOR INTERNATIONAL MAN-
AGER’S WILL KEEP RISING

2.317 3.138 3.135 2.784 < del > 3.966 2.027 3.259 3.719 2.481
3.689 3.925

Based on Eq.(7), the weighted recognition error rate of the first
string is 27.25% while the second one outperforms this number and
achieves 25.24%. This example demonstrates the effectiveness of
the weighted word error rate. Other significance weighting func-
tions are possible. For example, one could associate proper nouns
with substantially higher significance than common words. The er-
ror rate differentiation could have been much higher than about 2%
as demonstrated.

3. THE MINIMUM RISK DECISION RULE AND
WEIGHTED MCE METHOD

3.1. The Minimum Risk Decision Rule

Based on the Bayes decision theory, to minimize the expected loss
function L defined in (2), the minimum conditional loss R(Ci|X) of
(1) is wanted for each decision. For a general error cost function eij ,
the classifier C(X) that satisfies (1) and (2) can be written explicitly
as

C(X) = Ci = arg min
i

M∑
j=1

eijP (Cj |X) (8)

= arg min
i

M∑
j=1

eijP (X|Cj)P (Cj)/P (X) (9)

We name this decision rule as the minimum risk (MR) rule. In prac-
tice, we generally require that eij = 0 for i = j and eij ≥ 0 for
i �= j. The MR rule of (9) does not lead to the MAP policy of (5)
even if the knowledge of the true distribution (a posteriori probabil-
ities) is available to the recognizer. Implementation of the MR rule

requires multiplication if the cost matrix and the posterior probabil-
ity vector, a direct result of the non-uniformity of the cost function.

Execution of (9) obviously requires the knowledge of the a pos-
teriori probability P (Cj |X), ∀j ∈ IM . As stated in [2], however,
the true a posteriori probability is rarely available for a number of
reasons (e.g., lack of knowledge of the distribution forms or suffi-
cient labeled data for accurate estimation of the distribution parame-
ters). Any decision rule such as the MAP policy that requires precise
knowledge of the a posteriori probability cannot be accomplished in
practice. The decision rule of (9), which involves a weighted com-
bination of the a posteriori probabilities for all the classes, may de-
mand even more crucially the availability of the a posteriori prob-
ability than the MAP policy (which in effect only requires that the
rank order of the a posteriori probabilities be accurately preserved in
the evaluation.) Furthermore, the complexity of the conditional cost
of (9) may impose additional difficulties for the system designer to
associate appropriate training models with the given data in the op-
timization process.

3.2. A Practical MR Rule and The Weighted MCE Method

To overcome the implementation difficulties of the MR rule in sys-
tem training, the expected system loss of (2) needs to be expressed
in terms of the empirical loss (yet to be defined) with a more prac-
tical decision rule embedded in it. For clarity, let iX = C(X) be
the identity index as decided by the recognizer and jX be the true
identity index of X. Also, Ω = {Xk}K

k=1 is the set of training to-
kens. Then, in practice, the expected loss L can be approximated
as an alternative non-uniform risk, which is an accumulation of the
actual single token empirical cost:

L =

∫ M∑
j=1

eiXjP (Cj |X)p(X)dX (10)

⇑
L =

1

K

∑
x∈Ω

liXjX (Xk) =
1

K

∑
x∈Ω

eiXjX (11)

in which liXjX (Xk) = eiXjX is the error cost for training to-
ken Xk ∈ jX being classified into class iX . Therefore if the em-
pirical system loss is defined over the token-based costs, to evalu-
ate (11), one can prescribe a discriminant function for each class,
gj(X; Λ), ∀j , and define the practical decision rule for the recog-
nizer as

C(X) = iX = arg max
i

gi(X; Λ) (12)

The alternative system loss is then

L′ =
∑
X∈Ω

∑
i∈IM

∑
j∈IM

eij1[X ∈ Cj ]1{i = arg max
m

gm(X; Λ)}

(13)
Therefore, Eq.(13) can be rewritten as

L′ =
∑

j∈IM

Lj (14)

and

Lj =
∑
X∈Ω

(
∑

i∈IM

eij1{i = arg max
m

gm(X; Λ)})1[X ∈ Cj ] (15)

That is, Lj is the empirical error cost collected over all training to-
kens in Ω with jX = j. The approximation then needs to be made
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to the summands. This can be accomplished by

∑
i∈IM

eij1{i = arg max
m

gm(X; Λ)} ≈
∑

i∈IM

eijg
η
i (X; Λ)

gη
i (X; Λ) + Gi(X; Λ)

(16)
where

Gi(X; Λ) =
∑

m∈IM ,m�=i

gη
m(X; Λ) (17)

Note that as η → ∞,

gη
i (X; Λ)

gη
i (X; Λ) + Gi(X; Λ)

≈
{

1, gi(X; Λ) = maxm gm(X; Λ)
0, otherwise

(18)
Finally, the objective function of the weighted MCE (i.e., the smoothed
empirical system cost) is

L′ ≈
∑
X∈Ω

∑
j∈IM

∑
i∈IM

eij
gη

i (X; Λ)

gη
i (X; Λ) + Gi(X; Λ)

1[X ∈ Cj ] (19)

which can be rewritten as

L′ ≈
∑
X

∑
j

∑
i

eij
1

1 + exp{− ln gη
i + ln Gi}1[X ∈ Cj ] (20)

which is a continuous function of the parameter set Λ. Similarly,
the hyper-parameter η can be chosen tradeoff between approxima-
tion and smoothness. In speech recognition applications, if we let
gi(X; Λ) = P (X|Ci) and P (X|Ci) is constructed as a hidden
Markov model (HMM) for class i, we can use the gradient descent
methods (e.g., generalized probabilistic descent method (GPD)[2])
to optimize parameters in (20). A similar optimization algorithm as
the one in [2] can be derived for (20).

4. TRAINING SCENARIOS AND WEIGHTING
STRATEGIES IN ASR

Speech recognition is an important category of the pattern recogni-
tion applications with many different training and recognition sce-
narios. In brief, there are two major non-uniform error cost train-
ing scenarios in ASR. The first scenario is that the training and
recognition decisions are on the same sematic level with the per-
formance measure. For example, the acoustic model is trained on
the phone level and the evaluation metric is the weighted phone er-
ror rate (PER). In this case, the loss of the wrong recognition deci-
sions represents the recognizer’s performance directly. We call this
scenario the intra-level training. The second and the most common
circumstance in practice is the inter-level training in which the train-
ing and recognition decisions are on the different semantic level with
the performance metric. For example, the training and the recogni-
tion are on the phone level but the system evaluation measure is the
word error rate (WER). In this case, the system performance is not
instantly evaluated by the recognition error loss. Hence, minimizing
the cost of the wrong recognition decisions does not directly opti-
mize the recognizer’s performance in terms of the evaluation metric.
To alleviate this inconsistency, the error weighting strategy could be
built in a cross-level fashion.

In both training scenarios, the error weighting mechanism can be
built according to two types of error cost: the user-defined cost and
the data-defined cost. The user-defined cost is usually characterized
by the system requirement and relatively straightforward. On the
other hand, the data-defined cost is more complicated. The Bayes
decision theory aims at minimizing the expected error loss, which

is generated by the wrong recognition decisions. The wrong deci-
sions occur because the underlying data observation deviates from
the distribution represented by the corresponding recognizer model.
Though we can not distinguish whether a decision error is due to
“bad” data or “bad” models, it is possible to measure the “reliabil-
ity” of the errors by introducing the data-defined weighting. Through
data-defined weighting, the recognizer modeling would bias more to
the “good” data.

4.1. Error Weighting for Intra-Level Training

In the intra-level training situation, the system performance is di-
rectly measured by the loss of wrong recognition decisions. Hence,
we can absorb both types of the error weighting into the error cost
function eij as one universal functional form. Assume that the train-
ing is on the phone level and the evaluation measure is the weighted
phone error rate (PER). We employ the phone sequence PH =
(ph1, ph2, . . . , phLk) to represent the label of the kth training to-

ken in a training set with totally K tokens. Xk = {Xk,lk}Lk
lk

is
the kth token that is segmented into Lk segments corresponding
to the phone sequence. Recall the decision rule (12), we define
gi(X; Λ) = P (X; Λ|Cj)P (Cj). Finally, following (20), the ob-
jective function for the weighted MCE in this case could be written
as

F (1)
W−MCE =

∑
k

Lk∑
lk=1

∑
i

li(Xk,lk ; Λ)eij1[Xk,lk ∈ Cj ] (21)

where

li(Xk,lk ; Λ) =
1

1 + exp{− ln gη
i (Xk,lk ; Λ) + ln Gi(Xk,lk ; Λ)}

(22)

and Gi(Xk,lk ; Λ) =
∑

m∈IM ,m�=i

gη
m(Xk,lk ; Λ).

4.2. Error Weighting for Inter-Level Training

In the inter-level training situation, the system performance is not
measured directly by the loss of the wrong recognition decisions.
The recognition decisions need to be grouped to form the system
output which is on the level of the performance metric. Therefore,
we need to use cross-level weighting in this case to break down the
high level cost and impose the appropriate weights upon the low
level models.

Assume that in this case, the training is on the phone model and
the performance metric is the weighted word error rate. The first
weighting mechanism we are discussing is the user-defined weight-
ing. Let the word sequence W = (w1, w2, . . . , wLk ) be the label of
the kth training token in a training set with totally K tokens. Each

word wlk contains a phone sequence as ph1
lk

, . . . , ph
nk
lk

, . . . , ph
Nk
lk

.

Xk = {Xk,lk,nk}Lk
lk

is the kth token that is segmented into Lk

segments corresponding to the word sequence. Since the user’s de-
mands are normally engaged on the level of the system performance
metric, the user-defined cost of each phone in word wlk could be
set identically using the word-level cost. Hence, the user-defined
weighting of the weighted MCE in the inter-level training can be
written as:

F (2)
W−MCE =

∑
k

Lk∑
lk=1

∑
i

li(Xk,lk ; Λ)1[Xk,lk ∈ Cj ]e
(u)
ij (wlk )

(23)
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where e
(u)
ij (wlk ) is the user-defined cost for word wlk . One instance

of the user-defined error weighting function is the Shannon informa-

tion e
(u)
ij (wlk ) = − log P (wlk) as we mentioned in Section 2.

The formulation of the data-defined weighting is more complex
and flexible in the inter-level training. Since the objective of the data-
defined weighting is to find the “reliable” errors, the data-defined
weighting can be imposed upon any semantic levels. In this situ-
ation, the objective function of the weighted MCE method can be
written as follows:

F (2)
W−MCE =

∑
k

Lk∑
lk=1

∑
i

li(Xk,lk ; Λ)1[Xk,lk ∈ Cj ]e
(d)
ij (m)

(24)

where m = {nk, lk, k}. e
(d)
ij (m) could be the data-defined weight-

ing for the nth
k phone, the lthk word, or the kth training token. The

definition of the data-defined error is very flexible. We can assign
the cost of the lthk word to each phone inside or compute the phone-
level error cost for phone nk in word lk separately. One example of
the data-defined weighting is the popular MPE/MWE method.

A W-MCE objective function including both weighting func-
tions under the inter-level training scenario can be written as

F (2)
W−MCE =

∑
k

Lk∑
lk=1

∑
i

li(Xk,lk ; Λ)1[Xk,lk ∈ Cj ]eij(wlk , m)

(25)
where m = {nk, lk, k} and eij(wlk , m) is the total weights. The
definition of li in (23), (24) and (25) are identical as of Eq.(22).

4.3. Weighted MCE and MPE/MWE Method

In this section, we will discuss the relation between the weighted
MCE and the MPE/MWE method in order to contribute a better
understanding of the error weighting mechanism. Assume that the
training is on the phone model and the performance metric is the
word error rate. We use W = (w1, w2, . . . , wLk ) to denote the
label of the kth training utterance in a training set with totally K to-

kens. Xk = {Xk,lk}Lk
lk

is the kth token that is segmented into Lk

segments corresponding to word/phone sequence. In this section,
we assume that there is no user-defined weighting for simplicity. As
we discussed before, the objective function of the weighted MCE
method is defined as of (24).

The minimum phone/word error (MPE/MWE) training method
is a popular discriminative training method with a weighted objec-
tive function to mimic training errors [6]. The objective function of
MPE/MWE is defined as follows:

FMPE/MWE ≈
K∑

k=1

∑
lk∈Lk

pα(Xk|wlk )P β(wlk )A(W, Wk)

∑
∀u

pα(Xk|wu)P β(wu)

=

K∑
k=1

PcA(W, Wk)

Pc + Pw

≈
K∑

k=1

[1 −
∑
u�=lk

l′u(Xk,lk ; Λ)]A(W, Wk) (26)

where∑
u �=lk

l′u(Xk,lk ; Λ) =
Pw

Pc + Pw
=

1

1 + exp{− ln Pw + ln Pc}
(27)

and
Pc =

∑
lk∈Lk

pα(Xk,lk ; Λ|wlk )P β(wlk) (28)

Pw =
∑
u�=lk

pα(Xk,lk ; Λ|wu)P β(wu) (29)

In Eq.(26), A(W, Wk) is called “raw accuracy”, which is a mea-
sure of how many words/phones are correctly recognized in Wk ac-
cording to the transcription W [6]. We may interpret it as a rough
estimation of the word/phone error accumulation for each utterance.
α and β are the acoustic and language model scale factors. We use
Pc to represent the probability of applying the training observations
on the transcribed string, and Pw as the sum of applying the obser-
vations on all the other recognized strings.

Therefore, to maximize the original MPE/MWE objective func-
tion in (26) is equivalent to minimize the modified objective function
below, which is very similar to the objective function of the W-MCE
method defined in (24).

F ′
MPE/MWE =

K∑
k=1

∑
i

l′i(Xk,lk ; Λ)A(W, Wk) (30)

In summary,the MPE/MWE method weights the utterance errors
by the “raw accuracy” A(W, Wk), therefore builds a objective func-
tion that incorporates the non-uniform error cost of each training ut-
terance. Hence, the relationship between the weighted MCE and the
MPE/MWE can be described as two training algorithms both rooted
in the Bayes decision theory, directing to the same aim of designing
the optimal classifier to minimize the non-uniform error cost.

5. EXPERIMENT RESULTS FOR WEIGHTED MCE

In this paper, we employ the weighted MCE method on large vocab-
ulary continuous speech recognition tasks. The weighing function
is an estimate of the “posterior probability” of the target speech unit
wlk given the data observations of the corresponding training utter-
ance XT

1 . Note that the term “posterior probability” does not obey
the rigorous mathematical definition but only a reasonable engineer-
ing approximation.

5.1. Baseline

The experiments are carried out on the WSJ0 database [7].The base-
line recognizer follows the recipe for WSJ database using the HTK
toolbox (http://www.inference.phy.cam.ac.uk/kv227/htk/), which is
based on representing training classes using continuous density Gaus-
sian mixture hidden Markov models (CDHMM). A word internal
context-dependent tri-phone set is formed with 7,385 physical mod-
els and 19,075 logic models. All models are represented by 3-state
strict left-to-right HMMs, with 8 Gaussian mixture components per
state. These models were initialized by the Baum-Welch method
[8]. The experiments were then carried out by comparing the perfor-
mance of systems trained using different MCE criterion.

We generate feature vectors for all 7,077 utterances by 84 speak-
ers in the training set of the WSJ0 corpus. Each feature vector has
12MFCC+12Δ+12Δ2 and 3 log energy values so that total 39 fea-
tures are used. The feature generation process is also applied on
the Nov-92 evaluation set with 330 utterances by 8 speakers. The
CMU6 recognition lexicon are employed, which contains 126,834
words. We conduct the similar word-graph training implementation
as [9]. During the training procedure, a unigram language model is
used. Bigram is applied to decode and generate word graphs, where
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the word insertion penalty and the language model scale factor are
set to be −4.0 and 15.0, respectively. At most 3 candidate recogni-
tion strings are allowed to survive simultaneously during word graph
generation. Other baseline system details can be found in [10]. Fi-
nally, the word error rate of this baseline is 8.41%.

5.2. W-MCE Implementation and Experiments

In our experiments, we assume that the weighting function only con-
tains the data-defined weighting for simplicity. The objective func-
tion of the weighted MCE in our experiment can be written as

FW−MCE =
1

K

K∑
k=1

Lk∑
lk=1

∑
i

li(X; Λ)Pr(wlk |XT
1 ) (31)

where

Pr(wlk |XT
1 ) =

∑
∀n,wn=wlk

P α(XT
1 |wlk)P β(wlk |wlk−1)

P α(XT
1 )

when |sn − s| + |tn − t| < τ (32)

[sn, tn] and [s, t] are the starting and ending time of wn and wlk ,
respectively. τ is the parameter to control boundary relaxation. The
GPD method [2] is employed to minimize (31) and we assume that
the weighting function Pr(wlk |XT

1 ) is fixed during each optimiza-
tion epoch.

We compared the weighted MCE and the conventional MCE
method in terms of the word error rate respectively on three semantic
levels: the word level, the phone level and the state level [9]. The
word level training means the loss function li(Xlk ; Λ) is computed
for each word wlk . Similarly, the phone level training means that the
error cost is computed on per phone basis, and so does the state level
training.

In Table 1, we can see that the W-MCE method outperforms the
MCE method in all categories. In both methods, the phone-level
training achieves better performance than the word level and state
level training. The reason for this observation may be that the time
interval for state level training to calculate the error loss is too short,
and the time interval for word level is too long. Too short interval
could lead to over-optimization. Too long interval contains too many
parameters so that the effect for each parameter is weakened when
maximizing the corresponding objective.

Table 1. Word Error Rate (WER) for WSJ0-eval using the MCE
method and the W-MCE method

Training level MCE W-MCE

Baseline 8.41 8.41
Word-level 8.16 8.11
Phone-level 7.96 7.73
State-level 8.11 8.05

6. CONCLUSION AND FUTURE WORK

In this paper, we address one common misinterpretation of the clas-
sical Bayes decision theory and introduce a generalized non-uniform
error cost framework for automatic speech recognition. After a jus-
tification ASR example of using the non-uniform error rate as the
performance metric, We propose the minimum risk (MR) decision
rule. A practical alternative decision rule is provided due to some

implementation issues for the original MR rule. We then present the
formulation of the weighted minimum classification error (W-MCE)
algorithm.

Two practical speech recognition training scenarios and the cor-
responding error weighting schemes are discussed. In addition, we
discuss the relationship between the weighted MCE method and the
minimum phone/word error (MPE/MWE) method. We provide some
demonstration experiment results to support the effectiveness of the
non-uniform error criteria and the weighted MCE method.

In the future, we plan to build a complete framework of the non-
uniform error criteria for speech recognition and even further, the
general pattern recognition problem. As a rich research area, there
are many promising open topics such as the weighting techniques
and optimization algorithms.
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