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ABSTRACT

Agglomerative hierarchical clustering (AHC) has been widely

used in speaker diarization systems to classify speech seg-

ments in a given data source by speaker identity, but is known

to be not robust to data source variation. In this paper, we

identify one of the key potential sources of this variability that

negatively affects clustering error rate (CER), namely short

speech segments, and propose three solutions to tackle this

issue. Through experiments on various meeting conversation

excerpts, the proposed methods are shown to outperform sim-

ple AHC in terms of relative CER improvements in the range

of 17-32%.

Index Terms— Speaker diarization, agglomerative hier-

archical clustering (AHC), data source variation, clustering

error rate (CER)

1. INTRODUCTION

Speaker diarization refers to the process that automatically

transcribes a given audio data in terms of “who spoke when”

[1]. This process can help provide speaker-perspective statis-

tics for the data, such as frequency of speaking turn change,

average speaking time per turn, number of speakers, speak-

ing time distribution over speakers, and so on. It also enables

selecting the speaker-specific data that can be utilized for un-

supervised speaker adaptation. Because of its broad signifi-

cance, speaker diarization is one of the main categories eval-

uated in the Rich Transcription Evaluation led by the National

Institute of Standards and Technology (NIST).

A speaker diarization system basically consists of three

main steps following audio feature extraction. The first step

is speech/non-speech detection, which separates target speech

regions from a given audio data. Next, speaker change de-
tection identifies potential speaker changing points in each

speech region, and further divides the separated target speech

regions into speaker-specific segments. Lastly, speaker clus-
tering classifies the resultant segments by speaker identity to
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append a unique label to the segments belonging to the same

speaker. The present paper focuses on aspects of speaker clus-

tering, specifically, in addressing robustness issues due to data

source variation. It has been shown that data source variation

causes significant performance problems in current speaker

diarization systems [1][2].

Agglomerative hierarchical clustering (AHC) [3] has been

widely used as a speaker clustering strategy in many of the

speaker diarization systems that have been developed by a

variety of research institutes [4]-[8], due to its simple struc-

ture and acceptable level of performance. Algorithm 1 (inset,

next page) shows how AHC works within the framework of

speaker diarization. Regarding the speech segments given by

the speaker change detection step as initial clusters, AHC re-

cursively merges the closest pair of clusters until clustering

error rate (CER) reaches the lowest level. For AHC to work

properly, two critical questions need to be answered:

• How to estimate when CER reaches the lowest level?

• How to achieve the minimum possible level of CER?

To address these questions in the state of the art, a stopping

method based on Bayesian information criterion (BIC) [9]

and a merging-cluster selection scheme based on generalized

likelihood ratio (GLR) have been widely used [10][11].

Robustness problems in AHC are faced by both the BIC-

based stopping method and the GLR-based merging-cluster

selection scheme in the presence of data source variation. The

BIC-based stopping method leads to unreliable estimation of

determining when CER reaches the lowest level, while the

GLR-based merging-cluster selection scheme results in se-

vere variability in the minimum achievable CER. In order

to tackle the robustness problem in the BIC-based stopping

method, we previously proposed a novel stopping method us-

ing information change rate (ICR) in [12], and showed exper-

imental results of improved CER across data sources. In this

paper, we tackle the robustness problem in the GLR-based

merging-cluster selection scheme.

This paper is organized as follows. In Section 2, the data
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Algorithm 1 Agglomerative Hierarchical Clustering (AHC)

Require: {xi}, i = 1, ..., n̂: speech segments

Ĉi, i = 1, ..., n̂: initial clusters

Ensure: Ci, i = 1, ..., n: finally remaining clusters

1: Ĉi ← {xi}, i = 1, ..., n̂
2: do
3: i, j ← arg min d(Ĉk, Ĉl), k, l = 1, ..., n̂, k �= l
4: merge Ĉi and Ĉj

5: n̂ ← n̂ − 1
6: until CER reaches the lowest level

7: return Ci, i = 1, ..., n

sources and the setup used for experiments in the paper are de-

scribed. The relationship between data source characteristics

and clustering error is investigated in Section 3. Based on this

analysis, we note that one of the major factors contributing to

the high levels of clustering error is the presence of a large

number of short speech segments in a data source. In Section

4, we propose three modified versions of AHC to minimize

the effect of such short speech segments on the GLR-based

merging-cluster selection scheme. The experimental results

comparing the proposed methods on a variety of meeting cor-

pus excerpts are also presented. In Section 5, we conclude the

paper with comments on future work.

2. DATA SOURCES AND EXPERIMENTAL SETUP

Table I presents the data sources used for the experiments re-

ported in this paper, which include 5 different meeting conver-

sation excerpts (of total length approximately 1 hour). The

data sources are chosen from ICSI, NIST, and ISL meeting

speech corpora1, and are distinct from one another in terms of

number of speakers, gender distribution over speakers, total

speaking time, number of speaking turn changes, and average

speaking time per turn.

For the experiments in this paper, we assume that both

speech/non-speech detection and speaker change detection are

perfectly done so that we can concentrate on AHC issues. To

enable this, we manually segmented each data source accord-

ing to a reference transcription prior to the experiments. In

order to avoid the potential confusion (in performance anal-

ysis) that might result from overlaps between segments, we

excluded all the segments involved in any overlap during data

preparation.

Mel-frequency cepstral coefficients (MFCCs) are used as

general acoustic features in this paper. Through 23 mel-scaled

filter banks, a 12-dimensional MFCC vector is generated for

every 20ms-long frame of speech regions. Every frame is

shifted with the fixed rate of 10ms so that there can be an

overlap between two adjacent frames. In order to measure

CER, we used a scoring tool, i.e., md-eval-v21.pl, distributed

1LDC2004S02, LDC2004S09, and LDC2004S05, respectively.

Table 1. Data sources. Ns: # of speakers (male:female), Ts:

total speaking time (sec.), Nt: # of speaking turn changes,

and Ta: average speaking time per turn (sec.).

Data Sources

ICSI-I ICSI-II NIST-I NIST-II ISL-I

Ns 7 (5:2) 6 (4:2) 4 (3:1) 6 (4:2) 4 (2:2)

Ts 931.3 1148.5 443.4 624.1 477.7

Nt 278 243 74 143 118

Ta 3.3 4.7 5.9 4.0 4.0

Table 2. Lowest levels of CER for data sources.

ICSI-I ICSI-II NIST-I NIST-II ISL-I

CER 19.29% 2.65% 7.63% 9.72% 27.00%

by NIST [http://www.nist.gov/speech/tests/rt/rt2007].

3. ROBUSTNESS PROBLEM IN AHC CAUSED BY
GLR-BASED MERGING-CLUSTER SELECTION

The GLR-based merging-cluster selection scheme chooses the

pair having the smallest GLR value among all pairs of (re-

maining) clusters as the closest pair for merging. For a cer-

tain pair of clusters CX and CY consisting of feature samples

X = {x1, x2, · · · , xM} and Y = {y1, y2, · · · , yN} respec-

tively, GLR is computed as follows:

GLR(CX , CY ) =
P (X ∪ Y |H0)
P (X ∪ Y |HA)

=
P (X|θX)

P (X|θX∪Y )
× P (Y |θY )

P (Y |θX∪Y )
, (1)

where

• H0: CX and CY are left unmerged. The clusters are

modeled by two normal distributions θX and θY , whose

model parameters are estimated by way of maximizing

the likelihoods of X and Y respectively.

• HA: CX and CY are merged. A newly merged cluster

is modeled by one normal distribution θX∪Y , whose

model parameters are estimated by way of maximizing

the likelihood of X ∪ Y .

Since θX , θY , and θX∪Y are all normal distributions, the

above equation can be simplified [10] as

GLR(CX , CY ) =
|ΣθX∪Y

|M+N
2

|ΣθX
|M

2 |ΣθY
|N

2
, (2)

where ΣθX
, ΣθY

, and ΣθX∪Y
are sample covariance matrices

for θX , θY , and θX∪Y respectively, and | · | is determinant.

For reference, ΣθX∪Y
has the following relation with ΣθX

and
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Fig. 1. Segment length distributions for data sources.

Table 3. Lowest levels of CER when short speech segments

are excluded from each data source.

ICSI-I ICSI-II NIST-I NIST-II ISL-I

CER 5.36% 0.47% 0.99% 8.94% 16.22%

ΣθY
:

ΣθX∪Y
=

MΣθX
+ NΣθY

M + N
+

MμθX
μT

θX
+ NμθY

μT
θY

M + N

−MμθX
+ NμθY

M + N
·
(

MμθX
+ NμθY

M + N

)T

,

(3)

where μθX
and μθY

are sample means for θX and θY respec-

tively.

Table 2 shows the minimum achievable CER for each of

the data sources described in Section 2. The large variability

in the results of the table demonstrate the robustness prob-

lem in AHC due to the GLR-based merging-cluster selec-

tion scheme. Specifically, the levels of CER for ICSI-I and

ISL-I are distinctly high compared to those for the other data

sources considered. In order to investigate the relationship

between the lowest possible level of CER and a data source,

we analyzed the properties of the data sources and found sig-

nificant differences in constituent speech segment length dis-

tributions. Fig. 1 shows the distributions of segment lengths

for each of the data sources considered. The interesting ob-

servation found in this figure is that ICSI-I and ISL-I consist

of a large number of speech segments that are shorter than

3 seconds2. The proportions of such segments in these data

sources exceed 50%. This led us to hypothesize a negative

2Let us call these segments short speech segments in the rest of this paper.

In contrast, we call the speech segments longer than or equal to 3 seconds

long speech segments.
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Fig. 2. GLR versus the number of feature samples in each

cluster with the fixed second order statistics: μθX
= 0, μθY

=
1, and ΣθX = ΣθY = 1.

relation between the portion of short speech segment in a data

source and achievable CER.

To further confirm the effect of short speech segments on

CER, we re-calculated CERs for the experiments presented

in Table 2 by excluding short speech segments and report

them in Table 3. Note that the lowest levels of CER for all

the data sources in this table are noticeably improved com-

pared to those in Table 2. Specifically, the improvements

for ICSI-I and ISL-I are considerable (19.29%→5.36% and

27.00%→16.22%, respectively).

We hence claim that the large portion of short speech seg-
ments in a given data source is a significant factor to nega-

tively affect CER. Short speech segments can arise out of two

causes, one of which is due to the inherent nature of interac-

tions as to how many short speaking turns are contained in a

data source and the other is technological, depending on how

speaker change detection is tuned (Note that in speaker di-

arization systems speaker change detection is usually tuned

not to miss any speaker changing points at the cost of false

alarms, which could generate a large number of short speech

segments.) In this work, our focus is on the former since we

assume speaker change detection is done perfectly.

In order to mitigate the negative effect of short speech seg-

ments on CER, it is necessary to examine the specific way that

the GLR-based merging-cluster selection scheme is affected

when a given data source for AHC contains a large number of

short speech segments. According to [12], GLR gets larger as

the total number of feature samples within a pair of clusters

under consideration increases. This can be easily confirmed

by Fig. 2, which shows GLRs between two clusters CX and

CY consisting of feature samples X = {x1, x2, · · · , xM} and

Y = {y1, y2, · · · , yN} respectively along with the number

of feature samples in each cluster. In order to observe the
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Table 4. Distribution of types for the first quarter of the whole

merging processes during AHC for each data source. Mss:

merging process between short speech segments, Msl: merg-

ing process between a short and a long speech segment, and

Mll: merging process between long speech segments.

ICSI-I ICSI-II NIST-I NIST-II ISL-I

Mss 52.86% 16.39% 21.05% 22.22% 50.00%

Msl 35.71% 44.26% 47.37% 47.22% 40.00%

sub 88.57% 60.65% 68.42% 69.44% 90.00%total

Mll 11.43% 39.35% 31.58% 30.56% 10.00%

Table 5. Reliability of GLR-based merging-cluster selection

scheme. The convention is same as that in Table 4.

Mss Msl Mll

Reliability 80.22% 93.58% 98.17%

effect of the number of the feature samples, we fix the sec-

ond order statistics of θX and θY arbitrarily. (In this case,

μθX
= 0, μθY

= 1, and ΣθX
= ΣθY

= 1.) This figure clearly

illustrates the abrupt increase of GLR as the number of the

feature samples grows. Consequently, it shows that a pair of

homogeneous clusters consisting of a small number of feature

samples are likely to have smaller GLR values and will be re-

garded as closer than those consisting of a large number of

feature samples.

This dependency of GLR on the total number of feature

samples within a pair of clusters under consideration results

in the tendency of the GLR-based merging-cluster selection

scheme to preferentially select short speech segments as the

closest for merging in the early stages of AHC. The tendency

is well noticed in Table 4, where the distribution of the first

quarter of the whole merging processes during AHC for each

data source is given in terms of the length of the speech seg-

ments selected for merging. From the third row of this table,

we can observe that short speech segments are involved in at

least 60% of the first quarter of the whole merging processes

during AHC for all the data sources. This tendency is partic-

ularly distinct for ICSI-I and ISL-I, which seems reasonable

because these data sources contain a large number of short

speech segments. Note that the proportion of merging pro-

cesses between short speech segments (Mss) is about 50%

for both ICSI-I and ISL-I.

A problem is that the GLR-based merging-cluster selec-

tion scheme is not reliable when two short speech segments

are selected to be the closest for merging. Table 53 clearly

demonstrates this problem, indicating that approximately 20%

of merging processes between short speech segments are likely

3For computing this reliability, we separated merging between homoge-

neous speech segments and merging between heterogeneous ones, and clas-

sified all of them by the length of the speech segments involved in merging.

Algorithm 2 Modified Version 1 of AHC

Require: {xi}, i = 1, ..., n̂: speech segments

Ĉi, i = 1, ..., n̂: initial clusters

Ensure: Ci, i = 1, ..., n: finally remaining clusters

1: Ĉi ← {xi}, i = 1, ..., n̂
2: do
3: i, j ← arg min GLR(Ĉk, Ĉl) such that either {xk}

or {xl} is a long speech segment ≥ 3 sec.,

k, l = 1, ..., n̂, k �= l
4: merge Ĉi and Ĉj

5: n̂ ← n̂ − 1
6: until CER reaches the lowest level

7: return Ci, i = 1, ..., n

to occur erroneously, i.e., occur between heterogeneous ones.

Noting that over 50% of the first quarter of the whole merg-

ing processes occur between short speech segments for ICSI-I

and ISL-I compared to below 25% for the other data sources,

we can conclude that erroneous merging processes between

short speech segments occur more frequently for data sources

containing a large number of short speech segments. Consid-

ering that AHC has a recursive structure and thus any erro-

neous merging process during AHC becomes a potential seed

for other erroneous merging processes in subsequent stages,

frequent erroneous merging during AHC due to a large num-

ber of short speech segments can be regarded as a direct cause

for the high levels of CER.

4. MODIFIED VERSIONS OF AHC

In this section, we propose three modified versions of AHC

to constrain short speech segments so as to minimize their

effect on the GLR-based merging-cluster selection scheme.

For this, three different methods to prevent erroneous merg-

ing processes between short speech segments are introduced

in the following sections (4.1–4.3). Experimental results are

given in Section 4.4.

4.1. Modification of GLR-based scheme

The first method to avoid erroneous merging tries to prevent

merging processes between short speech segments from the

very beginning. By doing this, merging processes are made

to occur only between a short and a long speech segment or

between long speech segments. This idea is based on the re-

sults in Table 5, showing that the reliability of the GLR-based

merging-cluster selection scheme is quite acceptable for both

Msl and Mll while relatively poor for Mss.

This method, as shown in Algorithm 2, can be imple-

mented by modifying the GLR-based merging-cluster selec-

tion scheme so that it can select a pair of clusters (or two

speech segments) having the smallest GLR among all the pairs
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Algorithm 3 Modified Version 2 of AHC

Require: {xi}, i = 1, ..., n̂: speech segments

Ĉi, i = 1, ..., n̂′, n̂′ ≤ n̂: initial clusters

Ensure: Ci, i = 1, ..., n: finally remaining clusters

1: sort {xi} in the descending order of length

2: Ĉj ← {xi} such that {xi} is a long speech segment ≥ 3

sec., i = 1, ..., n̂ and j = 1, ..., n̂′

3: m = n̂′ + 1
4: do
5: Ĉ ← {xm}
6: i ← arg min GLR(Ĉ, Ĉk), k = 1, ..., n̂′

7: merge Ĉ to Ĉi

8: m ← m + 1
9: until m > n̂

10: do
11: i, j ← arg min GLR(Ĉk, Ĉl), k, l = 1, ..., n̂′, k �= l
12: merge Ĉi and Ĉj

13: n̂′ ← n̂′ − 1
14: until CER reaches the lowest level

15: return Ci, i = 1, ..., n

either of which is a large size cluster (or a long speech seg-

ment), and not among all pairs of remaining clusters.

4.2. Pre-classification of short speech segments

The second method is to merge every short speech segment

with a long speech segment prior to AHC. It has the same

basic idea as the previous method in the sense of preventing

merging processes between short speech segments from oc-

curring in AHC, but is a different approach to implementing

the idea.

Algorithm 3 shows how this method can be implemented.

The method first finds the closest long speech segment for

every short speech segment in terms of GLR, and then merges

them prior to AHC. After this pre-classification step for short

speech segments is done, AHC is performed for the remaining

long speech segments.

4.3. Sequential classification prior to AHC

The last method is to run leader-follower clustering4 (LFC)

[3] prior to AHC. Instead of pre-screening merging processes

between short speech segments like the two methods previ-

ously proposed, this method just reduces the proportion of

merging processes between short speech segments by letting

long speech segments be preferentially considered for merg-

ing through LFC.

For this, as shown in Algorithm 4, the first step in the

method is to sort speech segments in the descending order of

4In this sequential clustering strategy, input data are classified in the order

of incoming without any pre-trained class model. Thus, the first incoming

data automatically becomes the first class and every data thereafter either is

merged to one of existing class(es) or becomes another new class.

Algorithm 4 Modified Version 3 of AHC

Require: {xi}, i = 1, ..., n̂: speech segments, η: threshold

Ĉi, i = 0, ..., n̂′, n̂′ ≤ n̂: intermediate clusters

Ensure: Ci, i = 1, ..., n: finally remaining clusters

1: sort {xi} in the descending order of length

2: Ĉ1 ← {x1}, n̂′ = 1, m = 2
3: do
4: Ĉ ← {xm}
5: i ← arg min GLR(Ĉ, Ĉk), k = 1, ..., n̂′

6: if min GLR(Ĉ, Ĉi) > η
7: n̂′ = n̂′ + 1
8: Ĉn̂′ = Ĉ
9: else

10: merge Ĉ to Ĉi

11: m ← m + 1
12: until m > n̂
13: do
14: i, j ← arg min GLR(Ĉk, Ĉl), k, l = 1, ..., n̂′, k �= l
15: merge Ĉi and Ĉj

16: n̂′ ← n̂′ − 1
17: until CER reaches the lowest level

18: return Ci, i = 1, ..., n

length before running LFC. Then, LFC and AHC are run in a

serial manner for the sorted speech segments. The threshold

η used in LFC is empirically set to be 250.0 in this paper

through preliminary experiments for minimizing the average

of the lowest levels of CER.

4.4. Experimental Results and Discussion

Table 6 shows the minimum achievable CERs for the three

modified versions of AHC with the same data sources used in

Section 3. The most noticeable observation found from this

table is the huge drop in a CER level for ICSI-I by the third

method (19.29% in Table 2→ 4.85% in Table 6). This can be

explained in terms of the types of merging processes that oc-

cur in the earlier stages of AHC. Mll are likely to occur ahead

of Mss or Msl in the third method while Mss typically occurs

before Msl or Mll in simple AHC. Considering that in Table

5 the reliability of the GLR-based merging-cluster selection

scheme for Mll is much higher than for Mss, this significant

performance improvement by the third method becomes obvi-

ous. Based on the observation that most of the results in Table

6 are improved compared to their counterparts in Table 2, we

can conclude that our proposed methods achieve their purpose

of tackling the negative effect of short speech segments in a

data source on CER. The overall performance improvements

brought about by these three methods are 17.97%, 20.12%,

and 32.49% (relative), respectively.

Comparisons between the proposed methods or with basic

AHC would be easier with Fig. 3. One interesting observa-

tion is that the performance improvement for ISL-I is not as
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Table 6. Lowest levels of CER. M1: modified version 1 of

AHC, M2: modified version 2 of AHC, and M3: modified

version 3 of AHC.

ICSI-I ICSI-II NIST-I NIST-II ISL-I

M1 11.87% 3.79% 7.63% 9.35% 21.74%

M2 11.24% 1.98% 3.81% 8.92% 27.92%

M3 4.85% 2.56% 3.81% 9.72% 23.81%

high as that for ICSI-I. This could mean that the lowest level

of CER for ISL-I is not as much affected by short speech seg-

ments as that for ICSI-I. Not surprising are the performance

improvements for ICSI-II, NIST-I, and NIST-II which are also

not high compared to that for ICSI-I, given that short speech

segments are not as widespread in these data sources.

5. CONCLUSIONS

In this paper, we analyzed the effect of data source variation

on clustering error and focused on one factor, namely short

length speech segments. We demonstrated that such segments

contribute significantly to robustness issues in AHC caused

by the GLR-based merging-cluster selection scheme. Follow-

ing which, we proposed three simple modifications for AHC

and experimentally showed performance improvements using

the excerpts drawn from a variety of meeting conversations.

There are several directions for future work including fur-

ther refinements to the proposed solutions. For instance, in

AHC based on pre-sequential classification the parameter η
determines the number of intermediate clusters, which is di-

rectly linked to the lowest level of CER. It was chosen em-

pirically here, while finding ways for optimally setting η to

minimize CER would be beneficial. Other future directions

include determining other data factors beyond segment length

that contribute to clustering error.
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