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Abstract— In this paper we present a method of combining 
several acoustic parametric spaces, statistical models and 
distance metrics in speaker diarization task. Focusing our 
interest on the post-segmentation part of the problem, we 
adopt an incremental feature selection and fusion algorithm 
based on the Maximum Entropy Principle and Iterative 
Scaling Algorithm that combines several statistical distance 
measures on speech–chunk pairs. By this approach, we place 
the merging–of–chunks clustering process into a probabilistic 
framework. We also propose a decomposition of the input 
space according to gender, recording conditions and chunk 
lengths. The algorithm produced highly competitive results 
compared to GMM-UBM state-of- the-art methods.    

Keywords— Speaker Diarization; Maximum Entropy; Fusion 

Topic area— Single- and Multimedia Indexing 

I. INTRODUCTION 

Speaker diarization (a.k.a. “Who spoke when?” task) 
tries to solve the problem of automatically extracting 
speaker metadata of an audio (or multimedia) document, 
when no set of specific target – speakers for identification is 
required or any knowledge about the number of participants 
is given a priory. The speaker – metadata define the 
estimated time boundaries of each speaker turn as well as 
the index of active speaker(–s) during them. They may also 
carry gender and bandwidth information, as well as speech – 
music – advertisement characterization. 

We consider here only the text–independent Broadcast 
News (BN) “Who spoke when?” task. Thus, only a single 
channel audio recording is to be processed and no given or 
estimated transcript interacts with the diarization system. 
The structure of the baseline diarization systems is a two–
stage algorithm. The first stage labels the audio file to 
speech-silence – advertisement – etc. areas and estimates the 
boundaries of speaker turns. Several segmentation methods 
have been proposed in literature, while most of them 
adopting the technique of a window that slides over the data 
and calculates statistical distances. Bayesian Information 
Criterion (BIC) and Kullback – Leibler  (KL) divergence are 
some common distance metrics used [1]. The second stage 

is normally the blind clustering of speaker chunks into 
speaker groups, so that the desired one–to–one mapping 
between reference speakers and estimated speaker–cluster 
indices is achieved. The agglomerative (bottom-up) 
hierarchical clustering is the most common approach, 
though other methods have been proposed too. Briefly, in 
bottom-up hierarchical clustering each chunk is initially 
treated as a discrete cluster and the distances between all 
cluster–pairs are calculated (given a feature space, a 
statistical model and a distance metric). At the end of each 
iteration, the cluster–pair having the minimum distance is 
merged creating a new cluster and the distance matrix is 
updated. The stopping criterion will be met when all 
cluster–pair distances are greater that a predefined threshold. 

 In this paper we focus on the blind clustering stage of a 
diarization system and investigate an iterative method of 
selecting and fusing several feature spaces, statistical 
models and distance metrics. The final goal is to model the 
posterior probability of whether a pair of speech chunks 
belongs to different speakers or not, and utilize it as the final 
measure in the hierarchical clustering stage. The proposed 
discriminative modeling uses the minor possible 
assumptions about the true class–conditional distributions of 
the intermediate metrics and is based on well defined 
probabilistic framework (Maximum Entropy Principle). By 
this approach, one can build an incremental log–linear 
model where both the significant (salient) features and the 
corresponding weights are automatically determined in an 
iterative way [2, 3, 4]. We also propose a further duration-
based decomposition of the input space, apart from the 
gender/bandwidth – baseline categorization. The 
probabilistic distance measure we propose offers the 
flexibility to incorporate well-known input space 
decomposition – statistical integration over each space 
overcoming heuristic rules and adjustable parameters. 

The rest of the paper is organized as follows: In chapter 
II we refer to some state-of-the-art methods dealing with the 
diarization task. In chapter III we discuss the motivation 
behind the probabilistic model we propose, while in chapter 
IV we describe the several front-end features, models and 
distance metrics we use. In chapter V we analyze the theory 
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and the training algorithm that leads to the Maximum 
Entropy model we propose. Finally, in Chapter VI the 
experimental results are shown, followed by the conclusion 
and future work directions in Chapter VII. 

II. PREVIOUS WORK

Many diarization algorithms have been proposed in 
literature. In [5] the main idea used to confront the speaker 
clustering task was the statistical modeling of each utterance 
as a tied-mixture model where the M basis densities 
(M=128) are estimated from the entire set of speech 
segments and the weights are estimated for each segment. 
Advantages of this model are the per-frame likelihoods to 
the basis densities need to be calculated only once and the 
weights for merged clusters are computed as a simple 
averaging of counts. The main drawbacks are the 
computational cost of on-line training a 128-component 
Gaussian Mixture Model (GMM) for the entire show. 
Furthermore, the statistical distance between two speech 
segments depends on the overall modeling of the show, i.e. 
it is not an autonomous measure.  

In [6], a coupled segmentation-clustering procedure was 
introduced in order to maximize a global objective function. 
The latter is decomposed into the overall log-likelihood of 
the segments to the models as well as the penalty factor, a 
linear combination of both total number of segments and 
speakers. Initially, the segmentation process is biased 
toward over-segmentation and then an iterative 
segmentation-regrouping process aims to cluster the speech 
segments. Each segment forms a 8-component diagonal 
covariance GMM using simple MLE and the Viterbi-based 
re-segmentation procedure refines the segment boundaries 
to avoid cutting words. The merging criterion between two 
GMMs is estimated as the log-likelihood loss for merging 
the 16 initial Gaussians of both GMMs into a final set of 8 
Gaussians. Some drawbacks of this method are the high 
computational cost (Expectation Maximization algorithm 
after each merging, lack of closed-form distance measures, 
etc.) as well as the heuristic complexity penalization rules.  

An alternative approach, proposed in [7] was based on 
state-of-the-art speaker recognition-verification techniques. 
One Universal Background Model (UBM) with 128 
diagonal Gaussians for each of the 4 gender/bandwidth 
combination was trained. For the initial clustering, the 
standard Bayesian Information Criterion (BIC) was used, 
biased towards cluster purity against coverage. Afterwards, 
for each cluster, maximum a posteriori (MAP) adaptation 
[8] of the means of the matching Universal Background 
Model (UBM) is performed. The agglomerative clustering 
stage was guided by the cross log-likelihood ratio of each 
pair of segments. The use of Bayesian adaptation as a 
method to estimate the underlying pdf that generates each 
cluster is a powerful tool. One can avoid both under (over-) 
fitting to the data and moreover overcome certain limitations 
the baseline complexity penalization criteria (BIC, AIC, 
etc.) suffer from. On the other hand, the method remains 
computationally heavy, due to the overall GMM-UBM 
modeling.  

III. THE BENEFITS FROM THE PROBABILISTIC 
FORMULATION

The main idea behind the algorithm we present is the 
direct modeling of the posterior probability of whether a pair 
of speech chunks belongs to different speakers or not. By 
utilizing this probabilistic distance as the final measure in 
the hierarchical clustering stage we overcome many 
heuristic rules and adjustable parameters that are usually 
posed through the speaker clustering procedure. Due to the 
statistical formulation of the task, one can create a pool of 
binary features consisting of arbitrary combinations of front-
end features, statistical models, distances and thresholds. 
The Iterative Scaling algorithm is capable of discovering the 
most salient features from the pool, resulting in a weighted 
log-linear modeling of the aforementioned posterior 
probability.  

One major advantage of the probabilistic framework is 
the well-defined statistical integration over the several input 
space decompositions that one may choose to apply. One 
example of such decomposition that we propose is based on 
the duration of the chunks. Several classes of pair-durations 
may be defined and trained independently, using the 
corresponding portion of the available recordings that form 
the training set. According to the Bayes rule, the evaluation 
of the overall probabilistic distance of the new examples 
will then become a trivial statistical integration task (i.e. a 
combination of the several outputs each duration class 
produces, weighted by the posterior probabilities of each 
class given only the pair durations of the new example). By 
this architecture we overcome the “hard decision” 
classification of each speech chunk to the predefined 
categories. The basic architecture is shown in Fig. 1 (only 
duration – based decomposition is shown).  

FIGURE1. NUMBER OF PAIRS PER CATEGORY

IV. FRONT-END, MODELS AND DISTANCE METRICS

In this chapter we analyze the several front-end features, 
statistical models that describe the pdf of each speech 
chunks and metrics/criteria used to form a distance measure 
between chunks. For the rest of the paper we will refer to the 
three categories as triplets, that is every valid combination 
of each category forms a triplet. We emphasize that the 

Fig. 1: Architecture of the duration-based decomposition
(evaluation stage). Mi correspond to experts that produce their own
posteriors, trained with sets of different chunk – pair durations. 
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probabilistic model we form is not restricted to the choice of 
triplets we propose.       

A. Front-end spectral parameters  
One of the most common parametric spaces used in 

speech processing is Mel–Frequency Cepstral Coefficients 
(MFCC), i.e. the DCT of the Mel-frequency warped log–
spectrum of a Hamming windowed frame. In our 
experiments we use 32ms window with 0.5 overlap (16KHz 
sampling frequency) to form a 24–dimensional MFCC static 
feature space denoted by MFCCs. We also discard the 9 
higher DCT components and appended 1st order time 
derivatives forming a 26–dimensional feature spaces (static 
and differential coefficients, 13–dimensional each) denoted 
by MFCCd and 2nd order time derivatives forming a 39–
dimensional feature space (static, differential and 
acceleration coefficients, 13–dimensional each) denoted by 
MFCCa. We do not apply Cepstral Mean Subtraction (CMS) 
or Relative Spectral (RASTA) filtering to MFCC, since we 
use the (common in the diarization problem) assumption 
that the recording conditions for each speaker remains 
invariant through the entire broadcast.    

An alternative feature space we use in our experiment is 
Line–Spectrum Pairs (LSP) [9]. This is a fully parametric 
space, derived from Linear Prediction theory. LSP are 
widely used in sound class discrimination as well as in 
speaker diarization applications with great success [10]. In 
our experiments, we use LSP static (18–dimensional) 
denoted by LSPs and augmented versions by appending their 
1st and 2nd time derivatives, denoted by LSPd (36–
dimensional) and LSPa (54–dimensional) respectively. 

We also refer to other feature spaces (e.g. PLP, RASTA–
PLP, MVDR) as well as pitch that one may include in the 
feature selection algorithm [11].  

B. Statictical modeling of speech chunks 
A common way of modeling the density of a speech 

chunk in speaker diarization is a multivariate single 
Gaussian Model with full covariance matrix of the underline 
parametric space (denoted by GMf). Obviously, this cannot 
model accurately the wide range of phonemes. However, is 
capable of producing satisfactory results especially for short 
duration speech chunks. Moreover, a Gaussian Model with 
diagonal covariance matrix – denoted by GMd – might be 
parsimonious, when the durations are even shorter (<5 sec), 
assuming a feature space having relatively low correlation 
between its coefficients (MFCC have this property, LSP 
don’t).  

A more sophisticated modeling of speech chunks is by 
fitting a Gaussian Mixture Model (GMM) using either 
Maximum–Likelihood method (i.e. Expectation 
Maximization algorithm) or MAP–adaptation techniques 
[8]. As we already noticed, the main drawback of these 
models is their high computational demands. However, one 
may incorporate GMM models, too, in the proposed 
framework. 

In our experiments, we consider only single Gaussian 
Models, both GMf and GMd for MFCCk and only GMf for 
LSPk, k {s,d,a}.

C. Statistical distance metrics 
Several distance metrics have been proposed in the 

literature. We will consider here only d–dimensional GMf
and GMd. One of the most extensively used metrics is BIC 
[1] defined as 

BICij =GLR ij -PFij ,  (1) 
which is decomposed as follows, 

GLR log log log
2 2 2

j i ji
ij i j i j

m mm
 (2) 

and
1PF log( ).
2ij p i jn m  (3) 

In our notation, GLR denotes generalized–likelihood 
ratio, PF penalty factor, i (j), mi (mj) and i ( j) the i–th  (j–
th) chunk, its length and its covariance matrix respectively, 
|·| the determinant, i j  the union of i–th and j–th chunks, 
np the number of free parameters in the model, i.e. 

f

d

( 1) / 2, for GM
,

2 , for GMp

d d d
n

d
 (4) 

and  the penalization coefficient, usually in the range from 
1 to 7. 

It should be noted that BIC takes values in  rather 
that in . GLR is a distance term, while PF penalizes the 
complexity of the model. Thus, BIC is treated differently 
when we apply thresholds (see Section A in Chapter V). 

We consider also the Kullback-Leibler (KL) divergence, 
defined by 

1 11KL log ,
2

Tj
ij i j i j j i j

i

tr d (5) 

where μi and  μj denote the means of the i-th and j-th chunk 
respectively (column vectors), tr(·) the trace and the rest as 
above. KL is not a real distance since it is asymmetric. 
However, we can symmetrize it by using either the 
arithmetic or the harmonic mean. The symmetrized 
distances are denoted by KLa and KLh respectively [12]. 

Another statistical distance is the Arithmetic–Harmonic 
Sphericity (AHS), defined by 

1 1AHS log C C C C 2log( ).ij j i i jtr tr d  (6) 

In diarization task, one may use correlation matrices Ci
and Cj, instead of covariance matrices, in order to keep 
information about the means, following the invariant 
recording conditions assumption as mentioned above [13].  

We finally refer to T2 – Hotelling distance, defined by 
1H .

Ti j
ij i j i j i j

i j

m m
m m

                       (7) 

T2 – Hotelling distances are useful in cases where chunks 
are too short to estimate reliably covariance matrices and 
use them in discrimination.  

In our experiments, we consider BIC, KLa, KLh and 
AHS for all parametric spaces and models and H only for 
MFCCs and LSPs, i.e. static parameters, since T2 –Hotelling 
distances are zero for distributions having identical means, 
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as in the case when we consider differential and acceleration 
parameters. 

Therefore, the multiple metrizable parametric spaces are 
defined as a triplet , ( , , )t M of all the valid 
combinations of parametric spaces, models and distance 
metrics. For example, t = (MFCCs, GMf, KLh) refers to the 
triplet where the parametric space results from static MFCC, 
modeled as a multivariate single Gaussian with full 
covariance while the distance metric is the KL diversity 
symmetrized by the harmonic mean.   In our experiments, 
we have used | | = 39 such triplets as explained above. 

V. THE PROPOSED ALGORITHM 

In order to train the exponential model used in the 
Maximum Entropy (ME) algorithm, we need a labeled 
training set , , 1, ,j jD x b j N  (or multiple sets D
for each category of gender/bandwidth/chunk lengths) as 
well as a set of triplets . The variable x corresponds to a 
pair of raw audio files (the front-end feature space is defined 
by the triplet) while the binary random variable b takes the 
value of 0 when the speech chunks belong to the same 
speaker and 1 otherwise.  

A. Binarization of the triplets 
Our approach to the problem of fusing triplets is based 

on the statistical framework of feature selection for random 
fields. We choose to binarize the set  using multiple 
thresholds  t

k  on the triplets, so that we obtain a set of 
binary valued features: 

, 0,1 , 1,2,..., , 0,1 , ,kf x b k K b tt � (8) 
where K is total number of thresholds for each triplet.  

Each binary feature indicates whether the prediction of 
the class that the pair x belongs to is correct or wrong: 

, 0,1 ,k
t

k
g b

f x b 1t                                             (9) 

where 0,1kg xt is the corresponding predictor of the 
class of x and the notation . 0,1 ,1 stands for the 
indication function. 

In our experiments, the number of thresholds for each t is 
K=9, resulting in L = 351 total binary features. The multiple 
thresholds (apart from the triplets having BIC as metric) 
are determined as follows. 

 For each triplet, we calculate the conditional mean and 
variance of the two classes assuming that they follow 
normal distributions. To increase gaussianity we transform 
the distances to the log – domain. The 5th threshold (i.e. the 
middle one) is equal to the equiprobable point. The 
remaining thresholds are determined such that the 1st and 9th

thresholds are equal to the means of the “same speaker” 
class (b=0) and “different speaker” class (b=1) respectively. 
We use linearly spaced thresholds for each of the 2 
directions (see Fig. 2). 

Notice that the threshold determination is the only step 
we use generative statistics for the class-conditional pdf of 
each triplet. For the rest of the analysis the goal is to 
estimate discriminative statistics, i.e. to directly model the 

posterior probabilities of each class. For the triplets having 
BIC as distance metric we use discrete values of  in the 

range 1 to 5.  
Thus, the binary valued features are given by: 

1, if ( )
,1

0, otherwise

k
k t x

f x t
t  (10) 

and
,0 ,1 .k kf x f xt t  (11) 

For simplicity of notation, we form a unique index 
1,2,...,i L  to refer to all the binary features independently 

from the triplet and the threshold indices. The set of 
candidate features will be denoted as = , 1,2,...,if i LF .

B. Feature selection and training for Exponential Models 
The algorithm we describe here is based on ME principle 

[2, 3, 4]. The objective is to learn the optimal exponential 
weights and the corresponding salient features from the 
training data by using the following linear exponential 
family of distributions 

1( | ) exp , ,
( ) i i

i

q b x f x b
Z x

 (12) 

where Z (x)  is a normalizing factor, such that 
            q (0 | x) q (1 | x) 1.  (13) 
The parameters are estimated by minimizing KL 

divergence between the estimated model q  and the 
empirical distribution   

            
1 ,  if ( , )  

, .

0,  otherwise

x b D
Dp x b  (14) 

The i parameters correspond to the Lagrange 
coefficients of the entropy maximization problem, that is, 
“maximize the entropy of the model given the following 
constrains”:

, ,

( , ) ( , ) ( ) ( | ) ( , ),i i i
x b x b

p b x f x b p x q b x f x b f F. (15)           

Fig. 2: The determination of the thresholds for a triplet. The histogram
and the pdf of each class approximated with a single gaussian. The
middle threshold corresponds to the equiprobable point.  
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The maximization with constrains including only 1st

order statistics leads to the log-linear model, while the 
estimation of the Lagrange coefficients (i.e. the training of 
the algorithm) to the maximization of the likelihood 
function of the model with respect to the data set. From (15) 
one may notice that we constrain the expected values of 
features fi with respect to the model to be equal to the 
expected values with respect to the empirical distribution. 

The maximization problem is concave with respect to the 
i parameters. However, no closed – form solution can be 

reached. Furthermore, the pool of candidate features might 
be too large to handle. Thus, an iterative scaling algorithm is 
adopted, which is capable of both extracting the most salient 
features while training the current model to reach the 
optimal i too. Each iteration may be decomposed into two 
steps. During the feature induction step, we select the 
feature that improves the current model the most, as follows: 

*
,

arg max sup || || .
iter

iter iter

iter a f
f C

f D p q D p q  (16) 

In the above notation, the subscript “iter” denotes the 
iteration count and Citer the candidate pool of the remaining 
features. The model  

,

( | ) exp
,

( )iter

iter

a f
a

q b x a f
q

Z x
 (17) 

is augmented by the fiter feature. The optimal  is calculated 
using Newton Method. We emphasize here that the function 
is concave with respect to , thus Newton Method will attain 
the global maximum [2].   

During the second step we estimate the weights i that 
minimize the KL divergence defined by: 

0,1

( | )|| ( ) ( | ) log .
( | )x b

p b xD p q p x p b x
q b x

 (18)                       

By decomposing the logarithm into numerator and 
denominator and observing that first term contains only the 
empirical distribution, the minimization of (18) is equivalent 
to the maximization of the log–likelihood of the estimated 
model to the training set: 

0,1

( , ) log ( | ).p
x b

L q p x b q b x                                (19) 

The calculation of i can be done iteratively using the 
update rule 

' ,i i i  (20) 
where 

,

,

( , ) ( , )
log .

( ) ( | ) ( , )

i
x b

i
i

x b

p b x f x b

p x q b x f x b
 (21) 

Again, the global minimum will reached since the function 
is convex with respect to the coefficients vector [2]. The 
update formula (21) is called Generalized Iterative Scaling 
(GIS). For a comparison between several update formulas 
we refer to [14].  

The algorithm terminates either when the number of 
desired active features is reached, or when the KL reduction 
drops below a predefined threshold (i.e. no further 
significant information can be gained from the feature pool).  

When modeling posterior probabilities, one should 
carefully determine the priors of each class. Since the cost of 
a false merging is much higher that a missed one (the later 
can be smoothed in hierarchical clustering), one may use N0
<< N1. An alternative approach is to use N0 = N1 = N/2, and 
adjust the threshold of merging in hierarchical clustering to 
be less than 0.5. In our algorithm we used the second 
approach, because it offers the flexibility to decouple the 
prior probabilities from the posteriors.   

C. The input space decomposition 
Apart from the baseline gender/bandwidth 

categorization, we further decompose the input space 
according to the duration of the chunk pairs. The main idea 
behind this decomposition is to train different models 
(experts) for each duration category and integrate over the 
models to obtain the final posterior probability for each new 
example x. We form 5 chunk duration categories, thus 
Nd=15 (i.e. 5(5+1)/2) chunk pair categories. The duration 
statistics for each category are calculated in the log – 
domain. The mean values of each class are 3.0, 5.1, 8.7, 14.7 
and 25.6 seconds. In order to create the training set for each 
category we first form the desired means and variances for 
each class (assuming normal class conditional distributions 
in log – domain) and then we force each set to have the 
desired duration statistics by chopping the audio file and 
obtaining the desired length. Each category has the same 
number of training examples. 

The evaluation of the posterior probability is achieved 
by firstly evaluating each of the Nd experts’ outputs and then 
integrating over them. The weights we use at the integration 
are the posterior probability that the pair belongs to the i-th
duration class, given the pair durations: 

1

| | , | ,
d

i

N
d d
i x

i

q b x p c d q b x                     (22) 

1

|
| , ,

|
d

d d
i x id d

i x N
d d
j x j

j

p c p d
p c d

p c p d

                           (23) 

1 , 1,2, ,d
i d

d

p c i N
N

                               (24) 

In the above notation, , 1,2, ,d d
i bi N

corresponds to the duration parameters of the Nd experts and 
ci

d to the i-th duration class. 

VI. EXPERIMENTS

In order to train the models we used a subset of the 
WSJCAM0 British English Speech Corpus for Large 
Vocabulary Speech Recognition. The training set consists of 
39 female and 53 male speakers. Each speaker read about 90 
training sentences. We divide it into two subsets, 21 female 
and 26 male for training and the rest to form the evaluation 
set. We trained each of the Nd=15 duration categories 
separately for female and male genders. The average 
classification error is shown in Fig. 3. We compared them 
with a baseline 8-component GMM classifier (MFCCd) as 
well as with the binary feature that produced best results in 
training set for each duration category. Keep in mind that 
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classification means only to identify whether a pair of 
chunks belongs to the same speaker or not. 

For optical purposed we created a unique index to 
number the pair-duration categories. The numbering 
increases as follows: {(1,1), (2,1), (3,1), (4,1), (5,1), (2,2), 
(3,2), (4,2), (5,2), (3,3), (4,3), (5,3), (4,4), (5,4), (5,5)}, 
where each entry corresponds to the single chunk duration 
category explained in Chapter V.  

Fig. 3: Comparison of the classification error by the proposed algorithm. 
The results are averaged between female and male test sets.  

To evaluate the proposed method in the diarization task 
we used the English Broadcast News RT–02 Rich 
Transcription corpus. The corpus consists of 6 shows of one 
hour duration each. A fraction of 30 minutes per show is 
used for evaluation of the diarization algorithm. The training 
set for the telephone bandwidth category was collected from 
the 2002 NIST Speaker Recognition Evaluation Corpus. We 
used 24 female and 31 male speakers. The merging 
threshold was set to 0.41 (i.e. we merge speech chunks i and 
j iff p(1| Xij) < 0.41). We also evaluated it using three other 
methods: The most significant triplet (denoted by MST)
derived from the algorithm, an 8-component, diagonal 
covariance GMM with MFCCd and finally a 128-component 
GMM (denoted by GMMa), MAP-like adapted from the 
corresponding UBM (denoted by GMMb). Only the means 
were adapted as in [8]. The total speaker error for all the 4 
methods is shown below: 

TABLE I.TOTAL SPEAKER ERROR (%) ON ENGLISH BROADCAST NEWS 
RT-02 RICH TRANSCRIPTION CORPUS

Show MNB PRI NBC CNN VOA ABC Total
ME 3.61 4.42 10.27 9.61 2.44 15.78 7.69 
MST 7.30 11.8 15.95 17.44 6.35 24.91 14.13

GMMa 6.13 13.4 15.19 16.95 9.41 21.70 13.80
GMMb 1.73 3.51 11.56 7.13 2.78 11.24 6.32 

Only speaker error is considered, i.e. the portion of the 
speech that is mapped to a different from the reference 
speaker, after the optimal one-to-one mapping is performed. 
Areas of overlapping speakers are excluded from the 
evaluation. Moreover, perfect segmentation has been 
applied to all shows to focus on the speaker clustering task.  

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a framework of inducing 
features in speaker diarization problem. By this approach, 
one may obtain highly competitive results compared to more 
complex models using only single Gaussian models. 
Moreover, the decomposition of the input space according to 
the duration of speech chunk pairs offers the flexibility of 
training several models independently and increasing the 
overall system performance.  

As a future work, we propose the incorporation of prior 
distribution of the i, in order to control the coefficients 
range of values and avoid overfitting. An exponential 
distribution would be a natural choice for the particular 
problem we face, since all i should be non-negative. 
Moreover, the optimization function remains convex with 
respect to i.  The method can be extended to the 
segmentation step, in a straightforward way.    
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