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ABSTRACT

The AMI and AMIDA projects are concerned with the recog-

nition and interpretation of multiparty meetings. Within these

projects we have: developed an infrastructure for recording

meetings using multiple microphones and cameras; released a

100 hour annotated corpus of meetings; developed techniques

for the recognition and interpretation of meetings based pri-

marily on speech recognition and computer vision; and devel-

oped an evaluation framework at both component and system

levels. In this paper we present an overview of these projects,

with an emphasis on speech recognition and content extrac-

tion.

Index Terms— Meetings; speech recognition; AMI cor-

pus; summarization; topic segmentation; evaluation

1. INTRODUCTION

In recent times there has been growing research interest in the

recognition and understanding of interactions between people

in settings such as meetings, lectures, seminars and telecon-

ferences. The modelling and interpretation of human-human

communication scenes is a challenging scientific endeavour,

requiring a broad range of research advances in areas includ-

ing signal processing, speech recognition, multimodal scene

analysis, discourse analysis, and multimodal retrieval. The

analysis and interpretation of multiparty meetings is of sci-

entific interest since it provides a circumscribed arena for the

investigation of communication scenes, as well as underpin-

ning a number of potentially significant applications.

Meetings play a crucial role in the generation of ideas,

documents, relationships, and actions within an organization.

The wealth of information exchanged in meetings is often

lost, at least in part, because human note taking of meeting

minutes is subjective and incomplete, capturing only a frac-

tion of the information. Multimodal recording of meetings is

This work is supported by the European IST Programme Project FP6-

0033812 (AMIDA). This paper only reflects the authors’ views and funding

agencies are not liable for any use that may be made of the information con-

tained herein.

an attractive alternative, but such recordings will only become

really useful once it is possible to recognize, structure, index

and summarize them automatically.

Since the mid-1990s a number of resarchers have investi-

gated the automatic recording, recognition and interpretation

of meetings [1, 2, 3, 4, 5, 6, 7]. From 2004, the AMI con-

sortium1, has investigated the development of technologies

to enhance human collaboration in the domain of meetings.

AMI is concerned with the development of algorithms, mod-

els, and prototype systems that support interaction in meet-

ings and access to meeting-related information. Our initial

research was concerned primarily with the analysis of face-

to-face meetings recorded in an instrumented meeting room

equipped with multiple microphones and cameras, and cap-

turing other interaction modalities including the handwriting

and data projected slides. More recently we have extended

the focus of our work to support meetings where some of the

participants may be remote, and to provide services to operate

on meetings both in realtime and on an archive.

Much of the research that we have carried out has built on

a corpus of 100 hours of multimodal meeting recordings an-

notated at a number of different levels, outlined in Section 2.

Some of the core work of the AMI consortium has been the

development of recognizers for audio and video modalities,

including gesture and action recognition and audio-visual

tracking. These are briefly outlined in Section 3, which is fol-

lowed by a more detailed discussion of the AMI system for

automatic speech transcription of meetings, from both close-

talking and distant microphones (Section 4). The output of the

multimodal recognizers, in particular the automatic speech

transcription, forms the basis of our work in content extrac-

tion, including topic segmentation, summarization and dia-

logue act recognition, discussed in Section 5. A key aspect of

our work has been a focus on evaluation, both at the compo-

nent and system levels (see Section 6), the latter being closely

tied to the design of the AMI corpus.

1This work has been primarily carried out in the context of two EU In-

tegrated Projects AMI, and its follow-on project AMIDA (http://www.

amiproject.org/).

238978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



Fig. 1. The three AMI instrumented meeting rooms at IDIAP (left), TNO (centre) and the University of Edinburgh (right).

2. THE AMI CORPUS

Much of our research is built on the use of instrumented meet-

ing rooms to collect recordings of multiparty meetings. Three

standardized meeting rooms were designed and constructed at

AMI partners IDIAP, TNO and the University of Edinburgh

(Figure 1). These rooms, which were designed for the collec-

tion of four person meetings, all contained a set of standard-

ized recording equipment:

• six cameras — four providing close-up views of the

participants, two providing a view of the whole room;

• twelve microphones — a headset microphone per par-

ticipant and an 8-element circular microphone array;

• data projector capture (VGA);

• whiteboard capture;

• digital pen capture.

There were also additional recording devices in each of the

rooms, including an additional microphone, a binaural mani-

kin and additional cameras.

These instrumented meeting rooms were used to record

the AMI Meeting Corpus [8], which consists of 100 hours of

meeting recordings, with the different recording streams syn-

chronized to a common timeline. The corpus includes manu-

ally produced orthographic transcriptions of the speech used

during the meetings, aligned at the word level. In addition

to these transcriptions, the corpus includes manual annota-

tions that describe the behaviour of meeting participants at

a number of levels. These include dialogue acts, topic seg-

mentation, extractive and abstractive summaries, named enti-

ties, limited forms of head and hand gestures, gaze direction,

movement around the room, and where heads are located on

the video frames. Not all 100 hours of meetings have been

marked with all kinds of annotations. The linguistically mo-

tivated annotations have been applied most widely, covering

at least 70% of the corpus in all cases. The annotations were

carried out using NXT (the NITE XML Toolkit) [9], an open

source XML-based infrastructure for the annotation and man-

agement of multimodal recordings2.

2http://sourceforge.net/projects/nite/

The corpus consists of two types of meetings: a design

scenario, and naturally occurring meetings in a range of do-

mains. About 70% of the corpus was elicited using the sce-

nario in which the participants play different roles in a design

team, taking a design project from kick-off to completion over

the course of a day. The scenario meetings consist of a series

of four meetings, attended by four participants, who had tasks

to accomplish between meetings. The participant roles were

driven in real-time by emails and web information. There

are several advantages to recording scenario meetings. First,

it enabled us to control the domain, making it easier to un-

derstand the content of the meetings, and to enable the con-

struction of deeper approaches to content extraction. Second,

the construction of a meeting scenario enabled outcome mea-

sures to be defined, including preferred design outcomes (not

achieved by any of the teams!). Third, the fact that partici-

pants were not part of a real organization made it much easier

to control their knowledge and motivation. Fourth, scenario

meetings are replicable, and thus enable system-level eval-

uations, such as the task-based evaluation discussed in Sec-

tion 6.

The corpus is publicly available on the web at http://

corpus.amiproject.org, and is released under a licence

that is based on the terms of the Creative Commons Attribu-

tion NonCommercial ShareAlike 2.5 Licence.

3. AUDIO-VIDEO PROCESSING

The construction of audio-video recognizers is at the heart of

the automatic processing of multimodal meeting records. In

the AMI project we have developed a number of recognizers

for the multimodal meeting recordings, including speech tran-

scription (discussed below), speaker diarization [10], audio-

video localization and tracking [11], and visual focus of at-

tention [12]. The outputs of these recognizers may be used

directly, e.g. in a meeting browser, or as input for some higher

level analysis (Section 5).
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4. MEETING SPEECH RECOGNITION

Raw transcription of the spoken conversations in meetings is

essential for most types of higher level analysis such as con-

tent extraction (Section 5). Work on meeting transcription

in the past was dominated by the fact that the amount of in-

domain data was very small. As the type of speech is conver-

sational in most cases, the cost of manual transcription for the

purpose of model training is usually prohibitive. The amount

of speech resources for meetings is still relatively small and

most systems make use of adaptation of models from other

domains. In [13], a recognition system for conversational

telephone speech (CTS) formed the starting point, others have

reported that bootstrapping from Broadcast News (BN) sys-

tems works well.

Design of a transcription system requires appropriate defi-

nition of the domain. This is especially difficult as any gather-

ing of people discussing arbitrary topics could be interpreted

as a “meeting”. Hence suitable constraints need to be de-

fined. The U.S. National Institute of Standards and Technol-

ogy (NIST) has in the past made the distinction between two

types of meetings: conference room meetings where people

gather around a table to discuss multiple topics, following

a certain agenda; and lecture room meetings where a single

speaker presents to an audience, but may also engage in dis-

cussion with the audience. AMI meetings belong mostly to

the first category, however occasionally a participant stands

up to give a presentation, hence fitting into the second type.

These distinctions have significant implication on acoustics

and language use.

Another issue, independent of such classification, is the

recording source variability. Most meeting corpora have au-

dio recorded with individual head microphones (IHM). How-

ever, for convenience, ideally only microphones on the table,

in microphone array configuration or free standing, should

suffice for this task (multiple distant microphones, MDM).

Naturally though, because of occlusion, noise and reverbera-

tion, for MDM data a substantial performance degradation in

recognition can be observed.

The AMI transcription system makes use of a standard

ASR framework employing hidden Markov model (HMM)

based acoustic modeling and N-gram based language models

(LMs). In the following we briefly address issues of the do-

main, followed by a brief description of the essential compo-

nents of a meeting transcription system and the performance

in recent NIST evaluations. For a more elaborate description

of the systems, the interested reader is referred to [14].

4.1. Meeting domains

Even within the set of conference room meetings the record-

ings can vary considerably. Apart from the AMI corpus sev-

eral other meeting corpora are available: the ICSI Meeting

corpus [15], two phases of the NIST corpus [16], and the ISL

recordings [17]. In addition, recordings from Virginia Tech

(VT) and the European project CHIL have been used in NIST

evaluations. In Table 1 below the raw average segment statis-

tics for these corpora are compared. A segment here is de-

fined as speech not interrupted with silence of at least 100ms

length. As can be observed, segment lengths vary greatly with

the AMI corpus recordings having much longer sentences on

average, hinting at speech at a more controlled pace. The very

short segments on the CHIL data are surprising, given that

these recordings belongs to the lecture room meetings. The

speaking rate however is very similar for all corpora, varying

between 3.1 and 3.6 words per second.

Apart from these raw statistics, the acoustics and language

can differ. Acoustic variation is mostly given by the record-

ing setup (see the following section), but the language situa-

tion is less clear. The aforementioned meeting corpora differ

not only in recording configuration but also in topics and the

style of discussion. In the first instance one can look at vo-

cabulary differences for the different corpora. Table 2 shows

out of vocabulary (OOV) rates using vocabulary derived from

each meeting corpus. The OOV rates do not correlate per-

fectly with vocabulary sizes in these corpora and overall the

mismatch of ISL vocabulary to the other corpora is greatest.

Table 3 shows the same analysis as before, however in this

case the word lists are padded with the most frequent words

from BN texts to yield 50k words. It is evident that overall

the effect of vocabulary mismatch is greatly reduced for all

cases. This suggests that only a very small amount of meet-

ing specific vocabulary is necessary. In [18], an equivalent

set of experiments was conducted using meeting room spe-

cific language models with padded vocabularies. Here the

picture is less clear even though the corpus specific language

models always give the lowest perplexity. However, the use

of such language models in decoding does not give any gain

over combined models.

4.2. Audio Pre-processing

The audio pre-processing stages have to address several is-

sues: The segmentation of the audio and implicit discard-

ing of silence or noise; the speaker labeling for later acoustic

adaptation; the normalisation of input channels; and the sup-

pression of noise. Audio can come from different microphone

Meeting resource Avg Dur (sec) Avg. Words/Seg

ICSI 2.11 7.30

NIST 2.26 7.17

ISL 2.36 8.77

AMI 3.29 10.09

VT 2.49 8.27

CHIL 1.80 5.63

Table 1. Segment statistics for meeting corpora.
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Vocabulary Source

Corpus ICSI NIST ISL AMI

ICSI 0.00 4.95 7.11 6.83

NIST 4.50 0.00 6.50 6.88

ISL 5.12 5.92 0.00 6.68

AMI 4.47 4.39 5.41 0.00

ALL 1.60 4.35 6.15 5.98

Table 2. %OOV rates of meeting resource specific vocab-

ularies. Columns denote the word list source, rows the test

domain.

Vocabulary Source

Domain ICSI NIST ISL AMI

ICSI 0.01 0.47 0.58 0.57

NIST 0.43 0.09 0.59 0.66

ISL 0.41 0.37 0.03 0.57

AMI 0.53 0.53 0.58 0.30

ALL 0.16 0.42 0.53 0.55

Table 3. %OOV rates of padded vocabularies. Columns de-

note the word list source, rows the test domain.

sources associated with a person (head mounted, lapel) or mi-

crophones in the relative vicinity (table, wall mounted). This

separation is equivalent to the NIST distinction between IHM

and MDM channels which implicitly groups recordings with

substantially different acoustic properties.

IHM sources obviously carry implicit speaker informa-

tion, hence the main task is segmentation. Whereas head

mounted sources mostly acquire sounds from one speaker,

lapel microphone recordings suffer from high levels of cross-

talk and occlusion. For MDM the location of the microphones

in the room relative to the speakers as well as relative to each

other is important. Multiple microphones in array configura-

tion allow substantially better performance than those in ar-

bitrary location or a single microphone. Room reverberation

can increase degradation compared with IHM results.

Most meeting transcription systems try to set up the front-

ends such that later processing is identical, regardless whether

audio comes form IHM or MDM sources. The AMI system

is no exception to that (Figure 2); in particular the audio is

enhanced and a single audio stream is presented to the recog-

nition stages where the signal is converted into a single feature

stream.

4.2.1. Individual Head Microphones

Initially cross-talk suppression is performed using an adaptive

LMS echo canceller followed by computation of 12 MF-PLP

features. Additional features for the detection of cross-talk

are extracted prior to cross talk suppression. These features

are cross-channel normalised energy, signal kurtosis, mean

cross-correlation and maximum normalised cross-correlation.

IHM MDM
Multi−channel echo cancellation

MLP based segmentation

Smoothing

Delay vector estimation

Delay−Sum beamforming

Speaker segmentation/clustering

Headset microphone
recordings recordings

Tabletop microphone

Fig. 2. Front-end processing stages for IHM and MDM.

The cross-channel normalised energy is calculated as the en-

ergy for the present channel divided by the sum of energies

across all channels. The feature vectors are used to train a

multi-layer perceptron (MLP) classifier with a 101 frame in-

put layer, a 50 unit hidden layer and an output layer of two

classes. The models are trained on 90 hours of data from all

conference room meetings resources available. For example,

on the NIST RT’05 evaluation set (rt05seval) the automatic

segmentation gave equal performance to manual segmenta-

tion in terms of WER. More details can be found in [19, 20].

4.2.2. Multiple Distant Microphones

For MDM a commonly used enhancement based approach

was adopted where multiple channels were converted into a

single one consisting of the dominant speaker only. Note that

this approach cannot cope with speech from multiple speakers

at the same time. Figure 2 shows the processing steps in di-

agrammatic form. Processing of MDM data takes account of

the varying number of microphone channels and potentially

unknown location of microphones in relation to each other

(to allow for comparison beyond the AMI corpus). The pro-

cessing operates in several stages: First gain calibration is

performed by normalising the maximum amplitude level of

each of the input files. Then the background noise spectrum

is estimated using the lowest energy frames in the recording

and this is used to Wiener-filter the data to remove station-

ary noise. In the next step delay vectors between channels

are calculated on a per frame basis using generalised cross-

correlation. Delays are computed in relation to a reference

channel which also yields a relative scale factor. Delays and

scale factors are then used in the final stage implementing su-

perdirective beam-forming. More details can be found in [21].

While this approach is robust to a variety of configura-

tions, for a small number of sparsely located microphones

the estimates are unreliable. In this case simply selecting

the channel with the highest energy for every time frame was

found to yield substantially lower word error rates.

4.3. Acoustic modelling

As mentioned above, the amount of data available for acous-

tic model training from meetings is still relatively small com-

pared to other domains such as CTS. Hence in the most recent
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System Training criterion PLP LCRC+PLP

Baseline ML 28.7 25.2

SAT ML 27.6 23.9

SAT MPE 24.5 21.7

Table 4. %WER results on rt05seval IHM (manual segmen-

tation) with and without LCRC features.

AMI systems models trained on 2000 hours of CTS data are

adapted with 170 hours of meeting data.

12 MF-PLP3 features are extracted at a rate of 100 Hz

and together with the zeroth cepstral coefficient form the basic

feature vector. First and second derivatives are added. More

recently the standard systems augment this feature vector with

25 phoneme posterior derived components. These so-called

left context – right context (LCRC) features [22] are derived

from multiple stages of MLPs that try to estimate phoneme

state posterior probabilities. The input to these is not only the

feature vector at the current time, but 25 surrounding frames

as well.

All acoustic models employ cross-word state-clustered tri-

phone models. It was found that, similar to CTS, 10–15% rel-

ative WER gain can be obtained using maximum likelihood

based vocal tract length normalisation (VTLN) [23]. Sec-

ondly, heteroscedastic linear discriminant analysis (HLDA)

gives consistent performance improvements [23]. Further

gains can be obtained by discriminative training based on the

minimum phone error (MPE) criterion [24], also jointly with

constrained maximum likelihood regression (MLLR) based

speaker adaptive training (SAT). The left column of Table 4

shows WER results for models trained on 100 hours of meet-

ing data and the rt05seval test set. In both cases substantial

improvements are found.

Adapting to the meeting domain from CTS raises the issue

that CTS operates on audio with reduced bandwidth. In [23],

it was shown that better performance can be obtained using

the full bandwidth available. As a consequence, an MLLR

based transform from narrow-band to wide-band data was de-

rived and used in MAP adaptation of CTS models to meet-

ing data. However, such a scheme is not viable with both

HLDA and discriminative training. A solution to this prob-

lem is the projection of the meeting data into a narrowband

space where both HLDA statistics can be gathered and dis-

criminative training can be performed without regeneration

of training lattices.

Initial full covariance statistics are estimated on the CTS

training set. A single constrained MLLR transform is esti-

mated to map the 52D wideband (WB) meeting data to a 52D

narrowband (NB) CTS space. The meeting data is mapped

with this transform and full covariance statistics are obtained

using models based on CTS state clustering. The two sets of

3This is the standard implementation of perceptual linear coefficients in

the Hidden Markov Model Toolkit (HTK)

Initial models Adaptation WER

CTS SAT MPE 30.4

CTS SAT MPE ML-MAP 26.0

CTS SAT MPE +ML-MAP MPE-MAP 23.9

Table 5. %WER results on rt05seval IHM with adaptation

from CTS

statistics are then combined using MAP and the combined set

of statistics is used to obtain a joint HLDA transform (JT).

Now combined models in JT space can be trained using both

CTS and mapped meeting data. These are then used to retrain

CTS models in JT space, followed by SAT and MPE train-

ing. Equivalent to adaptation of maximum likelihood trained

models with MAP, the JT/SAT/MPE models are adapted to

meeting data using MPE-MAP [25]. The inclusion of SAT

requires the presence of speaker transforms on meeting data.

These are obtained from SAT training of MAP adapted CTS

models in JT space. Table 5 shows results in JT space. A com-

parison of the final WER results with that in Table 4 shows a

0.6% absolute improvement. A more detailed analysis of this

procedure can be found in [26].

4.4. Language modelling

The main issue in language modelling is the acquisition of

suitable data. In the AMI systems standard n–gram models

up to 4th order are interpolated from models trained on many

sources. Table 6 lists the most relevant text resources used for

training. One can see that the amount of meeting data avail-

able is small and collection of data from the internet is known

to yield significant improvements in perplexity and WER. Es-

pecially for meetings where the topic still may be new, it is

important that such collection can be carried out efficiently

and on potentially small amounts of data. Note that in con-

trast to other web-data, the AMI web-data was collected using

techniques that target text that is different to the already exist-

ing background material [27]. From the interpolation weights

it is clear that conversational data is most important. The per-

plexity of the interpolated was 84.3 for the interpolated tri-

gram and 81.2 for the 4-gram model on the NIST RT’06 eval-

uation test set.

4.5. Performance

The complete AMI system for the transcription of meeting as

used in the NIST RT’07 evaluations operates in a total of 10

passes. The initial pass only serves to obtain a rough tran-

script to provide input to adaptation with VTLN, SAT, and

MLLR. The following passes then generate bigram word lat-

tices which are expended using 4-gram language models and

rescored using models that are differently trained, for example

on meeting data only, or adapted models, or different config-

urations in the feature extraction. Since a detailed description
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LM component size weights (trigram)

AMI data (prelim.) 206K 0.038

Fisher 21M 0.237

Hub4 LM96 151M 0.044

ICSI meeting corpus 0.9M 0.080

ISL meeting corpus 119K 0.091

NIST meeting corpus 157K 0.065

Switchboard/Callhome 3.4M 0.070

webdata (meetings) 128M 0.163

webdata (fisher) 128M 0.103

webdata (AMI) 138M 0.108

Table 6. Language model data set sizes and weights in inter-

polation.

Description Tot CMU AMI NIST VT

Initial decode 37.4 47.7 29.3 33.8 38.4

Adapted 28.2 37.9 21.9 24.6 27.9

Best single output 25.4 34.5 20.4 21.1 25.3

Combined 24.9 33.9 19.8 20.9 24.7

Table 7. %WER results on IHM data of the AMI 2007 system

on the NIST RT’07 evaluation set.

of the system would go beyond of the scope of this paper,

the interested reader is referred to [28]. Table 7 shows de-

tails for various stages in the system, from the initial decod-

ing with unadapted models to the output of the best branch in

the system. The outputs of several branches then can be com-

bined, yielding the lowest word error rate. Data in this test set

are taken from four different corpora. The substantial differ-

ence in performance between these data sets mostly originates

from a different quality of microphones, even though heavily

accented speech plays a role.

Table 8 shows results on the same data, obtained by using

MDM input and a less complex system structure. One can

observe that the difference in the initial pass between IHM

and MDM recordings is 7% WER absolute which remains up

to the final pass. Whereas the difference between the manual

and automatic segmentation of data on IHM was found to give

only 1.3%, it can be observed that for MDM the difference is

2.5%.

The results above were obtained with a system that was

specifically trained on multiple meeting sources. In contrast

experiments were conducted to produce automatic transcripts

for the complete AMI corpus. The corpus was split into five

parts of approximately equal size to allow training on four

parts and testing on the fifth part. Acoustic models, dictio-

naries and trigram LMs (interpolated with background LMs)

hence were derived from approximately 80 hours and then

used to transcribe 20 hours of data each. So far only maxi-

mum likelihood training and standard MF-PLP features were

used in the experiments, however with automatic and manual

segmentation. Table 9 shows results for the complete cor-

Description Total Sub Del Ins

Initial 44.2 25.6 14.9 3.8

Adapted 38.9 18.5 16.8 3.5

Final 33.7 20.1 10.7 2.9

Final - Man, Segments 30.2 18.7 9.4 2.0

Table 8. %WER results on MDM data of the AMI 2007 sys-

tem on the NIST RT’07 evaluation set.

Training Segment. Adapt. Total

Man 43.2

VTLN, HLDA Man VTLN 39.4

VTLN, HLDA Man VTLN, MLLR 36.8

Auto 45.1

VTLN, HLDA Auto VTLN 41.2

VTLN, HLDA Auto VTLN, MLLR 38.9

Table 9. %WER results on the complete AMI corpus using

maximum likelihood trained acoustic models with automatic

(Auto) or manual (Man) segmentation, and adaptation with

VTLN and/or MLLR.

pus. Results for manual and automatic segmentation differ by

1.9% WER absolute initially and the difference slightly in-

creases with adaptation even though the absolute WER level

drops by approximately 6% absolute.

5. CONTENT EXTRACTION

The extraction of content from multimodal meeting record-

ings is largely based on the results of the audio-video process-

ing described above. To achieve accurate content extraction

from meeting recordings, our emphasis has been on models

and algorithms that combine modalities. Automatically ex-

tracted content enables meetings to be indexed and structured

at a semantically richer level than is possible using the raw

output of the audio-video recognizers. Much existing work

in this area is concerned with the extraction of content from

written language; a major focus of AMI has been the exten-

sion of textual approaches to multimodal settings, involving

the use of prosodic, video and contextual features.

Our work in this area has included the development of au-

tomatic approaches to the segmentation and classification of

phenomena such as dialogue acts [29], topics [30], and domi-

nance and influence [31], as well as abstractive and extractive

summarization [32] and content-based automatic camera se-

lection [33]. Using the AMI corpus for all tasks, we have been

able to agree on evaluation measures and procedures that al-

low us to compare different approaches and techniques, both

internally and externally.

Here we focus on our advances in three areas: dialogue

act recognition, topic segmentation, and summarization.
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5.1. Dialogue act recognition

Dialogue acts are labels for utterances which roughly cate-

gorize the speaker’s intention. They are useful for various

purposes in a dialogue or meeting processing situation, such

as part of a browser which highlights all points where a sug-

gestion or offer was recognized. However, dialogue acts also

serve as elementary units, upon which further structuring or

discourse processing may be based. For example, the sum-

marization components that we have developed are based on

the dialogue act structure of a meeting.

Each dialog act in a meeting is given one of 15 labels,

which fall into six major groups:

• Information exchange: giving and eliciting informa-

tion;

• Possible actions: making or eliciting suggestions or of-

fers;

• Commenting on the discussion: making or eliciting as-

sessments and comments about understanding;

• Social acts: expressing positive or negative feelings to-

wards individuals or the group;

• Other: a remainder class for utterances which convey

an intention, but do not fit into the four previous cate-

gories;

• Backchannel, Stall and Fragment: classes for utterances

without content, which allow complete segmentation of

the material;

We have addressed the tasks of automatically segmenting the

speech into dialogue acts, and assigning a label to each seg-

ment. The segmentation problem is non-trivial, since a single

stretch of speech (with no pauses) from a speaker may com-

prise several dialogue acts—and conversely a single dialogue

act may contain pauses.

Our approach to dialogue act recognition is based on a

switching dynamic Bayesian network architecture which mod-

els a set of features related to lexical content and prosody

and incorporates a weighted interpolated factored language

model [29]. The switching DBN coordinates the recognition

process by integrating all the available resources. The fac-

tored language model, which is learned from multiple conver-

sational data corpora, is used in conjunction with additional

task specific language models. In conjunction with this joint

generative model, we have also employed a discriminative ap-

proach, based on conditional random fields, to perform a re-

classification of the segmented DAs.

We have performed experiments using both automatic and

manual transcriptions. The degradation when moving from

manual transcriptions to the output of a speech recogniser is

less than 10% absolute for both dialogue act classification and

segmentation. Our experiments indicate that it is possible to

perform automatic segmentation into DA units with a rela-

tively low error rate. However the operations of tagging and

recognition into fifteen imbalanced DA categories have a rel-

atively high error rate, even after discriminative reclassifica-

tion, indicating that this remains a challenging task.

5.2. Topic segmentation

Structuring a lengthy meeting by topic (and sub-topic) is a

useful way of navigating a recorded meeting. Similar to di-

alogue act recognition, the aim is to infer automatically the

sequential structure of the meeting; it differs in that the funda-

mental units (topics) are typically many minutes in duration.

Following Galley et al [34], we have explored two ba-

sic approaches to this task [30]. An unsupervised approach,

LCSeg, does not require a training set of hand-marked topic

boundaries, but can automatically infer topic boundaries as

points where the statistics of text change significantly. An

alternative supervised approach learns the topic boundaries,

based on a hand-annotated training set. An advantage of the

supervised approach is that it is possible to use additional fea-

tures relating to prosody (e.g. pauses) and the structure of

the conversation (e.g. speaker overlap). These additional fea-

tures are also relatively independent of errors in the automatic

speech transcription. In addition to locating topic segments,

we have developed approaches to automatically generating la-

bels for topics, based on the statistics of the automatically

transcribed words that make up a topic.

If suitable training data is available (such as the AMI cor-

pus), then it is possible to construct accurate topic segmenta-

tion systems using classifiers such as decision trees or condi-

tional random fields. Both topic segmentation and topic la-

belling are relatively robust to speech recognition, with only

small degradation in performance when comparing speech

recognition output to hand transcriptions.

5.3. Summarization

The automatic generation of summaries provides a natural

way to succinctly describe the content of a meeting, and is

a very natural way for users to obtain information. In AMI

we have investigated two distinct ways of constructing sum-

maries of a meeting. Extractive techniques construct sum-

maries by locating the most relevant parts of a meeting and

concatenating them together to provide a ‘cut-and-paste’ sum-

mary, which may be textual or multimodal. Abstractive sum-

maries, on the other hand, are similar to what a human sum-

marizer might construct, generating new text to succinctly de-

scribe the meeting. Abstractive summarization is more chal-

lenging than extractive summarization, and requires relatively

deep domain knowledge.

Our approach to extractive summarization is based on au-

tomatically extracting relevant dialogue acts from a meeting,

as described in [32]. It thus requires (as a minimum) the au-

tomatic speech transcription and dialogue act segmentation

modules described above. Lexical information is clearly ex-

tremely important for this task, but we have found it beneficial
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to augment information derived from the transcription with

speaker features (relating to activity, dominance and overlap),

structural features (the length and position of dialogue acts),

prosody, and discourse cues (phrases which signal likely rel-

evance). All these features are important to develop accurate

methods for extractive summarization. Furthermore we have

explored reduced dimension representations of text, based on

latent semantic analysis, which also add precision to the sum-

marization. Using an evaluation measure referred to as

weighted precision, we have discovered that it is possible to

reliably extract the most relevant dialogue acts, even in the

presence of speech recognition errors.

We have explored “dialogue act compression”, in which

the extracted dialogue acts are themselves condensed, by re-

moving irrelevant portions [35]. Again, taking account of

speech features such as the overall intonation contour of the

dialogue act helps to improve the overall performance.

6. EVALUATION

We have performed evaluation both at the component tech-

nology level and at the system level, and the AMI corpus was

designed to support evaluation at both levels. At the com-

ponent level, in addition to internal evaluations in a com-

mon setting, we have participated in—and contributed data

to—the the NIST Meeting Recognition (RT) evaluations4 and

the CLEAR evaluations5 of focus of attention and face detec-

tion. Additionally, the AMI corpus, together with automatic

speech recognition output, was provided to the Cross Lan-

guage Evaluation Forum6 (CLEF) for their 2007 evaluation

on cross-lingual question answering.

Collaborative evaluation protocols are under development

for a number of areas including dominance relations, speech

summarization, dialogue act segmentation and tagging. These

tasks are harder to evaluate compared with recognition tasks

with an unambiguous ground truth, and there are several re-

search challenges to address in developing these evaluations,

relating to high inter-annotator disagreement, and the need for

subjective human judgements.

Content extraction tasks, such as summarization or topic

segmentation, are somewhat artificial as a stand-alone task,

and are often carried out within some other context (such as

browsing). In such cases, extrinsic evaluation approaches

may be preferred, in which a task is evaluated in the con-

text of a larger scenario, such as a meeting browser. In AMI

we have developed a framework for extrinsic evaluation of

browser components, that we call the Browser Evaluation Test
(BET) [36]. The BET provides a framework for the compari-

son of arbitrary meeting browser setups, where setups differ in

terms of which content extraction or abstraction components

are employed. The BET consists of a set of experiments in

4http://www.nist.gov/speech/tests/rt/
5http://www.clear-evaluation.org/
6http://www.clef-campaign.org/

which test subjects have to answer true/false questions about

observations of interest for a meeting recording. The test sub-

ject uses the browser under test to answer these questions,

given a time limit (typically half the meeting length).

More recently, we have developed a task-based evalua-

tion [37] that is supported by the design of the AMI corpus.

As outlined above, about 70% of corpus meetings are based

on a replicable design team scenario. In the current version of

the task-based evaluation, a new team takes over for the fourth

meeting, with access to the previous three meetings. The eval-

uation compares team performance in the existing case with

basic meeting records (including powerpoint files, emails and

minutes), with a basic AMI meeting browser, and with a task-

based browser. The task-based evaluation is in terms of both

objective measures such as design quality, meeting duration,

assessment of outcome, and behaviourial measures of lead-

ership, and subjective measures including browser usability,

workload (mental effort), and group process.

7. CONCLUSIONS AND FUTURE WORK

We have provided an overview of our work on the AMI and

AMIDA projects. The major achievements of AMI include:

the development of an instrumented meeting room infrastruc-

ture; the collection, annotation and release of the AMI meet-

ing corpus; the development of a number of audio-video

recognition technologies, in particular speech recognition for

multi-party meetings; the development of multimodal content

extraction approaches; and the development of novel frame-

works for system-level evaluation.

For each of the areas described there are many ongoing

improvements and plans for future work. In general, improv-

ing robustness, speed, and accuracy are important issues, as

well as scaling the techniques to deal with larger amounts of

data. In our current work, we are paying particular attention to

the integration of our existing recognition and content extrac-

tion modules into a framework of “meeting assistants” that

can perform in close-to real-time (i.e., in some cases delays of

several seconds or even minutes may be acceptable). We are

interested in building applications that integrate these tech-

niques for use during, and between, meetings in remote and

co-located settings.
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