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ABSTRACT 

 
Maximum entropy (MaxEnt) models have been used in 
many spoken language tasks. The training of a MaxEnt 
model often involves an iterative procedure that starts from 
an initial parameterization and gradually updates it towards 
the optimum. Due to the convexity of its objective function 
(hence a global optimum on a training set), little attention 
has been paid to model initialization in MaxEnt training. 
However, MaxEnt model training often ends early before 
convergence to the global optimum, and prior distributions 
with hyper-parameters are often added to the objective 
function to prevent over-fitting. This paper shows that the 
initialization and regularization hyper-parameter setting may 
significantly affect the test set accuracy. It investigates the 
MaxEnt initialization/regularization based on an n-gram 
classifier and a TF*IDF weighted vector space model. The 
theoretically motivated TF*IDF initialization/regularization 
has achieved significant improvements over the baseline flat 
initialization/regularization, especially when training data 
are sparse. In contrast, the n-gram based initialization/ 
regularization does not exhibit significant improvements. 
 

Index Terms — Maximum entropy model, TF*IDF, 
vector space model, n-gram classification model, model 
initialization, model regularization.  
 

1. INTRODUCTION 
 
Maximum entropy (MaxEnt) models have been used in 
various tasks related to the spoken language technology, 
including language modeling [1], call-routing [2], and 
confidence measures [3, 4], etc. The training algorithms for 
a MaxEnt model, for example, generalized iterative scaling 
[5] or stochastic gradient ascend [6], involves an iterative 
procedure that starts from an initial parameterization and 
gradually updates it towards the optimum. The MaxEnt 
models have a convex objective function. Hence they 
converge to a global optimum with respect to a training set. 
Because of that, little attention has been paid to the 
initialization of a MaxEnt model. Flat (setting all parameters 
to 0) or random initialization is commonly used. 
 
However, MaxEnt models are seldom trained to converge at 
the global optimum with respect to the training data. Early 

stopping is a common practice to avoid model over-training. 
A cross-validation set is used during the training procedure 
to decide when to stop. Therefore, different initializations 
may end up with different parameterization hence different 
classification accuracy. 
 
In addition to model initialization, regularization terms are 
often added to the MaxEnt objective function to restrict the 
parameters from being astray too much from a specific 
value. Often a zero-mean Gaussian distribution is used as 
the prior for parameters (L2-norm regularization). In other 
words, all features are treated equally a priori. However, if 
there is an oracle that can tell the importance of different 
features, the means of the priors should be set accordingly.   
 
This paper investigates the effect of different model 
initializations and regularization hyper-parameter settings 
on the accuracy of a MaxEnt model for text classification. 
We have studied the initialization and hyper-parameter 
setting with the n-gram classification model and the TF*IDF 
weighted vector space model (Henceforce TF*IDF model). 
Both models can be trained efficiently without an iterative 
procedure. Hence they are suitable for model initialization. 
The TF*IDF model has great success in information 
retrieval and is difficult to beat.  It is discriminative in 
nature and it is very robust. It provides a weight sharing 
mechanism for linear classifiers. Researchers have been 
searching for the theoretical justification for this weighting 
scheme originally proposed as a heuristic [7].  Recent work 
has revealed its relation with a relaxed and much simplified 
MaxEnt model [8].  
 
Preliminary experiments shows that properly scaled TF*IDF 
initialization/regularization has significantly improved the 
classification accuracy in different tasks, while the n-gram 
initialization/regularization for a MaxEnt model does not 
exhibit significant improvement. 
 
The paper is organized as follows: Section 2 introduces 
different linear classification models. Section 3 describes the 
conversion of an n-gram classifier or a TF*IDF model to the 
parameters and hyper-parameters of a MaxEnt model, and 
Section 4 presents some preliminary experimental results. 
Section 5 concludes the paper. 
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2. TEXT CLASSIFICATION MODELS 
 

2.1. MaxEnt Model 

A MaxEnt classifier models the conditional probability 
distribution P |C Q  from a set of features F, where C is a 
random variable representing the classification destinations, 
Q  is a random variable representing input queries. A 
feature in F is a function of C  and Q . The classifier picks a 
distribution P |C Q  to maximize the conditional entropy 

|H C Q  from a family of distributions, with the constraint 
that the expected count of a feature predicted by the 
conditional distribution equals to the empirical count of the 
feature observed in the training data:  

           (1)   
 
 
 
where P̂  stands for empirical distributions in a training set.  

It has been proven that the maximum entropy distribution 
that satisfy Eq. (1) have the following exponential (log-
linear) form and the parameterization that maximizes the 
entropy maximizes the conditional probability of a training 
set of C  andQ  pairs [9]. 

                
(2) 

 

F
exp( ( , ))

i

i i
C f

Z Q f C Q  is a normalization constant, 

and i ’s are the parameters of the model, also known as the 
weights of the features. They can be estimated with an 
iterative procedure that starts from an initial 
parameterization and gradually updates it towards the 
optimum. Examples of such training algorithms include 
Generalized Iterative Scaling (GIS) [5] and Stochastic 
Gradient Ascend (SGA) [6].   

The objective function in (2) is often added with the 
regularization terms to avoid model over-fitting: 

  
 (3) 

 
The regularization terms penalize the parameter i  that is 
too far away from the expected mean value im . Without a 
priori knowledge, im is often set to 0.  

We applied SGA for model optimization. It is easy to derive 
the gradient of the objective function as 
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2.2. N-gram Classification Model 

An n-gram classifier models the conditional distribution 
according to a channel model:   
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Here a class-specific n-gram model is used to model 
P( | )Q C . The n-gram model parameters can be estimated 
with ML on a labeled training set. An n-gram model is often 
smoothed by interpolating with a lower order model. For the 
experiments in this paper, we used the interpolation of 
unigram and bigram models:
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The n-gram classification model is also used for information 
retrieval when each document in a document collection is 
treated as a class c [10]. 
 
2.3. TF*IDF Weighted Vector Space Model 
 
The TF*IDF weighted vector space model is widely used in 
information retrieval (IR). It represents a query (document) 
with a vector q (d). The relevance (or similarity) of the 
document to the query is measured as the cosine between 
the two vectors: 

cos , q dq d
q d

                   

    (7)         

For a document d, each element of its vector is a weight that 
represents the importance of a term (e.g., a word or a 
bigram) in the document. Intuitively, the importance should 
increase proportionally to the number of times a term 
appears in d and decreases when the term appears in many 
different documents. The term frequency tfi d  (TF) is the 
relative frequency of term i in d; the inverse document 
frequency (IDF) is the logarithm of the total number of 
documents divided by the number of documents containing
i : 
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where ( )in d is the number of occurrences of term i in d, and 

D is the entire document collection. The weight for term i  
in the vector is the product of its TF and IDF scores. The 
vector for a query can be defined similarly.  

TF*IDF was originally proposed as a heuristic weighting 
scheme for terms in a query/document. The heuristic works 
extraordinarily well and is difficult to beat. This leads to 
many theoretical justifications for the weighting scheme, as 
introduced in [7]. A justification that is closely related to the 
work in the paper can be found in [8]. It relates the TF*IDF 
weighting scheme to the MaxEnt model. It first generalizes 
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,

0  otherwisec
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f C Q

the MaxEnt by removing the restriction that the objective 
function is a probabilistic distribution and replacing it with a 
nonnegative function. It does so by introducing a KL-
divergence generalized to nonnegative functions. It shows 
that the TF*IDF weight is the optimal weight of a feature in 
such a generalized model (simplified to contain a single 
term feature to enable a closed-form solution) in an 
information retrieval setting where each document is treated 
as the query that retrieves itself. 

Strictly speaking, a TF*IDF model is just a matrix that 
measures the similarity between two entities (e.g., between a 
query and a document) with its originally usage in IR. We 
will show that it can be formalized as a classification model 
in the following session. 

 
3. MAXENT MODEL PARAMETERIZATION 

 
While the MaxEnt model has a convex objective function 
hence a global optimum regardless of the initial parameter 
setting, model initialization can still be an important issue 
due to the early stopping of training and the different 
settings of hyper-parameters for model regularization.  This 
session describes how the parameters from an n-gram 
classification model or a TF*IDF model can be imported by 
a MaxEnt model for model initialization and hyper-
parameter setting. 
  
3.1. Linear Models 
 
The N-gram classifiers, TF*IDF and MaxEnt models all 
have classification boundaries linear to the feature functions. 
This section studies how the decision functions of the n-
gram classification and the TF*IDF model can be explicitly 
expressed as the linear combination of the classification 
features, with the focus on class prior, unigram and bigram 
features that are commonly used in text classification. The 
coefficients of these features can be imported by the 
MaxEnt model for initialization or hyper-parameter setting. 
 
3.1.1. N-gram MaxEnt Initialization 

Eq. (5) can be written with respect to each term t  and term 
bigram ht in the query: 

,
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In the last step of Eq. (8), ;N t q  and ;N ht q , i.e., the 
unigram and bigram counts in q, are written as the value of 
integer unigram and bigram feature functions ,c tf and ,c htf . 

cf  is the class prior feature:  
(9)   

 

According to Eq. (8), logP( )c  should be the weight for the 
class prior feature cf ;  log P( | )t c  is the weight for the 

unigram feature ,c tf ; and (1 )P( | ; )log 1
P( | )

t h c
t c

is the 

weight for the bigram feature ,c htf . 

3.1.2. TF*IDF Vector Space MaxEnt Initialization 

In a TF*IDF model, the cosine score between a class c and 
a query q in Eq. (7) can be written with respect to each term 
t (unlike in the previous section, here t represents both 
unigrams and bigrams in the query. See [8] for the proper 
calculation of bigram IDF values):  

2
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Here since the norm of the query does not affect the 
classification boundary, it gets absorbed by the constant 
factor K. The relative term frequency tft q  is replaced by 
the integer feature value (the number of occurrences of a 
term) , ,c tf c q  because they differ by a constant factor – 
the number of occurrences of all different terms. Because K 
does not change the decision boundary, the weight in this 
linear classification model for the feature  , ,c tf c q  can be 

2
, tf idfc t t tc c

   
(11) 

Eq. (11) can be viewed as a parameter sharing mechanism. 
While there are C T parameters in a linear classification 

model, they all depend on tft c , idft , and c . There are 

only T  and C  parameters for the IDFs and the class 
norms. And the term frequency parameters depend only on 
the rank of a term in a class instead of its identity. Therefore 
all the terms having the same rank in a class (document) 
have their parameters tied. Given the fact that the number of 
different term ranks is much smaller than the number of 
different terms, this may greatly reduce the number of free 
parameters and improve its robustness. 

3.2. MaxEnt Scaling 

For a linear classification model, scaling of its parameters 
by a constant factor will not change the decision boundary. 

215



However, the scaling of model parameters will change the 
value of the MaxEnt objective function. Although the 
theoretical background has been laid in [8] that motivates 
this work, it has made many pre-assumptions that does not 
apply in practical problems. The initial parameterization is 
hardly in the optimal scale for the MaxEnt objective 
function. Therefore we have to first scale the initialization to 
optimize the MaxEnt objective function after it has been 
imported from another linear classifier. Formally, we need 
to find the scaling factor k that maximize  

 
F

1P | exp ( , )
i

i i
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C Q k f C Q
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with the parameters fixed at their imported values. This 
can be done with a gradient based optimization, where 
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3.3. MaxEnt Regularization Hyper-Parameter Setting 
 
Instead of using zero means for the Gaussian priors in Eq. 
(4), im can be initialized with another linear classifier’s 
(oracle’s) parameterization. In doing so, the regularization 
takes into account the importance of features determined by 
a simpler (with fewer free parameters) model instead of 
treating them equally. 

 
4. EXPERIMENTAL RESULTS 

 
4.1. Experimental Settings 
 
We conducted experiments with two different data sets, the 
Air Travel Information System data (ATIS) [11] in the 
public domain and a Microsoft internal product review 
sentiment classification data set. ATIS was originally not a 
classification task. We followed the practice in [12] to use 
the data for call-routing experiments by assigning the main 
database table name in the manually created SQL query 
(available in the NIST ATIS data set) for an utterance as its 
classification destination. There are 14 classes in total. In 
ATIS2 and ATIS3 dataset, 4995 training sentences, 828 
development sentences and 914 test sentences are available 
for our experiments. We used unigram and bigram terms in 
MaxEnt modeling, which yields 98182 distinct features. The 
sentiment classification is a binary classification task with 
two destination classes (positive versus negative.) 22488 
training, 4817 development and 4821 test examples are 
available. Unigram and bigram terms are used, which yields 
520,740 features. 
 
To train the TF*IDF model, we concatenate all examples 
with the same destination class to form a “document”, and a 
TF*IDF weighted vector is constructed to represent the 

class. Similarly, all the examples labeled with the same 
destination class are pooled together to train the class 
specific n-gram model for the n-gram classifier. 
 
For the MaxEnt parameterization with a TF*IDF model, we 
compare the classification accuracies in five different 
settings. The baseline uses the flat initialization where all 
the model parameters and the means for the regularization 
Gaussians are set to 0.  The TF*IDF initialization sets the 
initial model parameters according to Eq. (11) and the 
regularization Gaussian means to 0. The scaled TF*IDF 
initialization sets the MaxEnt parameters according to Eq. 
(11) and then scales the parameters by a factor of k found by 
optimizing the objective function in Eq. (12). The “TF*IDF 
mean” setting sets not only the initial parameters but also 
the regularization Gaussian means according to Eq. (11). 
The “scaled TF*IDF mean” setting sets the parameters and 
the Gaussian means to the scaled values. Similarly, we 
compared the MaxEnt parameterization with an n-gram 
classifier in five settings – flat initialization, non-scaled and 
scaled initialization according to Eq. (8), non-scaled and 
scaled initialization/regularization mean setting according to 
Eq. (8). 
 
For each setting, experiments were conducted with five 
different variances 2 for the regularization prior – ∞ (no 
regularization), 10, 20, 30 and 40. The MaxEnt models are 
trained with early stopping based on the posterior class 
probability on the development sets after the initialization. 
 
4.1. Results 

Table 1 compares the accuracies of the MaxEnt models with 
different TF*IDF parameterization settings on the ATIS test 
data. The accuracies are either lowered or not significantly 
improved when non-scaled TF*IDF parameters was used to 
initialize/regularize the MaxEnt model. With proper scaling, 
both TF*IDF initialization and regularization gets better 
accuracies – three out of five are statistically significant 
with the TF*IDF initialization, and four out of five with the 
TF*IDF regularization. The best TF*IDF initialized model 
(across different prior variances) improves the best baseline 
result significantly too. Table 2 shows the results with n-
gram parameterizations for the MaxEnt model. Again, it 
shows that initialization/regularization without proper 
parameter scaling does not improve the accuracies, while 
fewer statistically significant improvements are observed 
when the parameters are properly scaled, and no significant 
improvement has been observed from the best results over 
all prior variances.  

We also tried to train the models without early stopping 
according to a cross-validation set. The training “converges” 
when the difference of the average log conditional 
probability of the training data between two adjacent steps is 
smaller than 10-7. It took 40% more time for the flat 
initialization to “converge.” However, the flat and TD*IDF 
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initializations did not “converge” to the same point. This can 
be attributed to a very flat region in the parameter space. 
The test set accuracy is 94.30% for the flat initialization and 
95.07% for the TF*IDF initialization. 

2 
 

Flat 
init. 

TF*IDF 
init. 

TF*IDF 
init. 

(scaled) 

TF*IDF 
mean 

TF*IDF  
mean 

(scaled) 
∞ 94.52% 94.41% 95.18% 94.41% 95.18% 
40 94.30% 94.30% 95.29%*† 94.30% 95.40%*† 
30 94.19% 94.30% 95.29%*† 94.19% 95.40%*† 
20 94.19% 93.87% 94.96% 94.52% 95.29%* 
10 93.98% 94.09% 94.96%* 94.41% 95.18%* 

Table 1. Bigram Maxent accuracies on the ATIS test data with 
the TF*IDF parameterizations: the “ 2” column indicates the 
variance of the Gaussian for regularization. The asterisk indicates 
that the improvement over the baseline in the same row is 
statistically significant according to a sign test. † indicates that the 
best results across all 2 has significantly improved the best 
baseline result (94.52%) across all 2. 

2 
 

Flat 
init. 

N-gram 
init. 

N-gram 
init. 

(scaled) 

N-gram 
mean 

N-gram  
mean 

(scaled) 
∞ 94.52% 94.63% 94.63% 94.63% 94.63% 
40 94.30% 94.41% 94.52% 94.41% 94.52% 
30 94.19% 94.74% 94.52% 94.41% 94.63% 
20 94.19% 94.41% 93.98% 94.30% 94.96%* 
10 93.98% 94.74%* 94.85%* 94.19% 94.96%* 

Table 2. Bigram Maxent accuracies on the ATIS test data with 
the n-gram parameterizations. The asterisk indicates that the 
improvement over the baseline is statistically significant. No 
significant improvement has been observed when the best results 
across different rows are compared with the best baseline result. 

2 
 

Flat init. TF*IDF 
init. 

TF*IDF 
init. 

(scaled) 

TF*IDF 
mean 

TF*IDF  
mean 

(scaled) 
∞ 76.80% 76.97%* 77.10%* 76.97%* 77.10%* 
40 76.85% 76.97% 77.10%* 76.97% 77.07%* 
30 76.87% 76.97% 77.10%* 76.97% 77.07% 
20 76.93% 76.97% 77.12% 76.99% 77.12% 
10 76.83% 77.01%* 77.14%* 77.03%* 77.12%* 

Table 3. Bigram Maxent accuracies on the sentiment test data 
with the TF*IDF parameterizations. The asterisk in a cell indicates 
that the improvement over the baseline is statistically significant 
according to a sign test. No significant improvement has been 
observed when the best results across different rows are compared 
with the best baseline result across different rows. 

Similar pattern is observed with the sentiment classification, 
where the TF*IDF initialization/regularization results in 
statistically significant improvement in accuracies in most 
cases when parameters are properly scaled (Table 3). 
However, the best TF*IDF parameterized model across all 

2 does not exhibit significant improvements over the best 
baseline model. Without early stopping according to the 

cross validation data, the flat and TF*IDF initialized model 
with no prior converges to the same point, with the test set 
accuracy at 76.80%. No signification improvements have 
been observed with the n-gram parameterizations at all 
(Table 4). In contrast to the ATIS experiments, the effect of 
regularization is less significant due to the fact that the task 
has fewer destination classes but much more training data. 
Hence the data sparsity is less an issue than the ATIS 
classification task. 
 

2 
 

Flat 
init. 

N-gram 
init. 

N-gram 
init. 

(scaled) 

N-gram 
mean 

N-gram  
mean 

(scaled) 
∞ 76.80% 76.80% 76.80% 76.80% 76.80% 
40 76.85% 76.85% 76.85% 76.85% 76.85% 
30 76.87% 76.87% 76.87% 76.87% 76.87% 
20 76.93% 76.93% 76.93% 76.93% 76.93% 
10 76.83% 76.83% 76.83% 76.83% 76.83% 

Table 4. Bigram Maxent accuracies on the sentiment test data 
with the n-gram parameterizations. No statistically significant 
improvement has been observed. 

2 
 

Flat 
init. 

TF*IDF 
init. 

TF*IDF 
init. 

(scaled) 

TF*IDF 
mean 

TF*IDF  
mean 

(scaled) 
∞ 94 91 494 83 509 
40 113 104 244 69 428 
30 231 88 192 60 389 
20 111 86 174 113 187 
10 101 86 116 146 194 

Table 5. Training time (in seconds) of different TF*IDF MaxEnt 
parameterization settings with the ATIS data. 

2 
 

Flat 
init. 

N-gram 
init. 

N-gram 
init. 

(scaled) 

N-gram 
mean 

N-gram  
mean 

(scaled) 
∞ 94 88 282 104 209 
40 113 65 233 82 339 
30 231 92 273 64 222 
20 111 99 259 64 184 
10 101 97 257 118 269 

Table 6. Training time (in seconds) of different n-gram MaxEnt 
parameterization settings with the ATIS data. 

2 
 

Flat init. TF*IDF 
init. 

TF*IDF 
init. 

(scaled) 

TF*IDF 
mean 

TF*IDF  
mean 

(scaled) 
∞ 2746 2908 2161 2069 2322 
40 2575 3106 3438 2602 3433 
30 2233 2448 3253 2070 2425 
20 2224 2853 2404 2533 3006 
10 2254 2477 2914 2469 3623 

Table 7. Training time (in seconds) of different TF*IDF MaxEnt 
parameterization settings with the sentiment classification data. 
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2 
 

Flat init. N-gram 
init. 

N-gram 
init. 

(scaled) 

N-gram 
mean 

N-gram  
mean 

(scaled) 
∞ 2746 2039 2519 2563 2448 
40 2575 2803 2233 1870 2918 
30 2233 3019 2243 2928 2541 
20 2224 2918 2467 3130 2466 
10 2254 3014 2963 2404 2528 

Table 8. Training time (in seconds) of different n-gram MaxEnt 
parameterization settings with the sentiment classification data. 

Table 5~Table 8 compare the training time of different tasks 
with different parameterization settings. For the ATIS task, 
the scaling of the imported parameters greatly increases the 
training time, while the direct import without scaling does 
not have an obvious impact on the training speed. The 
impact of model scaling on training speed is less obvious 
with the sentiment classification data, where the much 
bigger training set and feature space make the MaxEnt 
training after initialization take much longer time, so the 
fraction of time spent on initial parameter scaling is much 
smaller in the entire training process. 
 

5.  DISCUSSIONS AND CONCLUSIONS 
 

The TF*IDF weighted vector space model is very robust in 
comparing the similarity between a query and a document. 
In terms of text classification, each document forms a class 
of its own and the model assigns a class to a query 
according to their similarity. In this case, there is only one 
example for each class. The robustness (may be partly 
attributed to the weight sharing mechanism described in 
subsection 3.1.2) and the discriminative power of the 
TF*IDF model makes it difficult to beat. On the other hand, 
the MaxEnt model works much better in text classification 
when there are much more examples available for each 
class. When data are sparse but more than one per class, the 
TF*IDF parameterization improves the robustness of the 
MaxEnt model. This explains the more significant 
improvements on the ATIS data than the sentiment data, 
since the latter has much more examples per class.  
 
We have shown that the initialization and hyper-parameter 
setting can have a significant impact on the test set accuracy 
of a MaxEnt model. While the TF*IDF initialization and 
hyper-parameter setting for MaxEnt models have improved 
the classification accuracy on test data significantly, less 
improvements have been observed from the n-gram MaxEnt  
initialization/hyper-parameter setting. We believe this may 
be attributed to the robustness and the discriminative nature 
of the TF*IDF vector space model and its parameter tying 
mechanism that reduces the number of free parameters. We 
have also discovered that the proper scaling of the 
initialization parameters is crucial in achieving the gains in 
classification accuracy. 
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