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ABSTRACT
This paper compares six algorithms for call classi cation in
the framework of a dialog system for automated troubleshoot-
ing. The comparison is carried out on large datasets, each
consisting of over 100,000 utterances from two domains: Tele-
vision (TV) and Internet (INT). In spite of the high number of
classes (79 for TV and 58 for INT), the best classi er (maxi-
mum entropy on word bigrams) achieved more than 77% clas-
si cation accuracy on the TV dataset and 81% on the INT
dataset.

Index Terms— call classi cation, automated trouble-
shooting, large corpora

1. INTRODUCTION

State-of-the-art dialog systems for automated troubleshooting
feature a very high complexity involving hundreds of caller-
system interactions and human-agent-like problem solving be-
haviour [1]. Due to the large variety of call reasons such sys-
tems are able to handle, the identi cation of the call reason
becomes an important issue. So far, most automated trou-
bleshooting solutions have used either dual-tone multi-fre-
quency signaling [2] or directed dialogs for call classi cation.
Directed dialogs are driven by multiple choice questions, in
which the user is prompted to respond with one from a small
set of responses. However, a directed dialog is not practical
for the task at hand for several reasons:

• The number of call reasons, or classes, is much too
large to be handled in a single directed dialog. Due
to short-term memory limitations, it would be impos-
sible to ask the caller to choose one out of 79 distinct
choices. Even a hierarchically structured directed dia-
log would prove unwieldy with such a large number of
classes.

• Callers often describe their problems using their own
words, which might not be covered by the rule-based
grammars typically used in conjunction with directed
dialogs.

• Callers might not understand the terms used in a di-
rected dialog. For example in response to the prompt:

corpus utterances classes
Gorin at al. [3] (1997) 010,000 15
Carroll and Carpenter [4] (1999) 003,753 23
Kuo and Lee [5] (2000) 004,000 23
Haffner et al. [6] (2003) 034,997 48
Goel at al. [7] (2005) 033,274 35
TV 100,202 79
INT 137,570 58

Table 1. Comparison of corpora used in literature on call
classi cation and those used in the current study.

Do you have a hardware, software, or con guration
problem?, they may respond unexpectedly (My CD-
ROM does not work!), ask for help or an operator, etc.

In the late 90s, Gorin et al. [3] proposed the use of a statistical
classi er to overcome these challenges. It is based on an open
prompt, allowing the callers to freely describe the problem in
their own words. For the current experiments, the utterances
are all taken from callers’ responses to the prompt: Please
describe the problem you’re having in one short sentence.

For training, a large number of utterances was collected
from the two troubleshooting domains: Television (TV) and
Internet (INT). The utterances were taken from customer sup-
port calls to an automated dialog system. They were manually
transcribed and classi ed into one of several distinct call rea-
sons that are acted upon by the dialog system, such as Chan-
nelMissing for TV or CantLoginPasswordEmail for INT (for
the corpus statistics, refer to Section 2).

Compared to previous studies reported in the literature,
both the amount of training data and the number of classes
in the current study are substantially larger. Table 1 shows
a breakdown for corpora used in other similar systems and
those presented in this study (TV and INT).

The training pairs consisting of the utterance and its corre-
sponding class are then used to train a statistical model, which
later, in the application phase, is used to determine the most
likely class for a new caller utterance. This paper compares
six algorithms for call classi cation:

• Na¨ve Bayes,
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• bag-of-words matching + Na¨ve Bayes,

• Na¨ve Bayes + boosting,

• decision trees,

• balanced winnow,

• maximum entropy.

These algorithms are brie y discussed in Section 2. Then, in
Section 3, the corpora used in this study and the experimental
framework are described, and detailed results of the experi-
ments are reported. Section 4 discusses these outcomes taking
the speci cs of the corpora and algorithms into account.

2. OVERVIEW OF CLASSIFIERS

This section provides a brief overview of the classi cation
algorithms that were compared. The rst two methods (bag-
of-words matching and Na¨ve Bayes) were implemented by
the authors. The next three were selected because they were
the three top performing classi ers from MALLET, a Java-
based machine learning package tailored to natural language
processing [8]. Finally, we implemented a boosting algorithm
on several of the classi ers.

2.1. Data Representation

For all of the classi ers (except for the bag-of-words match-
ing), each utterance was represented as a feature vector in
which there was one feature for each lexical type (distinct
word) in the dataset for the given domain. The values of the
features are the token counts for each word that is present in
the output of the speech recognizer deployed in the automated
system. If a type is not represented, then the feature value
is 0. Since most utterances only contain a single instance of
any type, this method often results in binary-valued feature
vectors. Furthermore, the feature vectors are sparse, since, on
average, there are only about ve types with non-zero counts
out of a feature vector with more than 4,000 components rep-
resenting the corpus vocabulary (see Table 2 for the corpus
statistics).

As experience from other natural language processing
tasks such as language modeling suggests, not only the pres-
ence or pure counts of word should be taken into account,
but also contextual information. Therefore, we also included
word bigrams and trigrams as features. This increased the
number of features as reported in Table 2.

2.2. Bag-of-Words Matching

As mentioned above, most of the utterances in the dataset are
quite short, with an average of 5.1 words per utterance for
the TV corpus and 4.4 for INT. Furthermore, due to the na-
ture of the troubleshooting task, many of the utterances re-
cur frequently. As an extreme example of this, over 50% of

the utterances in a frequently occurring TV class are identi-
cal. For such cases that have been seen in the training data,
the simplest classi er would construct a rule mapping the test
utterance to the class provided for the identical training utter-
ance. We refer to this as matching. The existence of a large
amount of annotated training data makes this approach viable
for at least part of the corpus.

In order to reduce redundant information and enable the
classi er to match a larger percentage of the test utterances,
we transformed utterances into their bag-of-words represen-
tation by performing the following steps:

• Stop words were removed according to a list including
38 function words.

• The remaining words were stemmed using the Porter
stemmer algorithm [9].

• Multiple occurrences of words were eliminated.

• The order of the words was regularized by an alphabetic
sort.

2.3. Na¨ve Bayes

The goal of the Na¨ve Bayes classi er is to provide the most
likely class label, ĉ, from a set of class labels, C, given an ut-
terance expressed by the word sequence wN

1 := w1, . . . , wN :

ĉ = argmax
c∈C

p(c|wN

1 ). (1)

Using Bayes’ Rule, this can be rewritten as:

ĉ = argmax
c∈C

p(wN
1 |c)p(c)

p(wN
1 )

. (2)

Since the term p(wN
1 ) remains constant, it can be removed

from Equation 2. Finally, the classi er uses the Na¨ve Bayes
conditional independence assumption to determine p(wN

1 |c).
This assumes that the probability of the utterance given a class
is simply the product of the probabilities of each word in the
utterance given the class, yielding:

ĉ = argmax
c∈C

p(c)
N∏

n=1

p(wn|c). (3)

Both the prior probability, p(c), and the conditional prob-
ability p(w|c) are estimated by using the maximum likelihood
estimate based on the training data. In our implementation of
the Na¨ve Bayes classi er we applied Laplacian smoothing
with a oor value of 0.1.

2.4. Balanced Winnow

Balanced winnow is an online, mistake-driven learning algo-
rithm [10], [11]. The classi er proceeds by taking the dot
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product of the feature vector x for the test utterance and a
weight vector ω for each class:

ĉ = argmax
c∈C

x · ωc. (4)

If ĉ is incorrect, the weight vector for the correct class
is updated by multiplying each component corresponding to
a non-zero feature in the feature vector by a constant 1 + ε,
and the weight vector for the incorrect class by 1 − ε, with
0 < ε � 1. This procedure is conducted for multiple itera-
tions over the training data.

2.5. Maximum Entropy

The maximum entropy paradigm [12] expresses the probabil-
ity p(c|wN

1 ) introduced in Equation 1 by applying the follow-
ing multiplicative decomposition

p(c|wN

1 ) =

∏
n

α(c|wn)

∑
c′

∏
n

α(c′|wn)

=

∏
w

αN(w)(c|w)

∑
c′

∏
w

αN(w)(c|w)

=

exp

[∑
w

N(w) log α(c|w)

]

∑
c′

exp

[∑
w

N(w) log α(c|w)

] . (5)

Performing the argmax operation of Equation 1 ignoring the
terms which are constant with respect to c, yields

ĉ = argmax
c∈C

∑
w

N(w) log α(c|w). (6)

This expression includes the variables

• N(w), the count of a word type in the utterance. The
general principle of maximum entropy, however, allows
for arbitrary (binary, integer, or real-valued) features to
be used instead of the raw word count. In this paper’s
investigations, we used both word counts and bigram
counts as features.

• α(c|w) with α(c|w) ≥ 0 and
∑
c

α(c|w) = 1, which are

parameters depending on the class c and the particular
word w. These parameters are estimated in training us-
ing algorithms like generalized iterative scaling [13] or
the Broyden-Fletcher-Goldfarb-Shanno [14, 15, 16, 17]
method, the latter being used in this study as it was ob-
served to be more ef cient [18].

2.6. C4.5

C4.5 is a decision tree classi er [19]. It constructs a branch-
ing tree consisting of a set of features to test and the most
likely class given the decision. The feature to test at each
node is determined by calculating the maximum information
gain over all possible splits. The information gain for split-
ting at a feature is de ned as the difference in entropy of the
distribution before the split H(D) and the weighted sum of
the entropies of the nodes after the split (for a split that has K

possible outcomes):

IG = H(D) −
K∑

k=1

|Dk|

|D|
× H(Dk). (7)

In order to make the classi er training computationally
tractable, feature selection was conducted rst on the datasets.
The maximum number of features, which the algorithm could
handle in a reasonable amount of time (about 24 hours on a
3 GHz Intel Xeon processor and 2 GB of memory) on the
full dataset was determined to be 50. Two methods of fea-
ture selection were used: χ2 and TFIDF [20]. Both produced
similar results; the C4.5 results reported below used χ2 for
feature selection.

2.7. Boosting

Boosting is an on-line learning algorithm in which the re-
sults of several classi ers (weak learners) are combined, as
a function of each classi er’s accuracy, to form a weighted
majority prediction rule. The boosting algorithm used in the
current experiments is AdaBoost.M2 (also implemented in
MALLET), which is speci cally designed for multiclass clas-
si cation tasks. The boosted classi er’s decision is deter-
mined by the equation (see [21] for details):

ĉ = argmax
c∈C

T∑
t=1

(log
1

βt

)ht(x, c). (8)

This expression includes the variables:

• t = 1, . . . , T , the round of boosting in which the weight
vector over the weak learner is updated as a function of
each weak learner’s accuracy

• ht, a hypothesis from the weak learner in the form of a
vector X×C → [0, 1] with a con dence score for each
class

• βt, a variable determined by the pseudo-loss of the hy-
pothesis

3. EXPERIMENTS

In this section, we describe the characteristics of the auto-
matic troubleshooting corpora and report on the experimental
results of the classi er comparison.
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Fig. 1. Frequency distribution of the classes.

TV INT
training utterances 091,746 125,665
test utterances 008,456 011,905
classes 000,079 000,058
average words per utterance 00005.1 00004.4
features (1grams) 004,125 004,475
features (1+2grams) 040,176 070,469
word error rate 00031.0 00032.7

Table 2. Corpus statistics. The word error rate concerns the
output of the speech recognition.

3.1. Corpora

The classi cation tests were conducted on a 90 / 10 split of
each corpus into training and testing partitions. Table 2 shows
the number of utterances in the training and test partitions for
the full data sets.

The partitions were constructed such that the per-class
distribution in each partition re ects the distribution in the
corpus as a whole, i.e. if a class contains 2% of the overall
utterances, then it will also contain 2% of the training and 2%
of the test utterances. This was done to ensure that none of the
classes would be omitted from the test set by a purely random
sampling (a few of the least frequent classes in each dataset
contain fewer than 0.1% of the overall utterances).

This method of splitting the dataset was compared with a
10-fold cross validation on the INT dataset using a purely ran-
dom 90 / 10 split for each iteration. The average performance
of the 10 rounds was identical to the performance on the sin-
gle dataset with the balanced 90 / 10 split (77.3% using the
boosted na¨ve Bayes classi er), thus demonstrating that this
method of partitioning the data hardly in uences the results.

Figure 1 shows the utterance counts per class sorted by de-
scending class rank. The distribution is nearly Zip an, except
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Fig. 2. Macroaveraged F1 measure as a function of total cor-
pus coverage by the classes covered until that point.

for the fact that the most infrequent classes are too sparsely
represented.

3.2. Results

Tests were conducted on the datasets in Table 2 using all of
the classi cation methods described in Section 2. Additional
tests were conducted on smaller subsets of the TV corpus in
order to see how the performance for each classi er changes
with increased training data.

The accuracy is measured by overall percentage of cor-
rect classi cations out of all test utterances. In general, the
performance per class is better for the classes that are better
represented in the datasets, as would be expected. However,
the classes that have extremely poor performance only make
up a small part of the dataset, as is shown in Figure 2 for
the boosted na¨ve Bayes classi er. Here, we use the F1 mea-
sure [22] for each class as de ned by:

F1 =
2 · precision · recall

precision + recall
. (9)

The x-axis displays the percentage of utterances in the cor-
pus that are covered by the classes until that point, ordered by
decreasing frequency. The y-axis displays the macroaveraged
F1 measure for those classes. For example, the two most fre-
quent classes in the TV corpus comprise 26.6% of the entire
corpus, and they have an average F1 of 0.89.

Figure 3 displays how the performance of the six classi-
ers improves with increasing amounts of training data. The

sizes of the training sets are approximately 1000, 2000, 5000,
10000, 20000, 50000, 100000 utterances (the exact numbers
differ slightly due to the fact that per-class distributions were
preserved). All of these tests were performed on the test set
of the TV corpus as speci ed in Table 2. Table 3 shows the
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Fig. 3. Classi cation accuracy on the TV corpus as a function
of amount of training data for the compared classi ers.

Classi er TV INT
Na¨ve Bayes 69.9 72.7
BOW + Na¨ve Bayes 74.1 75.5
C4.5 73.5 78.7
Boosted Na¨ve Bayes 74.9 77.3
Balanced Winnow 74.1 79.6
Maximum Entropy 77.2 81.2

Table 3. Comparison of the classi cation accuracy on full
training set for TV and INT corpora. BOW stands for bag-of-
words matching.

results for the TV and INT corpora using the full train and test
sets.

4. DISCUSSION

As the main outcome of the experiments reported in Figure 3
and Table 3, the performance of the maximum entropy clas-
si er stands out. It consistently outperformed the competi-
tors in all our experiments including all sets of corpora and
n-gram order. This result agrees with experience from other
classi cation tasks in natural language processing such as text
categorization [23], part-of-speech tagging [24], or named en-
tity recognition [25].

.
Bag-of-Words Matching. In spite of the large amount of
training data used in this study, a certain number of the test ut-
terances correspond to bag-of-words representations that have
not been seen in the training data. Consequently, for this part
of the data, another classi cation algorithm must be applied;
in this paper, we decided to use the Na¨ve Bayes classi er,
described in Section 2.3, as the back-up classi er, since both
algorithms can be integrated very easily. Table 4 shows the

[%] TV INT
percentage of BOW seen in training 63.2 73.7
BOW accuracy on BOW data 88.3 85.1
maximum entropy accuracy on BOW data 88.6 89.0

Table 4. Results of bag-of-words matching compared to max-
imum entropy.

TV INT
utterances 100,202 137,570
bags of words 039,057 037,197
ambiguous bags of words 001,023 000,724

Table 5. Corpus statistics on bags of words with ambiguous
classes.

percentages of test utterances whose bag-of-words represen-
tation has been seen in training. It also reports the classi -
cation accuracy of the bag-of-words matching limited to the
cases seen in training.

Unfortunately, the bag-of-words matching accuracy does
not achieve 100% due to the following reasons:

• Speech recognition errors (cf. Table 2) lead to erro-
neous bags of words and potentially wrong classes.

• Annotator inconsistency (changes in annotation guide-
lines, annotation errors) creates false ambiguity.

The bag-of-words paradigm is based on the assumption
that there is a non-ambiguous mapping from a given bag of
words to a single class. In order to test this assumption, the
training utterances of the corpora were collapsed into bags of
words and those cases which mapped to more than one class
were isolated. Table 5 reports the outcomes of this test.

These non-ambiguous cases could be due to a weakness of
the bag-of-words approach, which assumes that only redun-
dant information is removed in converting an utterance to its
bag-of-words model. Therefore, all these cases were given to
a human annotator for review. At the date of this publication,
this review process is still in progress; however the already
completed cases suggest that the vast majority of the ambigu-
ous cases are due to inconsistent annotations. Only very few
cases have been found in which two utterances belonging to
different classes result in identical bags of words. One ex-
ample involved the following two utterances from different
classes: “cancel a call” (Appointment) and “calling to cancel”
(ServiceCancel). Both of these utterances were compressed
to the bag of words “call cancel”, and thus the bag-of-words
classi er is not able to correctly distinguish them.

.
Maximum Entropy and Context. Interestingly, it turns out
that the maximum entropy classi er outperformed bag-of-
words matching even on the set of utterances whose bags of
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50,000 100,000
1gram 76.04 76.71
1+2gram 76.34 77.18
1+2+3gram 76.38 –

Table 6. Applying bigrams and trigrams as features to maxi-
mum entropy.

words have been seen in training, as shown in Table 4. Maxi-
mum entropy obviously features superior characteristics con-
cerning data inconsistencies and recognition errors.

It also takes context into account: as mentioned in Sec-
tion 2.1, we ran experiments expanding unigrams to bigrams
and trigrams extending the number of features used for the
classi cation. Table 6 shows results on TV data. This time, a
corpus variant comprising 50,000 utterances was used, since
the test framework suffered memory problems when applying
trigrams to the full 100,000 training utterances.

Enhancing unigrams by bigrams increases the performance
slightly, between 0.3% and 0.4%. Further extending the n-
gram order does not seem to show an effect. At any rate, it
seems that context, and consequently word order, plays a cer-
tain role distinguishing between classes.

.
Boosting. Attempts were made to improve the classi er per-
formance through boosting. [26] demonstrates that boosting
improves the performance of a C4.5 classi er on a wide vari-
ety of datasets, and [27] shows improved performance specif-
ically for text categorization.

In our experiments, however, boosting only showed im-
proved performance on the complete datasets with a Na¨ve
Bayes classi er. The best results were obtained with 550
rounds of boosting, and are reported in Figure 3.

For the other classi ers, boosting showed no improve-
ment, often even a slight decrease in performance when the
entire training set was used, likely due to over tting of the
training data. For smaller data sets, all classi ers did show
some improvement with boosting. But when the training cor-
pus is large and the classi er is strong enough, our results
suggest that boosting is not helpful.

5. CONCLUSION

This paper reported on call classi cation experiments on large
corpora comparing six classi cation algorithms. The most re-
markable outcome is that the maximum entropy approach out-
performed all other classi ers on all data sets. Furthermore,
it turned out that boosting does not help on the large data sets
investigated except for the Na¨ve Bayes classi er.
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