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ABSTRACT

We perform topic-based, unsupervised language model adap-
tation under an N-best rescoring framework by using previous-
pass system hypotheses to infer a topic mixture which is used
to select topic-dependent LMs for interpolation with a topic-
independent LM. Our primary focus is on techniques for im-
proving the robustness of topic inference for a given utterance
with respect to recognition errors, including the use of ASR
confidence and contextual information from surrounding ut-
terances. We describe a novel application of metadata-based
pseudo-story segmentation to language model adaptation, and
present good improvements to character error rate on multi-
genre GALE Project data in Mandarin Chinese.

Index Terms— language model adaptation, topic model-
ing, unsupervised adaptation, speech recognition, story seg-
mentation

1. INTRODUCTION

For over 20 years, statistical n-gram-based language models
have been an effective way to model human language for tasks
in both speech-to-text (STT) and information retrieval (IR)
applications. Even so, the technique has its weaknesses, most
notable of which is an inability to handle long-range context.
Essentially, each language model is trained for a single domain;
hence if the test data comes from multiple domains, the best
such language model we can come up with is a “jack of all
trades, master of none” language model. That is, a language
model that performs tolerably for everything, and excellently
for nothing.

Fortunately, word co-location-based techniques such as
Latent Semantic Analysis (LSA) and its derivatives Proba-
bilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet
Allocation (LDA) offer us the tools to explicitly model coarse-
grain language context, or topics [1] [2] [3]. In consequence
we have a well-founded mechanism for performing language
model adaptation, where we somehow guess the topic — or
some mixture thereof — of a piece of text and use that knowl-
edge to adjust the language model to fit.

We propose an unsupervised topic-based language model
adaptation scheme that extends and improves on previous work
[4] by making run-time topic inference more robust to recogni-
tion errors. Using a topic model we perform an utterance-level
decomposition of a heterogeneous text training corpus into
many topic-specific text corpora, each of which is used to esti-
mate a corresponding topic-specific n-gram language model.
We demonstrate ways to segment a sequence of consecutive
utterances into topical context windows and use these windows
to recover from the recognition errors in system hypotheses
when performing topic inference on each consistuent utter-
ance. The inferred topic mixture is then used to select a set of
relevant topic LMs for interpolation with a topic-independent
background language model and also to set the interpolation
weight for each topic LM. We perform language model adap-
tation under an N-best rescoring framework.

2. RELATED WORK

One of the earliest attempts to perform language model adap-
tation was the cache-based technique, which boosts the prob-
abilities of words recently observed [5]. This technique was
then generalized using trigger pairs, in which the observation
of certain “trigger” words increases the probability of seeing
correlated words [6].

Another well-known approach is the sentence-level mix-
ture model, which used topics identified from a heterogenous
training corpus by automatic clustering [7]. Improvements
were demonstrated in both perplexity and recognition accuracy
over an unadapted trigram language model.

The story topic-based approach to large-scale, fine-tuned
language model adaptation [8] is similar to ours in the con-
struction of a set of topic LMs from a heterogeneous train-
ing corpus and their linear interpolation with a background
language model. Their approach differs from the proposed
approach in three primary ways: (1) manually-defined arti-
cle keywords are taken as topic labels; (2) TF-IDF and naive
Bayes classifiers are used for topic inference; and (3) a large
(5000) number of topics are defined, while the experiments
reported here use 64.

The approach described in [9] uses both a mixture-based
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model and an exponentially decaying cache to adapt a trigram
language model. Our approach could be seen as a refinement
of the general ML-based mixture model using the MAP-based
Latent Dirichlet Allocation (LDA) topic model, with special
emphasis placed on robust topic inference given unreliable
data.

A state-of-the-art approach to language model adaptation
is [10] [11], where the background language model is adjusted
to fit a set of LDA or Latent Dirichlet-Tree Allocation (LDTA)
based marginals. This work boasts an elegant formulation and
appears to be very efficient; we believe there could be room
for even greater improvement by adapting the background
language model according to n-gram-based — as opposed to
unigram-based — constraints.

Another recent approach is described in [12], where they
report on techniques for unsupervised language model adap-
tation for the broadcast conversation transcription task. They
investigate the effect when small amounts of in-domain (i.e.,
broadcast conversation) data are added to a large, general-
domain (i.e., broadcast news) LM training corpus, and per-
form a valuable comparison of PLSA- and LDA-based LM
adaptation, concluding that there is little difference between
the two methods in terms of character error rate.

In contrast to the above two approaches, the proposed
method decomposes the background LM into topic LMs using
utterance-level n-gram counts. As such, the proposed method
is different from all such approaches that directly manipulate
the background LM according to some unigram distribution
based on the adaptation text.

This approach is also conceptually simpler than a recent
work on language model adaptation for lectures using HMM-
LDA [13], for example, in that no distinction is made between
syntactic and semantic states.

3. METHODOLOGY

The proposed approach has four main components: two per-
formed off-line and two on-line. The off-line components
are topic model training and topic language model estima-
tion, while the two on-line components are topic inference and
language model interpolation. Also, it should be noted that
while our experiments were all performed using the LDA topic
model, the approach is in fact independent of the topic model
type used.

3.1. Topic Model Training

Latent Dirichlet Allocation is a generative, probabilistic model
characterized by the two sets of parameters α and β, where
α = [α1α2 · · ·αk] represents the Dirichlet parameters for the
k latent topics of the model, and β is a k×V matrix where each
entry βij represents the unigram probability of the jth word in
the V -word vocabulary under the ith latent topic. As described
in [4], the iterative LDA topic inference algorithm takes as
input a bag (or set) of words w and an initial topic mixture

θ[0] and returns a vector θ = [θ1θ2 · · · θk] containing the topic

mixture weights. The initial topic mixture θ[0] corresponds
to the topic distribution of the topic model’s original training
corpus.

Since LDA is a supervised model, and we are not generally
supplied with labeled training corpora, we construct one in
an unsupervised manner using PLSA. We then train the LDA
model using the PLSA-derived topic-document mappings as
an initial model.

3.2. Topic Language Model Estimation

After training our topic model, we proceed to classify each
individual utterance in the training corpus as belonging to one
of the k topic corpora as follows: for each such utterance, we
infer the topic mixture θ from which we choose the topic with
the maximum weight, and append the utterance to this topic’s
corpus. We then use the resulting k topic-specific corpora to
train each topic LM1. In our experiments, the SRILM toolkit
was used for all language model training and interpolation
[14].

3.3. Robust Topic Inference

As in many other unsupervised language model adaptation
schemes, we use previous-pass system hypotheses as our adap-
tation text from which we determine in what “direction” the
language model should be adapted. Various previous works
have demonstrated the problem of erroneous hypotheses: the
errors we seek to recover from often lead our adapted lan-
guage models astray and thus result in severely degraded per-
formance. Hence the primary focus of this work is how to
compensate for this. How do we improve the robustness of
unsupervised language model adaptation — in our case, how
do we design our topic inference mechanism to keep the good
and throw out the bad? Or, equivalently, how do we pull the
LM only toward those topics represented by the parts of the
hypothesis that we are confident about, and not toward the
topics represented by the parts we are unsure of?

When using the LDA topic model, a straightforward ap-
proach to improving the robustness of topic inference is to alter
the topic inference algorithm (1) to allow for arbitrary initial
topic mixtures and (2) to allow for bags of arbitrarily-weighted
words, as opposed to the conventional bags of uniformly-
weighted words.

3.3.1. Custom Prior Mixtures

When we want to infer a topic mixture for a word sequence

w, we start from the initial topic mixture θ[0] and iteratively
adjust the mixture according to the words in w until the mix-
ture converges [4]. In some cases, we believe that this initial
mixture may be unnecessarily broad. For instance, if we want
to infer the topic mixture for the utterance u, and we happen

1Note the distinction between topic LMs, which are highly tar-
geted toward a single topic, and the background LM, which is a
general-domain, topic-independent LM.
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to know that the set of utterances in question is mostly about
sports, it makes sense to bias the initial mixture accordingly.

In an unsupervised framework, this could be as simple as

inferring a topic mixture θ̂u for the utterances surrounding the
utterance u — its topical context window — and using that
topic mixture as an initial topic mixture — or a prior topic
mixture, in Bayesian parlance — for the inference algorithm
when inferring u’s topic mixture. This corresponds to replac-
ing the LDA model’s α vector with one of our own choosing

by replacing θ[0] =
[

α1
αsum

α2
αsum

· · · αk

αsum

]
with θ[0] = θ̂u.

The resulting challenge becomes defining the topical con-
text window: smaller such windows tend to reinforce the
recognition errors we seek to recover from, while larger win-
dows take us back to the original problem of unnecessarily
broad initial mixtures.

3.3.2. Topical Context Window Segmentation

Optimal topical context window segmentation results in rea-
sonable prior mixtures for every consistuent utterance; as such,
these segments should match the division of stories, or topics,
within the input set. There are two types of segmentation:
content-based and metadata-based, where content refers to the
contents of a given utterance and metadata refers to informa-
tion about the utterance. In this work we do not report on
content-based schemes.

In our experiments, since the corresponding filename for
the N-best list of each utterance contained useful metadata,
we used metadata-based segmentation. The filename contains
the elements PROGRAM, START, and END, where PROGRAM
refers to program names such as “CCTV4 DAILYNEWS
2006/11/13”, and START and END refer to the start and end
timestamps of the utterance in question. We define the timegap
between two consecutive utterances ui and ui+1 as the differ-
ence between the end timestamp of ui and the start timestamp
of ui+1. Clearly, segments should be broken at explicit pro-
gram breaks; we may additionally break segments when the
timegap is greater than a threshold, because this may indicate
deleted commercials or the like that could indicate a change
of context.

3.3.3. Custom Word Weights

Under the LDA model, we assume that each word is an equally
reliable observation and thus the posterior probability of each
word in β has equal weight in determining the topic mixture.
However, this assumption does not hold when using erroneous
data for inference. By relaxing the assumption of uniform

reliability, we can replace θ
[t+1]
i = 1

M

∑M
n=1 κni with

θ
[t+1]
i =

1∑M
j=1 γj

M∑
n=1

γnκni,

where γn is the weight for word wn. With this alteration, we
can use whatever confidence information we have from the
previous-pass recognition system as an estimate of the relative
reliability of each word in w.

3.3.4. Weighted N-Best Topic Inference

In particular, for our experiments, the N-best lists outputted
from the recognition system contained acoustic model and
language model scores AMl and LMl for each hypothesis l.
We estimate the confidence value γn for each distinct word wn

appearing in the N-best list in the following way: for each oc-

currence of wn in the N-best list, we add post
conf
wcl

l to γn, where
postl and wcl are the posterior probability and word count
for hypothesis l. conf is the confidence weight for N-best
topic inference: at conf = 0 words are weighted only by their
frequency in the N-best list and at conf = 1 they are weighted
according to posterior probability. The posterior probability
is computed from the acoustic and language model scores as
postl = AMl + lmw ∗LMl. In the reported experiments, the
language model weight lmw was set to 6.5.

3.3.5. Utterance Decay

When we seek to infer the topic mixture for a given utter-
ance, we generally consider only the words in the given ut-
terance. However, it makes sense to also consider the words
in surrounding utterances (provided they are within the topi-
cal context window), because words mis-recognized for the
given utterance may be recognized correctly in surrounding
utterances; doing so more closely reflects the way humans use
context to recover from recognition errors. Moreover, we can
weight these surrounding words by a decay factor, presumably
such that the words from the given utterance are assigned the
greatest significance.

Thus we use utterance decay to specify the weights given
to words in surrounding utterances. Where ui is the utterance
whose topic mixture we wish to infer, the weight for each of the

words in utterance uj when inferring θui
is set to decay |i−j|.

Note that these weights are independent of the confidence
weights described in Section 3.3.4.

Hence a decay of 0 would correspond to the approach
described in our previous work, where surrounding utterances
are totally ignored, while a decay of 1 would correspond to
the same topic mixture being inferred for each utterance in the
topical context window, which would mean the same adapted
LM is used for all utterances in a given topical context window.

3.4. Language Model Interpolation

Once we have determined the topic mixture for a given utter-
ance u, we can proceed to adapt the language model and use
it to rescore the corresponding N-best list. Here we use the
topic mix threshold weight tmtw parameter as a threshold for
assembling a set of relevant topic LMs. Thus, where λB is
the (static) interpolation weight for the background LM, the
interpolation weight λi for topic i’s LM is set to

λi = (1− λB)
λ′i∑k

j=1 λ′j
, where λ′i =

{
0 if θi < tmtw

θi otherwise.
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Source Name Stories Utterances

GALE 42,265 858,871
Chnews — 8225
Downloaded-Web-Data 362,630 5,964,747
Giga 2005T14-cna — 17,868,725
Giga 2005T14-xin — 13,815,340
Giga 2005T14-zbn — 802,485
MTC123 — 2528
TDT[234] 2585 733,738

TOTAL 407,480 40,054,659

Table 1. Broadcast news (BN) training data. Stories are those
explicitly defined in training data.

Source Name Stories Utterances

Downloaded-Web-Data 2302 90,797
GALE 524 683,192

TOTAL 2826 773,989

Table 2. Broadcast conversation (BC) training data.

Unigrams Bigrams Trigrams 4-grams TOTAL

full 60421 58 M 316 M 201 M 575 M
pruned 60421 19.4 M 24.2 M 6.1 M 49.8 M

Table 3. 4-gram background LM n-gram counts.

4. EXPERIMENTAL SETUP

All of the reported experiments were performed on data as part
of Phase II of DARPA’s GALE program2. We evaluated the
proposed LM adaptation approach on NIGHTINGALE [15]
— the UW-SRI-ICSI Mandarin broadcast speech recognition
system — under an N-best rescoring framework. We evalu-
ated the approach using the dev073 development set, which
contains 1736 utterances and is composed of approximately
60% broadcast conversation (BC) and 40% broadcast news
(BN) genres. We used the dev07a subset (containing 719
utterances) of dev07 for parameter tuning and evaluated on
the entire dev07 set. Tables 1 and 2 list all of the text training
data provided by the Linguistic Data Consortium (LDC) for
the GALE Program, used for topic model and language model
training.

The 4-gram background LM, part of NIGHTINGALE,
was trained using the modified Kneser-Neys smoothing scheme
[16]. Due to memory constraints, we used a pruned version of
this model in experiments instead of the full 4-gram model. Ta-
ble 3 shows the number of explicit n-gram parameters before
and after pruning the model using a 10−9 entropy threshold.

2See http://www.darpa.mil/ipto/programs/gale/
and http://projects.ldc.upenn.edu/gale/.

3The IBM-modified version, not the original LDC version.

Note again that this language model is a topic-independent,
general-domain language model that we interpolate with a set
of topic-dependent language models when performing LM
adaptation.

Some of the following experiments are performed for su-
pervised language model adaptation, in which the reference
transcripts are used for topic inference. Thus supervised exper-
iments represent — at least in the sense of topic inference —
the upper bound for the performance of the proposed approach,
where the LM is biased toward the correct answer, or “oracle”.

5. RESULTS

5.1. Topic Model Training

From the training data, we extracted a set of 64,029 topic-
coherent documents, or stories, for use in training the topic
model. Of the 407 K explicitly-marked BN stories, we ran-
domly selected 51 K for topic model training. For the BC data,
since the explicitly-marked stories were both few in number
and long in length, we broke many of these longer stories
into several smaller stories, resulting in 5.5 K stories, and also
broke a remaining 366 K BC-genre utterances into 7.3 K 50-
utterance pseudo-stories. Thus, we used 64 K stories total for
topic model training: 51,223 BN- and 12,806 BC-genre stories.
This resulting 4:1 BN-to-BC ratio is in notable contrast to the
50:1 ratio observable in the entire training set; this was to
allow for better detection of BC topics. The vocabulary size
was approximately 60 K.

As described in Section 3.1, we trained a 64-topic, 20-
iteration PLSA model as an initial model for the LDA topic
model. Table 4 lists a few representative topic descriptions
from the final LDA topic model (the topic descriptions were
generated using word entropy over all topics multiplied by
word posterior probability). This selection of topics is sorted
by decreasing frequency in the entire training data. Here topic
36 stands out as the most frequent topic: clearly this is due to
the cna Gigaword corpus from Taiwan, the largest corpus in
our training data. Topic 19, on the other hand, seems to come
from celebrity interview transcripts on programs like Phoenix
TV’s���� (“Date With Lu-Yu”). The top 4 topics rep-
resent the BN genre while the topics 19 and 3 correspond to
the BC genre. Of the 64 topics, 46 and 18 topics could be
considered BN- and BC-genre topics, respectively.

We trained 64 4-gram topic language models using mod-
ified Kneser-Neys backoff using the procedure described in
Section 3.2.

5.2. Timegap Threshold

Figures 1 and 2 show the effects of different timegap thresh-
olds on character error rate (CER). Note that average segment
size increases with the timegap threshold. Figure 1 shows
results for unsupervised adaptation using frequency-weighted
N-best topic inference for utterance decay at 0.65 and 1: here
we observe that setting decay to 1 makes for consistently
poorer performance than that for decay = 0.65. In addition,
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ID Most Significant Words in Topic

36 ������ ��������
DPP, Chen Shui-bian, KMT, Ma Ying-jeou, Taiwan

54 ��������������
increase, USD, prices, oil price, oil, crude oil, market

4 ����������
match, compete, team, club/stick, champion, athlete, ball

32 ���	��������
Hong Kong, Donald Tsang, LegCo, Commissioner

19 ���������
she, I, photographed, Zhou Jie, fans, drama, perform

3 ������������������
I, you, then, this, she, he, that, so, went, ate, money, no

Table 4. Several topic descriptions.
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Fig. 1. Unsupervised adaptation
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0.5.
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Fig. 2. Supervised adaptation
given timegap threshold. λB =
0.1.

larger segments result in significantly degraded performance
for decay = 1 but have less of an impact for decay = 0.65.
In contrast, smaller segments lead to degraded performance
in both cases. We observe a general dip toward an optimal
threshold around 4 seconds for both curves.

For supervised adaptation, as shown in Figure 2, in gen-
eral, the smaller the segment the better.

5.3. Topic Inference

Figure 3 shows the effect of utterance decay separated for
four different types of topic inference: oracle-based, infer-
ence based on the top single system hypothesis (“1-best”), and
frequency- and posterior-based N-best topic inference. Here
we see that the performance of unsupervised adaptation im-
proves as utterance decay increases, but that of supervised
adaptation degrades. These results are similar to those for Fig-
ure 2, and make sense, as supervised adaptation does not have
to deal with recognition errors and should thus achieve theo-
retically perfect topic inference at decay = 0; higher decay
values only tend to confuse topic inference.

As can be seen in Figures 3 and 4, frequency-based N-best
topic inference consistently outperforms its posterior-based
alternative.

Figures 3 and 4 also show results when basing topic infer-
ence on only the top-1 system hypothesis as compared to that
using N-best-based topic inference. As would be expected,
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Fig. 3. Unsupervised vs. super-
vised adaptation given utterance de-
cay. λB set to 0.5 (0.1) for unsuper-
vised (supervised) experiments.
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Fig. 4. Unsupervised vs. super-
vised adaptation given λB . Utterance
decay set to 0.65 (0) for unsupervised
(supervised) experiments.

LM PLP ICSI

full 3-gram 12.0% 11.9%
full 4-gram 11.9% 11.7%

adapted 4-gram 11.7% 11.4%

Table 5. Final results for dev07.

it pays to take into account the complete N-best list when
performing topic inference.

The results for experiments on custom prior mixtures are
not shown here, as their effect was inconsistent and insignif-
icant. Utterance decay and the background LM weight λB

influence CER far more than the choice of prior mixture.

As seen in Figure 4, the most important parameter for this
scheme is the background LM weight λB , which represents
how much our adapted LM depends on the background LM.

5.4. Final Results

Table 5 shows the final CER results for dev07 on NIGHTIN-
GALE, which is composed of two recognition systems (PLP
and ICSI) with different error patterns for use in system com-
bination.

Here we see that unaltered (that is, generated with a full
topic-independent trigram LM), the N-bests have CERs of
12.0% and 11.9% for PLP and ICSI, respectively. When we
perform N-best rescoring with the static (no LM adaptation),
unpruned 4-gram LM, we obtain CERs of 11.9% and 11.7%.
However, when we perform rescoring using adapted LMs
(λB = 0.5, decay = 0.8, with custom prior topic mixtures),
we obtain CERs of 11.7% and 11.4%. Note that this is not only
better results than that using the full static 4-gram LM, but
it also comes at a much lower price in terms of memory and
CPU. Specifically, the 580 M parameters of the full 4-gram
background LM require more than 8 GB of memory, while our
adapted LM — which contains less than a tenth the number
of parameters — requires less than 700 MB of memory, and
runs at the rate of approximately 0.4 × RT on a single 3 GHz
CPU core. Thus the proposed approach clearly succeeds in
“getting more bang for the buck” in biasing the LM toward
what is reasonable, given previous-pass system hypotheses.
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6. DISCUSSION

Utterance decay is shown to be highly effective in recovery
from topic inference bias caused by recognition errors by
widening the net to allow for better topic inference, in the sense
that a single utterance’s idiosyncracies — or recognition errors
— have less of an influence on the resultant topic mixture.
Decay also seems to be closely linked to the segmentation of
topical context windows. That is, the closer utterance decay is
to 1, the more we rely on topical context window segmentation
to limit the contents of our weighted bag of words w to those
words that are really contextually relevant; in contrast, the
closer decay is to 0, the less of a role such segmentation plays.
Thus future work will include the investigation of content-
based segmentation for applications where metadata is not
available, and also principled ways to integrate metadata- and
content-based segmentation.

It is not known why, for N-best-based confidence mea-
sures, frequency-based confidence outperforms posterior-based
confidence. This issue deserves further investigation. In addi-
tion, custom prior mixtures for topic inference were found to
be of inconsistent utility.

We believe that the proposed approach is conceptually
sound and constitutes a simple but effective approximation
of human cognitive processes when performing speech recog-
nition. Among N-best, word graph, and confusion network
rescoring, it is reasonable that N-best rescoring affords the
smallest improvements; thus future work will include rescor-
ing for richer search-space representations.

In general, these results show the dependence of the ap-
proach on proper tuning. On one hand, this is to be expected,
considering the higher semantic level of information we are
dealing with. On the other hand, it would be desirable to find
ways to base these parameters as much as possible on the con-
tent itself and not exclusively on development sets. This is
another direction for future work.

7. CONCLUSION

We have described improvements to earlier work on unsuper-
vised topic-based LM adaptation that render such adaptation
less susceptible to the misleading effects of previous-pass
recognition errors, including the judicious use of ASR confi-
dences and contextual information via utterance decay, which
together serve to constrain inferred topic mixtures to what is
reasonable. We also introduced a useful application of pseudo-
story segmentation in defining topical context windows for the
LM adaptation task.

Good improvements to character error rate were demon-
strated for the challenging multi-genre (BN/BC) speech-to-text
task, despite the limited N-best rescoring framework. Great
potential for further improvements exists for future work using
richer search-space representations such as word graphs and
confusion networks, as well as when combined with the use
of more sophisticated techniques for topical context window
segmentation.

It is not known to what extent the proposed approach de-
pends on the type of topic model used. Thus, future work may
include experiments to see what advantages the MAP-based
LDA model really brings as opposed to the ML-based PLSA
or the classical mixture model described in [9]. Would LDA-
based LM interpolation weight determination really result in
better performance than simpler EM-based alternatives?
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