
INVESTIGATING LINGUISTIC KNOWLEDGE IN
A MAXIMUM ENTROPY TOKEN-BASED LANGUAGE MODEL

Jia Cui, Yi Su, Keith Hall and Frederick Jelinek

Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD, USA
{cuijia,suy,keith hall,jelinek}@jhu.edu

ABSTRACT

We present a novel language model capable of incorporat-

ing various types of linguistic information as encoded in the

form of a token, a (word, label)-tuple. Using tokens as hid-

den states, our model is effectively a hidden Markov model

(HMM) producing sequences of words with trivial output dis-

tributions. The transition probabilities, however, are com-

puted using a maximum entropy model to take advantage of

potentially overlapping features. We investigated different

types of labels with a wide range of linguistic implications.

These models outperform Kneser-Ney smoothed n-gram mod-

els both in terms of perplexity on standard datasets and in

terms of word error rate for a large vocabulary speech recog-

nition system.

1. INTRODUCTION

Statistical language models (LM) represent a probability dis-

tribution over sequences of words, usually making sequential

decisions from left to right, each prediction dependent on a

limited context. The main challenge comes from data sparse-

ness: many sequences in the test data are unseen in the train-

ing data. Data clustering has shown to be efficient in address-

ing this problem. In widely used n-gram language models,

histories are clustered if they end in the same (n− 1) words.

Previously, there has been some success at incorporating

the use of word equivalence classes into language modeling

[1, 2]. In these models, words are assigned to classes indepen-

dent of the context. But in natural language, a word expresses

different properties in different contexts. Additionally, cor-

rectly understanding the semantic and syntactic function of

each word influences the likelihood of observing a particular

whole sentence. In this paper, we propose a token-based LM,

where tokens are tuples of words and associated labels. This

model accommodates not only word equivalence classes but

also arbitrary contextually-restricted word labels. The new

challenge is that the labels are unknown at test time. Our

model simply computes the marginal distribution of the word

sequence, effectively summing over all label sequences pos-

sible for the test data.

We introduce the Maximum Entropy Token-based Lan-

guage Model (METLM) in Section 2, and then discuss param-

eter estimation and inference algorithms in Section 4. Empir-

ical results, evaluated both in terms of perplexity and in word

error rate (WER) for a state-of-the-art speech recognizer, are

presented in Section 5, followed by conclusions.

2. MAXIMUM ENTROPY TOKEN-BASED
LANGUAGE MODEL

We encode linguistic knowledge in the form of word labels
which can be context dependent. One word can be attached

with multiple labels, each reflecting different properties of the

word or its context. For example, the word ‘football’ in the

sentence ‘he loves to play football’ can be labeled both se-

mantically as a ‘SPORT’ and syntactically as a ‘NOUN’.

In this work, we define a token as a (word, label) pair.

For simplicity, in this article all derivations assume one label

per word occurrence; however, multiple labels can be applied

using the same principle. We call a word ambiguous if it is

part of multiple possible tokens associated with it, that is, it

can have different labels in different contexts. If all words

are unambiguous, the probability of a word sequence wm
1 is

simply

p(wm
1) = p(wm

1 , lm1) =
m∏

i=1

p(wi, li|wi−1
1 , li−1

1)

In the general case where some words are ambiguous, the

probability of a word sequence is the sum over probabilities

of all its possible token sequences (i.e., we marginalize over

token sequences):

p(wm
1) =

∑

lm1

m∏

i=1

p(wi, li|li−1
1 , wi−1

1) =
∑

lm1

m∏

i=1

p(si|si−1
1),

(1)

where we use si = (wi, li) to denote a token. Figure 1 shows

a token trellis with bigram dependencies. In this example,

three words in the sentence have multiple possible POS tags,

therefore, we calculate probabilities of all eight possible token

paths of the sentence at test time.

171978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

but_CC

<s>

falling_VBG

but_IN

kept VBDstocks_NNS

kept VBNstocks_VBZ
</s>

Fig. 1. An example of token trellis for a sentence

As in word-based n-gram LMs, we assume a simple Markov

process. We use a maximum entropy model for state transi-

tion probabilities:

p(si|si−1
i−n+1) =

exp(
∑

k λkfk(si
i−n+1))

Z(si−1
i−n+1)

(2)

where λk is a real-valued parameter, Z is a normalization

variable which depends only on the n-gram token history,

and fk is a binary feature function. For instance, f(wi−1 =
kept, li = VBG) equals 1 if and only if the word in position

(i− 1) is ‘kept’ and the future word is labeled as ‘VBG’.

In maximum entropy (ME) modeling, each feature is as-

sociated with a constraint. The overall constraint set deter-

mines the model and reflects our understanding of the ob-

served data. For example, features in the form of f(li−1, wi)
imply that the distribution of wi depends on the label in po-

sition (i − 1). Table 1 shows some feature types and their

descriptions. For each position in an n-gram feature, we take

either the word or the label at that position instead of both.

This avoids further data sparseness because label-based fea-

tures have empirical frequencies no lower than those of the

corresponding n-gram word features. Moreover, the label-

based features address data sparseness by classifying words

into different syntactic groups. In our experiments, all thresh-

olds for features by default are zero, that is, as long as a la-

bel/word n-gram appears in the training data and its type is

included, the n-gram is used to form a feature.

Type Description

W unigram word feature. f(wi)
WW bigram word feature. f(wi−1, wi)
WWW trigram feature. f(wi−2, wi−1, wi)
TW bigram feature. f(li−1, wi)
WTW trigram feature. f(wi−2, li−1, wi)
TWW trigram feature. f(li−2, wi−1, wi)
TTW trigram feature. f(li−2, li−1, wi)
T unigram label feature. f(li)
W:T composite unigram feature. f(wi, li)
WT bigram feature. f(wi−1, li)
TT bigram feature. f(li−1, li)
WWT trigram feature. f(wi−2, wi−1, li)
· · · · · ·

Table 1. Feature Types

3. RELATED WORK

The main difference between our models (METLMs) and tra-

ditional ME LMs [3, 4] is that our model predicts tokens in-

stead of words. This change enhances language modeling in

several aspects. First, the new model enables us to integrate

ambiguous word labels into language modeling. We can in-

fer the hidden word labels during test while the traditional

models can only model explicit word labels used in the con-

ditioning context. Second, the new model can integrate future

label information directly. Finally, the new framework can be

applied for unsupervised training.

We have built an LM based on tokens and derived a pa-

rameter estimation algorithm based on the statistics of token

elements. The concept of a token is similar to the superset in

SuperARV LM [5] and the factor vector in the factored LM

(FLM) [6]. The underlying models are quite different. While

they use backoff smoothing techniques to model a conditional

distribution, we apply the maximum entropy principle to in-

tegrate features naturally by a log-linear model.

4. PARAMETER ESTIMATION AND INFERENCE

When all words are unambiguous, i.e., each word is associ-

ated with one label, the training and test process is straightfor-

ward: we simply label both the training and test datasets. In

training, we build a model and estimate parameters by maxi-

mizing the likelihood of the labeled training data. At test time,

we simply predict the token based on the unambiguous token

histories. The advantage of including labels is that we can

have features like f(li−1, wi) which can help alleviate data

sparseness.

The model becomes more complicated when a word can

take on multiple labels. First, we describe the procedure for

the case where we have labeled training data. In training,

we build a model and optimize it to maximize the joint like-

lihood of the labeled training data, that is, the observed to-

ken sequence: LΛ = log p(wm
1 , lm1 ; Λ) + log p(Λ|Δ) where

Λ denotes the feature set and Δ denotes the Gaussian prior

[7]. The feature parameters are estimated using the Improved

Iterative Scaling algorithm [3] equipped with the speed-up

method proposed in [8].

It is also possible to train the model with unlabeled train-

ing data. With unlabeled training data, the goal is to maximize

the marginal likelihood of training data using the latent labels:

LΛ = log
∑

lm1
p(wm

1 , lm1 ; Λ) + log p(Λ|Δ). The model we

have is simply an HMM with fixed output distributions and

can be trained via EM [9]. In the E-step, expected counts

for each transition are added to the expectations of features

activated by this transition. Expected token counts are ac-

cumulated during the forward algorithm. These expectations

develop updated constraints. The M-step calculates new fea-

ture parameters for the next iteration with an embedded ME

training procedure that uses the updated constraints. This EM

172

algorithm is guaranteed to converge. In the empirical section

of this work, we present results only for labeled training data

because the unsupervised training is too computationally ex-

pensive.

The test data probability can be obtained by a single pass

using the forward algorithm. It sums over probabilities of all

possible token paths of the test data. In this formulation, the

prediction of each word wi is computed as follows:

p(wi|wi−1
1) =

p(wi
1)

p(wi−1
1)

=

∑
li1

p(wi
1, l

i
1)∑

li−1
1

p(wi−1
1 , li−1

1)
(3)

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The dataset we have used to evaluate the perplexity perfor-

mance is from the UPenn Treebank-3 [10]: the parsed Wall

Street Journal (WSJ) collection. All words are lowercased

and all punctuation is removed. Numbers are substituted by

a special word ‘N’. An open vocabulary consisting of 10K

words with an extra ‘UNK’ word is used. The WSJ corpus

contains 24 sections. The first 20 sections are taken as train-

ing data, containing 1M words; the following two sections are

used as held-out data for setting model hyper-parameters, and

the last two sections are test data.

Our baseline model used the modified Kneser-Ney smooth-

ing [11] without any word classes and was built with the SRI

LM toolkit [12]. We first trained a METLM model with word

features only, i.e., by ignoring any label information and tuned

the three feature priors on the held-out data (one prior for each

n-gram). The result was comparable to that of the baseline

model as [7] observed. The baseline perplexity for this model

on the test-set was 144.

We also built the second baseline by interpolating sev-

eral class-based LMs with the dominant POS tags (effectively

making the labels unambiguous). The baseline model was

the interpolation of four Kneser-Ney smoothed LMs. We ex-

tracted counts for word/label n-grams: WWW, WTW, TWW

and TTW. For example, counts associated with the WTW fea-

ture type contained counts of (wi−2, li−1, wi), (li−1, wi) and

(wi). For each feature type, we built a smoothed trigram LMs

using the modified Kneser-Ney smoothing (we trained using

the SRI LM toolkit). Correspondingly, for each test event

(w1, w2, w3), we first labeled all words with their dominant

POS tags and then generated four probabilities p(w3|w1, w2),
p(w3|l1, w2), p(w3|w1, l2) and p(w3|l1, l2) with correspond-

ing LMs. The four sets of scores were interpolated to get the

perplexity 138.

Using the priors optimized for the word-based models, we

then introduced label-based features. Since we fixed the pri-

ors and no longer needed to tune hyper-parameters, we in-

cluded the held-out data in our training set and trained the

model again.

5.2. POS Tags and Data-Driven Word Classes

In our first set of experiments, we explored the modeling ef-

fect, evaluated by perplexity, of using various types of word

classes. We used human-annotated POS tags from the Tree-

bank (truePOS) as well as the dominant POS tags (domiPOS).

The test procedure for truePOS and domiPOS were quite dif-

ferent. In the former, we considered all possible POS se-

quences for the test sentences and summed over them; in the

later, we assumed each word could only be assigned the domi-

nant POS tag and therefore only one POS sequence was avail-

able for each test sentence. For comparison, we also trained

models on the training data labeled with position-dependent

word classes [2] (PD-CLS), where different classes are gen-

erated for different positions using an exchange algorithm, as

well as position-independent classes based on the co-occurrence

of word pairs [1] (PI-CLS). For position-dependent word classes,

we generated 64 classes at each position 1. That means for

each word wi, there were three labels l0i , l−1
i and l−2

i . These

labels were used to compose different types of features ac-

cording to their positions in the feature. For example, in ex-

tracting TWT features, we used the trigram (l−2
i−2, wi−1, l

0
i).

For PI-CLS, we simply generated 64 classes using the SRI

LM toolkit.

Table 2 reports the perplexity for models trained with dif-

ferent word labels and different feature sets. The first column

shows the types of label-based features (denotations of feature

types are explained in Table 1) included in modeling. ‘TW’

means TW features are included in the model. ‘WT+’ means

WT, T and W:T features are used in the model. ‘AA’ means T,

W:T, TW, WT, TT features are included. ‘All’ means T, W:T,

WT, TW, TT, WTW, WWT, TWT, TTW, WTT features are

included. ‘hisT’ means TW, WTW, TWW and TTW features

are included. Note that basic word features W,WW,WWW

are included in every model.

Feature PI-CLS PD-CLS domiPOS truePOS

TW 138 138 137 146

WTW 141 142 139 143

TWW 142 144 143 144

WT+ 138 138 137 136

TW,WT+ 135 138 134 132

WTW,WT+ 136 135 133 132

AA 134 137 133 131

AA, WTW 133 132 130 128

All 129 131 126 122
hisT 138 138 131 N/A

Table 2. Perplexity on UPenn WSJ corpus

Generally, labels were helpful. As more label-based fea-

tures were added to the model, the performance improved.

1The number of classes was selected based on the heldout data.

173

Most models performed better than the modified Kneser-Ney

baseline which used no label information. Of all different la-

bels, the true POS tag technique improved prediction greatest

with perplexity dropping to as low as 122.

In the first group of experiments in Table 2, we tested each

single type of label-based features. Bigram features, TW and

WT+, improved performance more because they helped more

predictions than the trigram features WTW and TWW. The

second group of experiments showed the performances of dif-

ferent combinations. Generally, more features lead to better

performance.

Note that although we used true POS in the training data,

we did not use any labeling information from the test data.

Our model computed the labeling sequence distribution over

the plain test sentences. To make it clearer, note that results of

using only TW, WTW or TWW features for the true POS tag

set were not improved over the Kneser-Ney baseline. This

is because the POS tags are determined mostly by the word

being predicted rather than the neighboring labels and words.

Excluding future labels in features leads to low-quality label

distributions during the test, and therefore contributes little to

the model.

As we have mentioned in Section 4, our model is differ-

ent from the traditional ME model in that our model predicts

tokens instead of words. This difference enables us to explore

future labels in language modeling (meaning the label of the

word being predicted). We have shown the importance of fu-

ture labels in the ambiguous case (truePOS). Here, we em-

phasize the importance of including future labels in language

modeling by building models excluding these future labels

in the feature set. The results are displayed in Table 2 row

‘hisT’. These results are comparable to our second baseline

obtained by interpolating four Kneser-Ney smoothed LMs us-

ing the same types of features. Even using unambiguous la-

bels (domiPOS and PD-CLS classes), including future label-

related features leads to a decent improvement over excluding

those features.

5.3. Language Modeling with Different Word Labels

In this subsection, we compare the effects of word labels gen-

erated from processes intended to capture different linguis-

tic categories. The word classes used above, the position-

independent and the position-dependent word classes, are de-

termined based on the neighboring two or four words. Here

we introduce three additional data-driven word classes that

are generated from sentential contexts and document infor-

mation.

First, we experiment with the dependency-based word classes

of Dekang Lin [13]. A dependency relationship [14] is an

asymmetric binary relationship between a word and its se-

mantic/syntactic dependents; these are called the head and

modifier, respectively. Figure 2 shows an example of de-

pendency tree with links from the head to the modifiers (c.f.

Fig. 2. An example of dependency relationship

[15]). There are three sets of dependency-based classes for

words belonging to nouns, verbs and adjectives respectively.

In the POS-labeled training data, we use the corresponding

word classes as the word labels and form features based on

these labels.

We also experiment with Lin’s proximity-based word classes

[13]. These are based solely on the linear proximity relation-

ship between words. Labels based on these classes are unam-

biguous because each word belongs to only one class.

Finally, we consider the topic-based word classes as de-

scribed in [16]. This is a vector-based topic model where each

word is represented by a vector in a lower dimensional seman-

tic feature space. The distance between any two words is the

cosine distance of the corresponding two word vectors. Two

words are likely to be clustered together if they tend to be

observed in similar documents, regardless of their syntactic

roles.

We obtained the dependency-based and proximity-based

class data from Lin [17] and the topic-based data from Deng

and Khudanpur [16]. Using the similarity scores assigned un-

der each model, we applied a bottom-up, agglomerative word

clustering algorithm in order to generate equivalence classes.

The algorithm initially treats each word as its own class and

then merges the two classes which are closest. These classes

are merged and then the processes repeats. We continue the

process until we are left with 100 classes. In order to mea-

sure the distance between two classes, we take the average

distance between a bipartite mapping of words contained in

the two classes.

Motivated by the good performance of POS tags, we added

an experiment using the POS tag of the head-word as word la-

bels. For example, the sentence in Figure 2, the word ‘found’

is the head of the word ‘John’ and the word ‘found’ has the

POS tag ‘VBD’, therefore the label for ‘John’ is ‘VBD’2.

We labeled the training data with head-word POS tags

(headPOS), proximity-based word classes (wordProx), dependency-

based word classes (wordDepen) and topic-based word classes

(wordTopic) respectively and built four METLMs with the T,

W:T, TW, WT, TT, WTW features (Table 1)3. The results for

these experiments can be found in Table 3.

The results, in terms of perplexity, for the models with

varying word classes are all very similar. Improvements over

the Kneser-Ney smoothed generative model is relatively small.

2We chose to use the POS tag of the head rather than the head word itself

in order to keep the decoding trellis manageable.
3In each of these experiments, we used only with one particular feature

set to offer a comparison between models with different word classes.

174

Classes Perplexity

Kneser-Ney 144

PI-CLS 133

PD-CLS 132

domiPOS 130

truePOS 128

headPOS 139

wordProx 136

wordDepen 137

wordTopic 139

Table 3. Perplexities with different word labels

The dependency-based word class model’s relative improve-

ment is worth pointing out as only about one third of the

words had valid classes. 4

5.4. Feature Selection

In this subsection, we present two intuitive methods for threshold-

based feature selection in METLM. We start with a detailed

inspection of the perplexity improvements by considering spe-

cific partitions of test data. We partitioned all predictions

in the test data by the occurrence counts of histories as ob-

served in the training data. Then we calculated the perplexity

exp(1
K

∑K
1 log p(wk|hk)) for each partition where K is the

total number of predictions in that partition.

The result of the position-dependent word class model

(Table 2 row AA, WTW; column PD-CLS), are partitioned

and presented in Table 4 Column PD3. To its left is the par-

titioned trigram Kneser-Ney smoothing result (KN3). To its

right we present results for the 5-gram Kneser-Ney smoothing

LM (KN5). c(h) = c(wi−2, wi−1) is the history count in the

training data and c(h) = c(wi−1) is the backoff history count.

Predictions are assigned to the first row where the condition

is met. The first column (PER) is the percentage of prediction

counts in the test data.

Category PER KN3 PD3 KN5 PD3+

C(h) > 50 25 114 109 100 99

C(h) > 0 41 129 116 125 115

C(h) > 0 27 177 159 174 160

Others 6 310 305 280 295

Total 100 144 132 137 129

Table 4. Perplexities in different partitions of test data

Comparing column PD3 and KN5 with the baseline KN3

in Table 4, note that PD3 achieves a greater improvement in

predictions with infrequent histories. For predictions with fre-

quent histories, long-history features (KN5) are more help-

4This is primarily due to the fact that we only label content words.

ful. We then built the PD3+ model (last column in Table 4)

with the feature set from PD3. A subset of the 4 and 5-gram

word features. wi
i−3 and wi

i−4 from the training data were

selected as features if and only if the trigram history count

(wi−2, wi−1) was over 50. This additional feature set com-

prised only 20% of all 4 and 5-grams in the training data.

Most of these selected features appeared only once. But the

selected 4 and 5-gram observations contributed most of the

improvement achievable by the complete set of 4 and 5-grams

in KN5.

The above experiment suggests a new method for setting

thresholds in feature selection for language modeling. The

threshold is set not based on the absolute count of the feature

itself, but on the frequency of the suffix of the history compo-

nent.

Similarly, we have considered setting thresholds for infre-

quent, redundant features. The basic idea is: if an n-gram fea-

ture appears only once, there is no need to add related higher-

order n-gram features. To be more specific, if (wi−1, wi) ap-

pears only once, we remove wi
i−k, k > 1 from the feature

set. This principle led to a 20% reduction of trigram features

on 1M words of the WSJ Treebank data without affecting the

performance. In our word error rate experiments, we applied

this method to reduce 20% of the 4-gram features from 20M

words of training data.

This second method sets thresholds based on the frequency

of the suffix of the feature. This method divides all singleton

trigrams into two sets. One set is regarded as redundant and

are removed; the other set remains because it contains use-

ful information which is not covered by other features. For

example, assume ‘keeps falling’ and ‘keeps rising’ occur 5

times each in the training data. ‘price keeps falling’ occurs

once and ‘price keeps rising’ never occurs. Given the history

‘price keeps’, the model will prefer ‘falling’. This preference

will not hold if ‘price keeps falling’ is filtered out.

5.5. Evaluation by Speech Recognition Performance

In order to determine if the above improvements carry over

to actual speech-recognition performance, we tested our LM

on a large-vocabulary speech recognition task. We use the

IBM conversational telephony system for rich transcription

(RT-04 CTS system) [18]. The experiment is conducted on

the Fisher data collection (DEV04 English), which contains

36 telephone conversations recorded while two speakers were

talking about a randomly chosen topic. It has utterances from

72 speakers and contains 9,044 utterances and 37,834 words.

A small LM (trained on 4M words) was used to generate word

lattices for this test set.

The IBM RT-04 system used a vocabulary with 30,500

words. Word-lattices were built and then re-scored with a

larger language model based on 150M words of data. Four-

gram generative language models with the modified Kneser-

Ney smoothing were used in the IBM system. The baseline

175

error rate for the first-pass system (using the small LM) was

14.1%. That score went down to 13.4% after re-scoring with

the LM trained on 150M words.

We utilized the dominant POS tags which were generated

from 3M words of Switchboard Treebank data to label the

training data. We built an METLM including basic word fea-

tures W, WW, WWW, WWWW and T, W:T, TW, WT, TT,

WTW, WWT, WWTW, WTWW features sets. Our model re-

duces the WER to 13.7% and 13.2% when interpolating it

with the original LM. Both improvements were significant

with pvalue < 0.001. In this experiment, 4-gram features

were filtered according to our second principle of feature se-

lection (Section 5.4).

Model w/o interpolation w/ interpolation

KN-4gm 14.1 13.5

METLM-4gm 13.7 13.2

Table 5. Word Error Rates on Fisher Data

6. CONCLUSIONS

We have developed a maximum entropy token-based language

model (METLM) which encapsulates words and their latent

linguistic labels into tokens and exploits parallel dependen-

cies between components of different tokens. The model in-

tegrates all possible local dependencies to help predictions in

a straightforward way. We have shown the effectiveness of

this model by using only POS tags to achieve substantial rela-

tive perplexity reduction (15%) on the UPenn WSJ Treebank

data and a significant WER reduction (0.4%) on the Fisher

data (DEV04 English) over the standard generative backoff

model using modified Knesner-Ney smoothing.

The METLM offers a platform to integrate arbitrary lin-

guistic knowledge which can be represented as word labels.

We have carried out experiments with labels generated from

local contexts, dependency relationships and document-word

co-occurrences. All of these provide useful knowledge in pre-

dictions and have proven to outperform the baseline models.

Particularly, models based on word labels which are based on

local contexts achieve the best performance.

We also presented two new methods of feature filtering by

utilizing their hierarchical structure instead of setting thresh-

olds on absolute counts of features themselves in the training

data, we filtered out n-gram features based on their lower-

order n-gram counts and found them effective in significantly

reducing active feature set size while maintaining predictive

capabilities.

7. REFERENCES

[1] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and

J. C. Lai, “Class-based n-gram models of natural language,”

Computational Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[2] A. Emami and F. Jelinek, “Random clusterings for language

modeling,” in Proc. of ICASSP, vol. 1, pp. 581–584.

[3] A. L. Berger, S. D. Pietra, and V. J. Della Pietra, “A maximum

entropy approach to natural language processing,” Computa-
tional Linguistics, vol. 22, no. 1, pp. 39–71, 1996.

[4] S. Khudanpur and J. Wu, “Maximum entropy techniques for

exploiting syntactic,semantic and collocational dependencies

in language modeling,” Computer Speech and Language, vol.

14, no. 4, 2000.

[5] W. Wang and M. P. Harper, “The superarv language model:

investigating the effectiveness of tightly integrating multiple

knowledge sources,” in Proc. of EMNLP, 2002, pp. 238–247.

[6] J. Bilmes and K. Kirchhoff, “Factored language models and

generalized parallel backoff,” in Proc. of HLT/NACCL, 2003,

pp. 4–6.

[7] S. Chen and R. Rosenfeld, “A gaussian prior for smooth-

ing maximum entropy models,” Tech. Rep. CMUCS -99-108,

Carnegie Mellon University, 1999.

[8] J. Wu and S. Khudanpur, “Combining nonlocal, syntactic and

n-gram dependencies in language modeling,” in Proc. of Eu-
rospeech, 1999, pp. 2179–2182.

[9] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximiza-

tion technique occurring in the statistical analysis of probabilis-

tic functions of markov chains,” The Annals of Mathematical
Statistics, vol. 41, pp. 164–171, 1970.

[10] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Build-

ing a large annotated corpus of english: The penn treebank,”

Computational Linguistics, vol. 19, pp. 313–330, 1993.

[11] S. F. Chen and J. T. Goodman, “An empirical study of smooth-

ing techniques for language modeling,” in Technical Report
TR-10-98, Computer Science Group. 1998, Harvard Univer-

sity.

[12] A. Stolcke, “SRILM – an extensible language modeling

toolkit,” in Proc. Intl. Conf. on Spoken Language Processing,

2002.

[13] D. Lin, “Automatic retrieval and clustering of similar words,”

in COLING-ACL, 1998, pp. 768–774.

[14] D. G. Hays, “Dependency theory: A formalism and some ob-

servations,” Language, vol. 40, pp. 511–525, 1964.

[15] D. Lin and P. Pantel, “Induction of semantic classes from nat-

ural language text,” in Proc. of SIGKDD, 2001, pp. 317–322.

[16] Y. Deng and S. Khudanpur, “Latent semantic information in

maximum entropy language models for conversational speech

recognition,” in HLT-NAACL, May 2003, pp. 56–63.

[17] D. Lin, “Proximity-based thesaurus and dependency-based

thesaurus,” in http://armena.cs.ualberta.ca/lindek/downloads,

2000.

[18] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon, and

G. Zweig, “The IBM 2004 Conversational Telephony System

for Rich Transcription,” in Proc. of ICASSP, 2005, vol. 1, pp.

205–208.

176

