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ABSTRACT

This paper investigates unsupervised test-time adaptation of lan-
guage models (LM) using discriminative methods for a Mandarin
broadcast speech transcription and translation task. A standard ap-
proach to adapt interpolated language models to is to optimize the
component weights by minimizing the perplexity on supervision data.
This is a widely made approximation for language modeling in au-
tomatic speech recognition (ASR) systems. For speech translation
tasks, it is unclear whether a strong correlation still exists between
perplexity and various forms of error cost functions in recognition
and translation stages. The proposed minimum Bayes risk (MBR)
based approach provides a flexible framework for unsupervised LM
adaptation. It generalizes to a variety of forms of recognition and
translation error metrics. LM adaptation is performed at the audio
document level using either the character error rate (CER), or trans-
lation edit rate (TER) as the cost function. An efficient parameter es-
timation scheme using the extended Baum-Welch (EBW) algorithm
is proposed. Experimental results on a state-of-the-art speech recog-
nition and translation system are presented. The MBR adapted lan-
guage models gave the best recognition and translation performance
and reduced the TER score by up to 0.54% absolute.

Index Terms— speech recognition and translation, language
model adaptation, discriminative training

1. INTRODUCTION

A crucial component in both an automatic speech recognition system
and a statistical machine translation system is the language model.
In order to more robustly handle different styles or tasks, LM adap-
tation schemes may be required. Due to data sparsity, directly adapt-
ing N-gram word probabilities is non-trivial. A standard approach
is to re-adjust the interpolation weights of a mixture model by min-
imizing the perplexity on some supervision data. An assumption is
made that there is a strong correlation between perplexity and error
rate [1]. It is believed to be a good approximation to word error rate
(WER) and widely used in current ASR systems [9].

However, for speech translation tasks such approximation can
be poor. First, for logogram based languages such as Mandarin Chi-
nese, there are no natural word boundaries in normal texts. Recog-
nition performance is normally evaluated using character error rate.
A widely adopted approach is to partition a string of characters into
a sequence of “words”. Language models are then trained on the
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resulting tokenized texts [10]. Due to the ambiguity in this charac-
ter to word decomposition process, it may be argued that word level
perplexity reduction may not necessarily lead to CER improvement.
Secondly, performance of current SMT systems is typically mea-
sured in BLEU [2], or the translation edit rate (TER) metric [3]. It is
also unclear whether a strong correlation exists between perplexity
and translation error metrics.

One approach to address this issue is to use discriminative train-
ing techniques. These schemes do not make incorrect modeling as-
sumption and explicitly aim at reducing the recognition, or trans-
lation, error rate. Along this line there has been research interest
in discriminatively training parameters of N-gram language models
for speech recognition [12, 13], and LM adaptation for SMT sys-
tems [6, 11]. Good performance improvements have been reported.
Nonetheless, these current approaches are restricted to a certain form
of cost function, and heavily rely on numerical methods during para-
metric optimization. Hence for complicated tasks like speech trans-
lation it would be interesting to employ a more flexible discrimina-
tive scheme that can generalize to various forms of error metrics at
different stages of the system, which also has an efficient paramet-
ric optimization method. One such scheme is minimum Bayes risk
(MBR) training [4, 5]. It has been successfully applied to speech
recognition and can generalize to a variety forms of error cost func-
tions.

This paper investigates using the MBR criterion for unsuper-
vised discriminative language model adaptation in test-time for speech
recognition and translation systems. LM adaptation is performed
at the audio document level. Two forms of error metrics are used
in MBR adaptation: the character error rate for speech recognition;
the translation edit rate for later translation of the ASR output. The
rest of the paper is organized as follows. Section 2 introduces lin-
ear and log-linear interpolations for mixture language models and
reviews standard maximum likelihood based adaptation schemes.
Section 3 introduces the MBR criterion and details the algorithms
for discriminatively adapting LM interpolation weights in both lin-
ear and log-linear cases. An efficient re-estimation scheme based on
the extended Baum-Welch (EBW) algorithm is presented. In sec-
tion 4 a number of implementation issues are discussed. In section 5
experimental results on a stat-of-the-art Mandarin broadcast speech
transcription and translation system are presented. Section 6 is the
conclusion and discussion of future work.

2. MAXIMUM LIKELIHOOD LM ADAPTATION

A common form of a mixture language model is to interpolate word
probabilities using linear weights. For N-gram word based models
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considered in this paper, this is given by,

P (wi|hi−1
i−N+1) =

∑
m

λmPm(wi|hi−1
i−N+1) (1)

where wi denote the i word of a word sequence, W , hi−1
i−N+1 its

N-gram history, and λm, the interpolation weight for the mth com-
ponent model, Pm(·).

Alternatively word probabilities may be linearly interpolated in
the log space,

P (wi|hi−1
i−N+1) =

1

Z
exp

(∑
m

λm log Pm(wi|hi−1
i−N+1)

)
(2)

where Z is a normalization term to ensure the interpolated prob-
ability to be a valid distribution. As the weights are applied di-
rectly to the log-likelihood scores of individual LM components,
such a model may provide more power to capture the curvature of
the likelihood function. It my be related to a multiple stream HMM
system using different front-end processing schemes, or the log-
interpolation of “feature functions” in SMT systems [6].

One issue with a log-linear model is that the exact calculation of
the normalization term is non-trivial. Hence it is difficult to give a
probabilistic interpretation and derive the required likelihood based
estimation scheme. For the same reason, when applying these mod-
els in a full search on ASR or SMT tasks, there is a lack of efficient
back-off schemes which requires all interpolated N-gram probabil-
ities are valid distributions. However, this may not be an issue for
discriminative methods or posterior based techniques as the normal-
ization term often may be canceled out [12]. This will be further
discussed later for MBR adaptation. The rest of this section focuses
on likelihood based adaptation for linear interpolated models.
PP based adaptation: The interpolation weights are re-estimated
to minimize the perplexity on hypotheses generated from a previous
pass of an ASR or SMT system. This is equivalent to maximizing
the joint probability of the entire word sequence in the supervision
hypothesis. Take a mixture LM used in an ASR system as an exam-
ple. Let Ŵ denote the 1-best recognition hypothesis for a sequence
of speech observations, O. The optimal linear interpolation weight,
λm, for themth component model, Pm(·), can be derived by [1],

λ̂m = arg max
λm

{FML(O)}

= arg max
λm

{
log p(O|Ŵ)P (Ŵ)

}
(3)

The acoustic distribution, p(O|Ŵ) is independent of the language
model parameters and therefore can be ignored. Assuming that 0 <
λm < 1 and

∑
m λm = 1, the Baum-Welch (BW) algorithm may

be used to iteratively re-estimate the weights,

λ̂m =
λ̃m

∂FML(O)
∂λm

∣∣∣
λm=λ̃m∑

m λ̃m
∂FML(O)

∂λm

∣∣∣
λm=λ̃m

(4)

where λ̃m is the current estimate of λm, and

∂FML(O)

∂λm
=

∑
i

Pm(wi|hi−1
i−N+1)∑

m λmPm(wi|hi−1
i−N+1)

(5)

If perplexity base adaptation is performed in supervised mode the
correct transcription is required.

Lattice/N-best based adaptation: As the error rate of the initial
hypothesis increases, it becomes more useful to extend the above
single hypothesis based adaptation to a lattice or N-best based ap-
proach. Rather than maximizing the likelihood of one reference, the
marginal probability over multiple hypotheses, {W}, is optimized,

λ̂m = arg max
λm

{FLAT(O)}

= arg max
λm

{
log
∑
W

p(O|W)P (W)

}
(6)

This technique has been widely used in unsupervised adaptation for
acoustic models in state-of-the-art ASR systems [9]. The BW algo-
rithm may still be used for lattice adaptation of LM weights. The
sufficient derivative statistics required in the BW algorithm of equa-
tion 4 will be summed over all hypothesis and weighted by their
posterior probabilities, P (W|O),

∂FLAT(O)

∂λm
=

∑
W,i

P (W|O)
Pm(wi|hi−1

i−N+1)∑
m λmPm(wi|hi−1

i−N+1)
(7)

Posterior adaptation: Insufficient supervision data may lead to un-
robust model adaptation. One approach to address such parametric
uncertainty is to use posterior adaptation. Rather than directly op-
timize the interpolation weights, their prior distribution and the as-
sociated hyper-parameters are optimized. In this paper during LM
adaptation the supervision data assumed to be sufficient. Hence pos-
terior adaptation is not considered.

Now consider an analogy between ASR and SMT systems. An
SMT system may also be partitioned into two distinctive compo-
nents, the translation model, and the target language model. The
translation model can be viewed as a generative distribution that pro-
duces the source language sentence from the target language trans-
lation. Under this analogy, the above likelihood based schemes may
also be applied to LM adaptation for SMT. In the rest of this pa-
per detailed derivations of discriminative LM adaptation will be pre-
sented in the context of ASR systems for brevity.

3. MINIMUM BAYES RISK LM ADAPTATION

The expected recognition error of an ASR system for a sequence
of speech observations, O, can be expressed as a sum over the per-
formance contribution from all possible hypotheses {W}, further
weighted by their posterior probabilities, P (W|O). Hence the weight
parameters are optimized by [4, 5],

λ̂m = arg min
λm

{FMBR(O)}

= arg min
λm

{∑
W

P (W|O)L(W, W̃)

}
(8)

where L(W, W̃) denotes the defined recognition error rate measure
of hypothesisW against the reference hypothesis W̃ . Various forms
of cost function, such as CER, may be used depending on the evalu-
ation metric being considered. This provides more flexibility, com-
pared with other discriminative criteria, such as maximum mutual
information (MMI), as the cost function is not necessarily restricted
to one particular form. By definition if W̃ is the correct transcription
MBR adaptation will be performed in supervised mode.

In this paper the cost function considered for SMT systems is the
translation edit rate. The TER metric measures the ratio of the num-
ber of string edits between the target language hypothesis ẽ and the
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reference translation e to the total number of words in the reference.
The allowable edit types include substitutions, insertions, deletions
and phrasal level shifts,

LTER(ẽ, e) =
Ins + Del + Sub + Shft

L
× 100% (9)

where L is the total number of words in the reference. The TER
metric has been found a closer approximation to human evaluation
of translation quality than purely precision based cost functions such
as BLEU [3]. If phrasal shifts are not permitted, the TER metric
simplifies to the well-known word error rate (WER) measure.

Numerical methods may be used to optimize the MBR crite-
rion. However, these schemes can be slow and difficult to guarantee
convergence. The Extended Baum-Welch (EBW) algorithm [7] pro-
vides an efficient iterative optimization scheme for a family of ratio-
nal objective functions, including MBR, that can be expressed as the
ratio of two rational polynomials with

• non-negative coefficients, and non-negative variables;
• all variables subject to a sum-to-one constraint.
For a set of free parameters of the non-negative and sum-to-one

constraint, the re-estimation formulae is given by,

λ̂m =

λ̃m

(
∂FMBR(O)

∂λm

∣∣∣
λm=λ̃m

+ D

)
∑

m λ̃m

(
∂FMBR(O)

∂λm

∣∣∣
λm=λ̃m

+ D

) (10)

where λ̃m is the current estimate of λm, and D is a tunable regular-
ization constant controlling the convergence speed. This is exactly
the case of training discrete parameters like language model interpo-
lation weights. In the rest of this section detailed weights updating
schemes based on the EBW algorithm are presented for both linear
and log-linear interpolated models. In both cases the weights are
constrained to be positive and sum-to-one.
Linear Interpolation: As discussed, the EBW re-estimation formu-
lae given in equation 10 can be used to estimate {λm}. This requires
the computation of, ∂FMBR(O)/∂λm, the partial derivative of the
expected recognition accuracy against the mth component model’s
weight, λm. Following the MBR criterion given in equation 8 and
applying chains rule, this may be re-expressed as,

∂FMBR(O)

∂λm
=
∑
W

∂P (W|O)L(W, W̃)

∂ log p(O,W)

∂ log p(O,W)

∂λm
(11)

where the first term can be derived as the following,

∂P (W|O)L(W, W̃)

∂ log p(O,W)
= P (W|O) [1 − P (W|O)]L(W, W̃) (12)

The second term is independent of the acoustic model distribu-
tion p(O|W), and effectively identical to the sufficient statistics re-
quired by the standard perplexity based weights optimization scheme
given in equation 5.
Log-linear Interpolation: As discussed in section 2, the calculation
of the normalization term for a log-linear language model is not re-
quired for discriminative training criteria including MBR. However,
one issue of estimating log-linear weights is the first condition the
EBW algorithm requires, i.e., having non-negative coefficients and
variables, is no longer valid, because the weights are applied directly

to log-likelihood scores. Therefore the EBW re-estimation formulae
in equation 10 may be not be directly used to estimate log-linear
weights.

To handle this issue in MBR adaptation, the approach adopted in
this paper is to normalize the language model scores at the sentence
level, by the minimum sentence probability among all recognition
hypotheses assigned by all component LMs. This is given by,

log P̌ (W) = log P (W) − min
m,W

{log Pm(W)} (13)

where P̌ (W) is the normalized LM score for each recognition hy-
pothesis W . First, this will ensure all coefficients and variables in
MBR criterion are non-negative and the conditions required by the
EBW algorithm valid. Second, because for each sentence all hy-
potheses’ LM scores are normalized by the same term, the poste-
rior distribution over each hypothesis, P (W|O), remains the same,
therefore also the overall MBR criterion in equation 8.

Now the EBW algorithm in equation 10 can be used to esti-
mate the log-linear interpolation weights. The first term of the par-
tial derivative given in equation 11 remains the same as in equa-
tion 12. The second term, following the log-linear interpolation
given in equation 2, may be derived as,

∂ log p(O,W)

∂λm
=

∑
i

log P̌m(wi|hi−1
i−N+1) (14)

Again, as discussed in section 2 the above derivations may also be
applied to for SMT LM adaptation.

4. IMPLEMENTATION ISSUES

In this section a number of implementation issues that may affect
performance of MBR adapted language models are discussed.
Supervision: Like any discriminative self-adaptation scheme, the
quality of the initial hypothesis can affect performance of the MBR
adapted LM both in recognition and translation. In order to get
the performance upper bound of the adapted models, perplexity and
MBR based adaptation in supervised mode will also be investigated
using the correct audio transcription for ASR systems. However,
such a comparison is impossible for adapting SMT LMs. This is
because the correct English translation based on manual audio seg-
mentation can not be simply “projected” onto the automatic audio
segmentation used by the ASR system, due to re-ordering of words
and phrases during human translation.
Use of N-best Lists: Multiple hypotheses are required to accumu-
lated the sufficient statistics given in equation 11 for MBR adapta-
tion. This is also true with lattice or N-best based adaptation. In
this paper, for both ASR and SMT systems, the top N-best 1000
hypotheses are generated for each speech segment, and kept fixed
during language model adaption.
Computation Cost: In order to further reduce the memory require-
ment, the word probabilities required by the statistics given in equa-
tions 5 and 14 are generated off-line for each N-best candidate using
each component LM and kept fixed.
Smoothing Constant D: As discussed in section 3, the setting of
the smoothing constant, D, may affect both the optimization sta-
bility and generalization. As in standard discriminative training, its
setting is largely based on heuristics and empirical results [4]. The
form considered in this paper is D = E × NW , where NW is the
number of Mandarin speech segments to be recognized, or trans-
lated, and E > 0, typically set as 50. In practice this was found
a good compromise between convergence speed and generalization.
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Varying E was also found having minimum effect on recognition
and translation performance. Hence in this paper E is always set as
50 and never altered.
Weights Initialization: This is another factor that may affect the
translation performance ofMBR interpolated language models. Both
equal and PP based weight estimates can be used. The effect of dif-
ferent initialization schemes will be further investigated in section 5.

5. EXPERIMENTS AND RESULTS

In this section experimental results on a Mandarin Chinese broad-
cast speech transcription and translation task are presented. In the
first part, LM adaptation schemes are evaluated on an state-of-the-
art Mandarin ASR system. In the second part, machine translation
performance using various adapted LMs for the ASR system’s out-
put are presented.

5.1. LM adaptation for ASR

The CUHTK Mandarin ASR system was used to evaluate various
LM adaptation techniques. The overall structure of the system was
similar to that described in [10]. It comprises an initial lattice gener-
ation stage using a baseline 58k word list based interpolated 4-gram
word language model, and adapted MPE acoustic models trained
on HLDA projected PLP features with CMN normalization further
augmented with pitch parameters. A total of 942 hours of broad-
cast news (BN) and broadcast conversation (BC) speech audio data
were used for acoustic model training. After text normalization and
character to word segmentation, a total of 1.3G words from 20 text
sources were used to train an interpolated 4-gram Chinese language
model. In the LM adaptation experiments of this paper, only the top
10 Chinese sources with respect to interpolation weights are used to
build an interpolated 4-gram Katz style back-off model for lattice
rescoring. A generic English language model was also used to han-
dle foreign speech [10]. Information of component LMs and Chinese
text sources are give in table 1:

Comp Model Size(M) Text
LM 2g 3g 4g (M)

Phoenix 11.50 40.07 8.34 76.89
BC-M 1.19 3.06 3.78 4.83

GIGA2 xin 19.25 26.08 10.39 277.6
BN-M 1.07 2.45 2.91 3.78

GIGA2 cna 24.89 37.05 12.21 496.7
VOARFABBC 2.99 9.24 1.97 30.28
CCTVCNR 5.16 15.23 2.74 26.81
PapersJing 9.43 10.20 11.34 83.73
TDT4 0.71 1.35 0.09 1.76
NTDTV 2.27 1.27 1.23 12.49

Table 1. Model size and text source for Mandarin component LMs.

Three Mandarin ASR evaluation sets are used:

• bnmdev06: 14 shows, 3.4 hours of BN data broadcast be-
tween February 2001 and October 2005 subsuming the RT03
and RT04f Mandarin evaluation data.

• bcmdev05: 5 shows, 2.5 hours of Mandarin BC data broad-
cast in March 2005.

• eval06: 29 audio snippets, 1.8 hours of Mandarin BN and
BC data of the GALE 2006 evaluation set.

Language model adaption schemes were investigated at the au-
dio show level. The form of smoothing constant D described in
section 4 was used. A total of 8 iterations of weights re-estimation
were performed for MBR adapted LMs. The 1-best output gener-
ated by an unadapted, fixed weights interpolated baseline model was
used as the supervision for perplexity and MBR adaptation. The
top 1000 hypotheses were extracted as the supervision for N-best
based adaptation. Component models were finally re-interpolated
using the adapted weights to build a back-off 4-gram model for lat-
tice rescoring. Due to the reason discussed in section 3, only linear
interpolation based MBR adaptation is considered.
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Fig. 1. MBR criterion on bnmdev06, bcmdev05 and eval06 for
supervised and unsupervised adapted LMs using PP and MBR.

The average expected CER on all three sets for MBR adapted
LMs in supervised mode at different iterations in supervised and un-
supervised mode are shown in figure 1. The EBW optimization was
found fairly stable for the MBR criterion. A steady reduction of ex-
pected character error rate can be found against the baseline perplex-
ity adapted model, the starting point of the MBR adaptation. In both
cases, approximately 0.2% improvement of MBR criterion were ob-
tained. As expected for unsupervised MBR adaptation the expected
error rate is substantially lower.

Sys Init CER%
bnmdev06 bcmdev05 eval06

fg pp 8.1 18.8 18.8
eql 8.1 18.8 18.7

fg-cn pp 8.0 18.6 18.5
eql 8.0 18.6 18.5

Table 2. CER performance on bnmdev06, bcmdev05 and eval06
for MBR adaptation using PP or equal weights initialization.

As discussed in section 4, the initialization of weights may affect
the performance of MBR adapted language models. CER perfor-
mance comparison between using perplexity based, or equal weights
initialization is shown in table 2 for all three evaluation sets at both
lattice rescoring and the following confusion network (CN) decod-
ing stages. The effect of using different initializations is found small.
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In the rest of the section, perplexity based interpolation weights are
used as the initialization for N-best and MBR adapted models.

Sys Adapt CER%
bnmdev6 bcmdev05 eval06

fg

fixed 8.4 19.0 19.1
pp 8.1 18.8 18.9
nbest 8.1 18.8 18.8
mbr 8.1 18.8 18.8

fg-cn

fixed 8.3 18.8 18.7
pp 8.1 18.6 18.5
nbest 8.1 18.6 18.5
mbr 8.0 18.6 18.5

Table 3. CER performance of adapted LMs on bnmdev06,
bcmdev05 and eval06 for lattice scoring and CN decoding.

CER performance of various adapted LMs are shown in table 3.
Absolute CER reductions of 0.3% on bnmdev06, 0.2% on bcmdev05
and 0.3% on eval06 were obtained at the 4-gram lattice rescoring
stage using either N-best, or MBR adaptation. Some gains were still
retained after CN. The discriminatively adapted MBRmodel yielded
the overall best performance. This can be further illustrated by the
crude correlation between word level perplexity and CER scores
on this task. Word level perplexity scores for each audio show’s
1-best output in bnmdev06 and bcmdev05, selected by the un-
adapted baseline 4-gram model, are plotted against the show level
CER scores in figure 2. This indicates a cost function mismatch
when using word level perplexity based LM interpolation for Man-
darin ASR.
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Fig. 2. Correlation between word level perplexity and CER

As discussed in section 4, MBR based LM adaptation may be
sensitive to the quality of supervision. Hence, it is interesting to ob-
tain an upper bound on performance improvement from MBR adap-
tation. In table 4, the 4-gram CN stage CER performance of per-
plexity and MBR based supervised adaptation using reference tran-
scriptions are presented. In order to obtain the CER cost function for
MBR adaptation, the human generated manual audio transcriptions
were first mapped to the automatic speech segmentation used in the
ASR system. As is shown in the table, on this setup MBR based LM

adaptation was found insensitive to the supervision error rate.

Adapt Sup CER%
bnmdev06 bcmdev05 eval06

pp fg 8.1 18.6 18.5
ref 8.1 18.6 18.4

mbr fg 8.0 18.6 18.5
ref 8.0 18.6 18.4

Table 4. Supervised and unsupervised adapted CER performance on
bnmdev06, bcmdev05 and eval06 for PP and MBR adaptation.

Unfortunately the MBR criterion improvement in figure 1 has
not been completely projected onto CER reduction in tables 3 and 4
against the perplexity adapted baseline model. This may be because
during MBR adaptation rather than the posterior of the best hypoth-
esis with the lowest CER is increased, those of a cluster of other
hypotheses with slightly sub-optimal error rates were boosted. This
can still lead to an decrease of the expected CER score.

5.2. LM adaptation for SMT

Finally, LM adaptation performance for a SMT system is evaluated.
The final output of the above ASR system is post-processed, so that
it consists of sentence-like segments via a sentence end detection
scheme, and then translated into English text. The MTTK-TTM
phrase based translation system was used. Phrase pairs were ex-
tracted from word alignments obtained by MTTK on a bilingual par-
allel Chinese to English corpus consisting of approximately 10 mil-
lion sentence pairs (220M words on the Chinese side). A weighted
finite state transducer based decoding strategy described in [8] was
used. Component transducers include a word to phrase segmenta-
tion model, phrase reordering model and phrase translation model.
A 417k word list based interpolated 4-gram English language model
was used to generate the top 1000 hypotheses for later rescoring us-
ing various adapted language models. Information of component
LMs are give in table 5:

Comp Model Size(M) Text
LM 2g 3g 4g (M)

GIGA2 xin 9.82 13.25 20.21 242.6
BBN 31.50 64.01 110.02 1299.9
MTA 4.73 7.56 12.23 137.6

GIGA2 afp 13.16 25.28 44.47 409.4
GIGA2 apw 20.36 51.61 97.35 921.7
WebNews 2.96 3.43 4.34 44.86
bitex C-E 7.98 12.11 19.17 223.8
CNN 7.24 12.73 20.48 224.2

Table 5. Model size and text source for English component LMs.

Three Mandarin speech translation sets are used, including eval06
as used in previous ASR experiments, and two subsets:

• bnmd06: 7 shows, 1.7 hours pf BN data of bnmdev06.
• bcmd05: 2 shows, 1.2 hours of BC data of bcmdev05.

The remaining BN and BC data of bnmdev06 and bcmdev05 were
used to tune the SMT system and therefore not used to evaluate trans-
lation performance.
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Consistent with the previous experiments for ASR, language
model adaption schemes are investigated at the audio show level.
Again, the form of smoothing constant D described in section 4
was used. A total of 4 iterations of weights re-estimation were per-
formed for MBR adapted LMs. The 1-best output generated using a
unadapted, fixed weights interpolated baseline model was used as
the supervision for perplexity and MBR adaptation. Up to 1000
hypotheses were extracted as the supervision for N-best and MBR
based adaptation.

Adapt Int Init TER%
bnmd06 bcmd05 eval06

fixed lin - 72.24 75.28 80.46
pp lin eql 72.20 75.26 80.35

nbest lin pp 72.21 75.25 80.37
eql 72.22 75.31 80.52

mbr
lin pp 72.14 75.23 80.37

eql 72.16 75.30 80.40

log pp 71.73 74.88 79.89
eql 71.66 74.94 79.84

Table 6. TER performance of adapted LMs on bnmd06, bcmd05
and eval06 for 1000 N-best rescoring.

TER performance of various adapted English language models
are shown in table 6 for bnmd06, bcmd05 and eval06. The base-
line fixed weights based system gave a translation edit rate of 72.24%
on bnmd06, 75.28% on bcmd05 and 80.46% for eval06. Using
perplexity based weights adaptation, the TER scores were slightly
improved on all sets. Using N-best based adaptation, similar per-
formance were obtained with either perplexity or PP based weights
initialization. TER performance of MBR adapted LMs are shown in
the final section of the table. Both linear and log-linear interpolation
are considered. The linear interpolated MBR model using perplex-
ity based weights initialization marginally outperformed both stan-
dard perplexity and N-best based adaptation on the two development
sets. The best TER performance were obtained using the log-linear
interpolated MBR models. Compared with perplexity based adapta-
tion, the TER scores were improved by 0.47%-0.54% on bnmd06,
0.32%-0.38% on bcmd05 and 0.46%-0.51% on eval06. It is inter-
esting that weights assigned by MBR adaptation are often very dif-
ferent from the perplexity based ones. For example, the TER score
of audio show CCTV4 DAILYNEWS CMN 20060207 145800 12 was im-
proved by 1.78% absolute fromMBR adaptation against the perplex-
ity baseline. Using PP based adaptation the top 4 heavily weighted
sources are: GIGA2 xin 0.50, bitex C-E 0.31, GIGA2 apw 0.11, BBN 0.06,
whilst the PP initialized log-linear MBR adapted model: GIGA2 xin
0.36, BBN 0.28, bitex C-E 0.17, GIGA2 apw 0.14. A similar trend was
found on show NTDTV NTDNEWS12 CMN 20060207 115801 22. Its TER
score was reduced by 1.37% absolute from MBR against the per-
plexity baseline. A substantially higher weight of 0.41 was given to
the component LM trained on the BBN text source, in contrast to a
much smaller 0.17 determined using perplexity. These suggest MBR
adaptation is very different from standard techniques.

6. CONCLUSION

Unsupervised test-time discriminative adaptation of mixture language
models was investigated in this paper for aMandarin broadcast speech
transcription and translation task. A minimum Bayes risk based

method is proposed to provide a flexible framework for unsupervised
LM adaptation. It generalizes to a variety of forms of recognition and
translation error cost functions. An efficient weights re-estimation
algorithm was presented for both linear and log-linear interpolated
mixture language models. Initial experiments indicate that the cor-
relation between perplexity and character error rate metrics is fairly
weak for current Mandarin ASR systems. Performance improve-
ments obtained in both the recognition and translation stages also
suggest the proposed form of discriminative LM adaptation may be
useful for speech recognition machine translation. Future research
will examine integrated discriminative adaptation of translation and
language models as a single log-linear model for SMT systems.
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