
EMPIRICAL STUDY OF NEURAL NETWORK LANGUAGEMODELS FOR ARABIC
SPEECH RECOGNITION

Ahmad Emami and Lidia Mangu

IBM T J Watson Research Center
Yorktown Heights, NY 10598
{emami, mangu}@us.ibm.com

ABSTRACT

In this paper we investigate the use of neural network lan-
guage models for Arabic speech recognition. By using a dis-
tributed representation of words, the neural network model al-
lows for more robust generalization and is better able to fight
the data sparseness problem. We investigate different config-
urations of the neural probabilistic model, experimenting with
such parameters as N -gram order, output vocabulary, normal-
ization method, and model size and parameters. Experiments
were carried out on Arabic broadcast news and broadcast con-
versations data and the optimized neural network language
models showed significant improvements over the baseline
N -gram model.

Index Terms— Language Modeling, Speech Recogni-
tion, Neural Networks.

1. INTRODUCTION

Statistical language models are widely used in fields dealing
with speech or natural language. For example, in the com-
monly used statistical formulation of the speech recognition
problem, the recognizer seeks to find the word string:

Ŵ=arg maxW P (A|W)P (W), (1)

where A denotes the observed speech signal, P (A|W) is the
probability of producing A when W is spoken, and P (W),
called the language model (LM), is the prior probability that
W was spoken.

The role of a statistical language model is to assign a prob-
ability P (W) to any given word string W = w1w2 . . . wn.
This is usually done in a left-to-right manner by factoring the
probability:

P (W)=P (w1w2...wn)=P (w1)
Q

n
i=2

P (wi|W
i−1

1
)

where the sequence of words w1w2 . . . wj is denoted by W
j
1 .

Ideally, the language model should use the entire history

We would like to acknowledge the support of DARPA under Grant
HR0011-06-2-0001 for funding part of this work.

W i−1
1 to make its prediction for word wi. However, because

of data sparseness some equivalence classification of histo-
ries W i−1

1 should be employed. The popular N -gram models
which classify the word string W i−1

1 into W i−1
i−N+1 perform

surprisingly well given their simple structure. Nevertheless,
they lack the ability to use longer histories, and still suffer
from severe data sparseness even for small values of N .

Most of the language modeling research has been carried
out for English. The data sparseness problem, which is the
biggest issue in language modeling, gets only worse when we
are dealing with a highly inflectional language such as Ara-
bic. This is mainly due to the increased vocabulary size in the
inflectional languages which increases the space of possible
word combinations in an N -gram. There have been efforts ad-
dressing this issue, for example breaking each inflected word
into parts (eg. by way of morphological analysis) and using
these parts, which have a smaller vocabulary, for language
modeling [1, 2, 7, 3]. However breaking words into parts will
increase the effective N -gram order which in turn will require
a model that is better than regular N -gram models in captur-
ing long dependencies.
Distributed representation of words, combined with a

neural network for probability estimation, has been shown
to be a powerful smoothing method and has enabled the use
of longer and richer probabilistic dependencies [4, 5]. Since
these models work in a distributed space, and since function
estimation is better understood and solved in distributed (con-
tinuous) spaces, it can be assumed that the neural network
models are better in generalizing to unseen data. A great ad-
vantage of this approach is its ability to fight data sparseness.
The model size grows at most linearly with the N -gram order
or the vocabulary size, compared to exponential and polyno-
mial growth respectively for regular N -gram models. It has
been shown that this method improves in both perplexity and
word error rate over state-of-the-art smoothing methods when
it is used with standard N -gram history (i.e. N − 1 previous
words) [4, 6, 7] as well as when it is used in the context of a
syntactic based language model [8, 9, 10].

In this paper we investigate the use of distributed rep-
resentations and neural network language models for Ara-

147978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

bic speech recognition. There are many parameters of the
neural network model that need to be optimized. We ex-
periment with different configurations of the neural network
model such as N -gram order, output vocabulary selection,
and model size and parameters.

Section 2 gives a brief overview of the neural network lan-
guage model. In Section 3 we describe the automatic speech
recognition (ASR) system and the experimental setup. In
Section 4 the various configurations and parameters that we
investigated are described and the experimental results are
shown.

2. NEURAL NETWORK MODEL

In a neural network based language model words are repre-
sented by points in a continuous multi-dimensional feature
space and the probability of a sequence of words is computed
by means of a neural network. The feature vectors of the pre-
ceding words make up the input to the neural network, which
then will produce a probability distribution over a given vo-
cabulary [5]. The main idea behind this model is to make the
estimation task easier by mapping words from the original
high-dimensional discrete space to a low-dimensional contin-
uous space where probability distributions are smooth func-
tions in their variables. The network achieves generalization
by assigning to an unseen word sequence a probability close
to that of a “similar” word string seen in the training data. The
similarity is defined as being close in the multi-dimensional
feature space. Since the probability function is a smooth func-
tion of the feature vectors, a small change in the features leads
to only a small change in the probability.

2.1. Model Details

Suppose the goal is to compute the probability of a cer-
tain event Y = y given the values x1, x2, · · · , xm of m

conditioning variables. The conditional probability function
P (y|x1, x2, · · · , xm) is determined in two parts:

1. A mapping that associates a real vector of fixed dimen-
sion with each token in the input vocabulary Vi: the set
of all tokens that can be used for prediction.

2. A function which takes as the input the concatenation
of the feature vectors of the input items x1, x2, · · · , xm.
The function produces a conditional probability distri-
bution (a vector) over the output vocabulary Vo: the set
of all tokens to be predicted.

Note that the input and output vocabularies Vi and Vo are
independent of each other and can be completely different.
Training is achieved by searching for parameters Φ of the
neural network and the values of feature vectors that maxi-
mize the penalized log-likelihood of the training corpus:

L= 1
T

P
t
logP (yt|xt

1,...,xt
m;Φ)−R(Φ) (2)

where superscript t denotes the tth event in the training data,
T is the training data size and R(Φ) is a regularization term,
which in our case is a factor of the L2 norm squared of the
hidden and output layer weights.

outputhidden layer
input layer

L S

tanh softmax

y

x 1

x 2

x m

Fig. 1. The neural network architecture

The model architecture is given in Figure 1 [5]. The neu-
ral network is fully connected and contains one hidden layer.
The operations of the input and hidden layers are given by:

�f=(f1,...,fd·m)=(�f(x1), �f(x2),··· , �f(xm))

gk=tanh (
P

j
fjLkj+B1

k) k=1,2,...,h

where �f(x) is the d-dimensional feature vector for token x.
The weights and biases of the hidden layer are denoted by
Lkj and B1

k respectively, and h is the number of hidden units.
At the output layer of the network we have:

zk=
P

j gjSkj+B2
k k=1,2,...,|Vo|

pk= e
zkP

j e
zj

k=1,2,...,|Vo| (3)

with the weights and biases of the output layer denoted by Skj

and B2
k respectively. The softmax layer (Equation 3) ensures

that the outputs are valid probabilities and provides a suitable
framework for learning a probability distribution.

The kth output of the neural network, corresponding to
the kth item yk of the output vocabulary, is the desired condi-
tional probability: pk = P (yt = yk|x

t
1, ..., x

t
m).

The neural network weights and biases, as well as the in-
put feature vectors, are learned simultaneously using stochas-
tic gradient descent training via back-propagation algorithm,
with the objective function being the one given in Equation 2.

One great advantage of this model is that context length
(number of inputs) can be increased resulting in at most lin-
ear increase in model size, in contrast to exponential growth
for regular N -gram models. This makes the neural network
a very suitable model for capturing longer and richer proba-
bilistic dependencies.

2.1.1. Implementation and Speed-ups

The computational complexity of the neural network lan-
gauge model is very high since it requires normalization over

148

all the words in the output vocabulary (Equation 3). In con-
trast, in the regular N -gram model the same probability com-
putation consists of few (up to N) table lookup operations.

For the conventional model configurations (N < 10, d <

200, h < 400, and thousands of words in the output vocab-
ulary Vo) the bulk of computation is carried out in the out-
put layer. Therefore, reducing the output vocabulary size (or
the number of hidden units) has an almost linear effect on
reducing the training or decoding time with the neural net-
work model. There have been attempts at reducing the effec-
tive output vocabulary size by using either sampling methods
or hierarchical architectures, or by simply limiting the out-
put to a small subset of the original language model vocab-
ulary [11, 12]. In the latter case the model can not produce
probabilities for words outside the output vocabulary and sub-
stitute probabilities need to be used. Two such substitution
methods are described and investigated in Section 4.3.

Another speed-up method is the bunch mode training
where several instances are propagated through the network
at once. This results in matrix-by-matrix (instead of matrix-
by-vector) operations which are much better optimized on
the current CPU architectures [13, 6]. We further reduced
the effective output vocabulary size by parallelizing the out-
put layer computations over multiple machines (usually 8-10
CPUs). The computations before the output layer are car-
ried out by all the processes separately, but the output layer
itself is divided among the processes. All that is needed to
be communicated between the processes is the normalization
denominator in Equation 3 and that is performed by a single
reduce operation using the Message Passing Interface (MPI)
library [10, 5]. Therefore, as long as the number of processes
is kept small relative to the output vocabulary size, the overall
time spent for communications between processes is negligi-
ble compared to the CPU time spent on computations. Fur-
thermore, using the bunch mode helps reduce the communi-
cation latency since there is only one message sent for every
bunch of examples.

3. EXPERIMENTAL SETUP

All the experiments are carried out in the context of lattice
rescoring. We first present the speech recognition system that
produced the lattices used in this study, then we describe the
baseline language model, the training data used for building
neural network (NN) language models and the test sets used
in the experiments.

3.1. Description of the ASR system

The speech recognition system has a cross-adapted archi-
tecture between unvowelized and vowelized speaker-adaptive
trained (SAT) acoustic models. The distinction between the
two comes from the explicit modeling of short vowels which
are pronounced in Arabic but almost never transcribed. Both

sets of models are trained discriminatively on approx. 500
hours of supervised data and 2000 hours of unsupervised data.
More details about the training of the Arabic models can be
found in [14]. We generated a set of lattices with an aver-
age link density of 256. The ASR decoder that was used to
generate the lattices is described in [15].

3.2. Baseline Language Model

The following corpora are used in the baseline language
model:

• Transcripts of audio data from a variety of sources re-
leased by LDC (7M words)

• Arabic Gigaword corpus, 5 parts (approx. 400M
words)

• Web downloaded data from CMU (95M words)
• Web downloaded data from Cambridge University

(200M words)
• Web text, namely newsgroups and weblogs, collected

by LDC (28M words)

From all these sources a vocabulary of 737K words was ex-
tracted. We built 4-gram language models with modified
Kneser-Ney smoothing on each of these sources. These mod-
els were then linearly interpolated and the result was pruned
down, generating a final language model consisting of 65M
N -gram entries. A heldout set of 80K words was extracted
from the acoustic transcripts released by LDC and was used
for optimizing the interpolation weights.

In all the experiments in this paper, the NN LM was lin-
early interpolated with the baseline 4-gram language model.
The interpolation weights were optimized on the heldout set
using the EM algorithm. We did not observe much variabil-
ity in the value of the interpolation weight for the NN LM; in
most of the cases it was found to be approximately 0.2.

3.3. Training and Test Sets

For the purpose of this study we used two test sets totaling 4.5
hours of Arabic broadcast news and broadcast conversations
speech: Dev07 set distributed by LDC in March 2007 and
consisting of 2.5 hours of speech (18186 words), and Eval06
consisting of 2 hours of speech (12286 words) which was ex-
tracted from the test set used in DARPA’s GALE 2006 eval-
uation. The baseline word error rates (WER) on these two
test sets are 12.40% and 20.84% respectively. The training
data used to build NN language models was the 7M words
of broadcast news and broadcast conversations acoustic tran-
scripts released by LDC.

3.4. Baseline Neural Network Model Setup

All the NN language models used in this paper were trained
on the 7M words training data mentioned above. The network

149

contained 100 hidden units and used 30 dimensional feature
vectors unless otherwise specified. The initial learning rate
was set to 10−3 and this was decayed during training accord-
ing to the formula 10−3

1+10−8∗nt
where nt is the total number of

examples propagated through the network until time t.

4. CONFIGURATION OF THE NEURAL NETWORK
MODEL

There are many aspects of the configuration of the NN model
that need to be considered and optimized for a given language
modeling task. They range from general language modeling
variables such as N -gram order and vocabulary, to the NN
model specific parameters such as number of hidden units,
dimensionality of the feature vectors, and learning rate. In
the following sections, we will discuss some of these config-
uration variables and show their effect on the performance of
the NN language model.

4.1. N -gram Order

It was mentioned earlier that a great advantage of the NN
model is that its complexity increases at most linearly as the
number of inputs (m) to the model is increased. Therefore
the NN model is theoretically less susceptible to over-training
when the N -gram order in incremented. Given this fact, an
obvious experiment is to try neural network N -gram models
of different orders to see if we can get improvements using
longer contexts in word probability estimation. How much
the neural network can learn from longer N -grams is obvi-
ously dependent on the size of the training data. Under the
assumption of better generalization from distributed represen-
tation of words, the NN model should be able to better uti-
lize longer contexts than regular N -gram models for the same
amount of training data.

Table 1 shows the heldout data perplexities and test
set word error rates (WER) for models of different history
lengths. The output vocabulary is set to the 10K most fre-
quent words. All results are reported after training the model
for 20 iterations. The N -gram order has been increased from
4 to 8. It can be seen that changing the history length does
not affect the WER in any significant manner. On the other
hand, as we increase the history length the number of unique
N -grams in the lattices to be rescored is increased. We have
chosen the 6-gram model for all the subsequent experiments
as it strikes a good balance between model performance and
the practicality of lattice rescoring.

4.2. Output Vocabulary Selection

As mentioned in Section 2, the neural network model makes
use of two separate and independent word lists, namely the
input and output vocabularies. The size of the output vocab-
ulary should be kept as small as possible to keep the compu-

model heldout PPL eval06 dev07
baseline 901.5 20.84% 12.40%
4-gram 853.6 20.33% 12.25%
6-gram 844.6 20.35% 12.19%
8-gram 838.7 20.42% 12.13%

Table 1. Neural network LMs perplexity and WER for differ-
ent N-gram orders

output vocabulary vocab size train eval06 dev07
ov10k 10000 21.43% 18.59% 17.06%
ov20k 20000 15.84% 12.22% 10.58%
ov40k 40000 11.60% 7.92% 6.58%
eval06 CN voc branch 7792 38.37% 27.07% -
eval06 CN voc all 9073 33.49% 17.58% -
eval06 LAT voc 23046 28.67% 12.38% -
dev07 CN voc branch 8763 35.70% - 19.82%
dev07 CN voc all 10737 30.07% - 5.11%
dev07 LAT voc 19659 25.50% - 3.5%

Table 2. Out of vocabulary rates for different vocabs

tational complexity of the model at a practical level. Since
the neural network model produces probability distributions
on and only on the words in the output vocabulary, the selec-
tion of output vocabulary can have a significant effect on the
performance of the model.

One can choose the top M most frequent words from the
training data, expecting that this will ensure a low out of vo-
cabulary (OOV) rate on the test set as well. This also war-
rants, for a fixed M , the highest coverage of the training data
and thus results in a better convergence in training. On the
other hand, since we are using the NN model in a lattice
rescoring framework, we have some information about the
words likely to occur in the test set. Therefore, one can build
the output vocabulary exclusively from the words in the lat-
tices, or for better discrimination, from the words found in the
confusion networks ([16]) which have fewer spurious words.

Table 2 shows the OOV rates on the training data and on
the reference transcriptions of the test sets for different out-
put vocabularies. Table 3 shows the corresponding WER re-
sults. Entries ovMk refer to the model with output vocabu-
laries consisting of the top most M words. There are separate
entries for confusion network (CN) and lattice (LAT) vocabs.
Two types of CN vocabs can be built: one which contains
only the words that are confusable, i.e. words for which alter-
native hypotheses exist (CN voc branch), and the other where
all the words in the confusion network are used (CN voc all).
Note that LAT and CN vocabularies are test set specific, so
separate vocabs and NN models need to be built for each test
set.

As can be expected and as evidenced in Table 2, for eval06
test set where the baseline WER is higher, confusion network
and lattice extracted vocabularies do not have as good cover-
age of the reference transcriptions as is the case for the dev07

150

output vocabulary eval06 dev07
ov10k 20.33% 12.16%
ov20k 20.11% 12.05%
ov40k 20.27% 12.03%
eval06 CN voc branch 20.23% -
eval06 CN voc all 20.10% -
eval06 LAT voc 20.27% -
dev07 CN voc branch - 12.01%
dev07 CN voc all - 11.99%
dev07 LAT voc - 12.16%

Table 3. Word Error Rates for NN LMs with different output
vocabs

test set. One can observe from Table 3 that confusion network
(CN) vocabs perform consistently well, especially when the
vocabulary consists of all the words in the confusion network
(’CN voc all’ entries). It should be noted that the CN vocab
models achieve good results with relatively small output vo-
cabulary sizes. This is of great practical importance since one
can build CN vocab models which train faster and perform as
good or better than models with output vocabs consisting of
the top M most frequent words. However, the disadvantage
of CN or LAT vocabularies is that a new NN model, with a
new output vocab, needs to be trained for every new test set.

Another interesting observation is that output vocabular-
ies extracted from lattices do not perform as well as the ones
built from confusion networks. One explanation is that us-
ing lattice extracted vocabularies forces the neural network to
focus on and discriminate among more irrelevant words than
using CN vocabularies.

4.3. Normalization

As mentioned in Section 2, it is not practical to produce com-
plete probability distributions over the very large vocabularies
typically used in ASR systems. For this reason the output vo-
cabulary is usually limited to a comparatively small subset of
the input vocabulary. However such a model is not able to
produce probabilities for words outside its output vocab and
substitute probabilities need to be used to cover for the prob-
abilities that are missing.

We have investigated two methods for extending the NN
model output to the words outside the output vocabulary
while keeping the distribution normalized. The first approach,
which we refer to as norm, is to use a back-off language model
as a substitute for the probabilities of N -grams where the pre-
dicted word is not in the output vocabulary:

P (wi|W
i−1

i−N+1
)=

8<
:

PNN (wi|W
i−1

i−N+1
)·α(W i−1

i−N+1
), if wi ∈ Vo;

Pbo(wi|W
i−1

i−N+1
), otherwise.

where PNN (wi|W
i−1
i−N+1) and Pbo(wi|W

i−1
i−N+1) are the neu-

ral network and the back-off (substitute) distributions re-
spectively, and α(W i−1

i−N+1) is a normalization factor ensur-
ing that the probabilities add up to 1 for a given history

eval06 dev07
ov10K znorm 20.35% 12.19%
ov10K norm 20.30% 12.14%
ov20K znorm 20.11% 12.05%
ov20K norm 20.04% 12.02%
eval06 CN voc branch znorm 20.22% -
eval06 CN voc branch norm 20.2% -
dev07 CN voc branch znorm - 11.99%
dev07 CN voc branch norm - 11.99%

Table 4. Effect of normalization on neural network model
performance

W i−1
i−N+1 [11, 6]. Note that the back-off language model can

be of any order equal or less than N . This approach however
requires computing and storing the constants α(W i−1

i−N+1) for
every history W i−1

i−N+1 that is found in the lattices. An easier
option is to use the non-smooth distribution:

P (wi|W
i−1

i−N+1
)=

8<
:

PNN (wi|W
i−1

i−N+1
), if wi ∈ Vo;

0, otherwise.

which we refer to as znorm. It is possible to use zero probabil-
ities for words outside the output vocabulary since the neural
network model is interpolated with smooth regular N -gram
models in all the experiments.

Table 4 compares the results of the two different normal-
ization methods. As can be seen, using zeros (znorm) instead
of probabilities from a back-off language model (norm) does
not change the performance of the model in any significant
manner. This is especially true for the CN vocab models
where the best results were obtained. For this reason, and
to avoid the trouble of pre-computing constants α(W i−1

i−N+1),
we use the znorm method in all the experiments in this paper
unless otherwise specified.

4.4. Model Size and Parameters

All the previous experiments were carried out with a fixed
number of hidden units (100) and word feature vector dimen-
sion (30). These parameters are by no means optimal and
were chosen solely based on our earlier experiences with the
neural network LMs. Intuitively, one would need more hidden
units when there are more patterns to be learned by the model,
for example when using more training data or when working
on a language when there is a higher variation of permissi-
ble N -gram combinations (eg. Arabic). Another approach
in increasing the model complexity is to use higher dimen-
sional feature vector for word representations, thus forcing
the model to learn the probability distributions in a higher di-
mensional space.

We experimented with NN LMs with both more hidden
units and higher dimensional feature vectors. The results are
given in Table 5. The hx and dy entries refer to models with x

hidden units and y-dimensional feature vectors respectively.

151

model eval06 dev07
ov20k, h100 20.11% 12.05%
ov20k, h200 20.17% 12.06%
ov20k, h400 20.16% 12.14%
dev07 CN voc branch, d30 - 12.01%
dev07 CN voc branch, d120 - 12.03%

Table 5. Effect of model size on performance

The results from the table show that increasing the model
size by either adding more hidden units or using higher di-
mensional feature vectors does not have any significant effect
on the model performance. Based on these results and given
that increasing the model size increases the memory require-
ments and/or the computational complexity of the model sig-
nificantly,we have decided to use the baseline configuration of
100 hidden units and 30 dimensional feature vectors for our
experiments.

5. CONCLUSIONS AND FUTUREWORK

In this paper we studied the use of neural network language
models for Arabic broadcast news and broadcast conversa-
tions speech recognition. The NN models improved consid-
erably over the baseline 4-gram model, resulting in reductions
of up to 0.8% absolute and 3.8% relative in WER. We inves-
tigated the choice of different parameters and configurations
for the NN LMs. In most of the cases the choice of the pa-
rameters did not have a significant effect on the performance
of the model. However some interesting patterns were ob-
served. For example, choosing the output vocabulary from
the confusion network seems to work as well or better than
choosing the most frequent words, even though the resulting
vocabulary is usually smaller in size. Also, using the simple
znorm method instead of the more elaborate normalization
based on substitute language models does not seem to have
any noticeable effect on the performance. This is especially
the case for CN vocab models where the two normalizatoin
methods are almost identical in performance. On the other
hand, using larger neural networks did not seem to improve
the performance, which is counter intuitive.

We plan to extend this work by taking advantage of the
morphological analysis of the Arabic language. We also plan
to investigate methods for discriminative training of the NN
LM so as to better disambiguate between word choices in a
lattice or confusion network. Another future direction is to
study the convergence of the neural network model for large
amounts of training data.

6. REFERENCES

[1] Dimitra Vergyri, Katrin Kirchhoff, Kevin Duh, and An-
dreas Stolcke, “Morphology-based language modeling
for arabic speech recognition,” in ICSLP, 2004.

[2] Katrin Kirchhoff, Dimitra Vergyri, Jeff Bilmes, Kevin
Duh, and Andreas Stolcke, “Morphology-based lan-
guage modeling for conversational arabic speech recog-
nition.,” Computer Speech and Language, vol. 20, no.
4, 2006.

[3] Ruhi Sarikaya and Yonggang Deng, “Joint
morphological-lexical language modeling for ma-
chine translation,” in Human Language Technology
conference, 2007.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural
probabilistic language model,” in Advances in Neural
Information Processing Systems, 2001.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin, “A neural probabilistic language
model,” Journal of Machine Learning Reseach, vol. 3,
2003.

[6] Holger Schwenk, “Continuous space language models,”
Comput. Speech Lang., vol. 21, no. 3, 2007.

[7] Andrei Alexandrescu and Katrin Kirchhoff, “Factored
neural language models,” in NAACL, June 2006.

[8] Ahmad Emami, Peng Xu, and Frederick Jelinek, “Using
a connectionist model in a syntactical based language
model,” in ICASSP, 2003.

[9] Peng Xu, Ahmad Emami, and Frederick Jelinek, “Train-
ing connectionist models for the structured language
model,” in Proceedings of EMNLP, 2003.

[10] Ahmad Emami and Frederick Jelinek, “A neural syn-
tactic language model,” Machine Learning, vol. 60, no.
1-3, pp. 195–227, 2005.

[11] Holger Schwenk and Jean-Luc Gauvain, “Connection-
ist language modeling for large vocabulary continuous
speech recognition,” in Proc. ICASSP, 2002.

[12] Holger Schwenk and Jean-Luc Gauvain, “Training neu-
ral network language models on very large corpora,” in
Human Language Technology conference, 2005.

[13] J. Bilmes, K. Asanovi, c Chin, and J. Demmel, “Us-
ing phipac to speed error back-propagation learning,” in
Proceedings of ICASSP, 1997.

[14] H. Soltau, G. Saon, B. Kingsbury, J. Kuo, L. Mangu,
D. Povey, and G. Zweig, “The IBM 2006 GALE Arabic
ASR system,” in ICASSP, 2007.

[15] G. Saon, D. Povey, and G. Zweig, “Anatomy of an ex-
tremely fast LVCSR decoder,” in Interspeech-05, 2005.

[16] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
among words: lattice-based word error minimization,”
in Eurospeech, 1999.

152

