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ABSTRACT

This work investigates the use of acoustic data to improve

grapheme-to-phoneme conversion for name recognition. We

introduce a joint model of acoustics and graphonemes, and

present two approaches, maximum likelihood training and dis-

criminative training, in adapting graphoneme model parame-

ters. Experiments on a large-scale voice-dialing system show

that the maximum likelihood approach yields a relative 7%

reduction in SER compared to the best baseline result we ob-

tained without leveraging acoustic data, while discriminative

training enlarges the SER reduction to 12%.

Index Terms— grapheme-to-phoneme conversion, pro-

nunciation model, name recognition, discriminative training

1. INTRODUCTION

Grapheme-to-phoneme (G2P) conversion, sometimes referred

to as letter-to-sound conversion, has become an indispens-

able component in large-scale voice-dialing systems. Many

state-of-the-art G2P conversion systems are based on statisti-

cal models [1, 2, 3, 4], where probabilistic relationships be-

tween graphemes and phonemes are learned from a hand-

authored pronunciation lexicon consisting of common English

words. 1 A G2P model trained in such a manner, however,

may or may not be optimal when applied to large-scale name

recognition tasks (with over 104 names). The first challenge

comes from domain mismatch; some grapheme-phoneme re-

lationships that occur in names may be lacking from a pro-

nunciation lexicon. Although we can reduce this mismatch

by adding names and their pronunciations into the lexicon,

it is unrealistic to do it at a large scale, as the number of

unique names can be gigantic, and it is often the rare names

that have irregular pronunciations. The second challenge is

speaker variability. People from different geographic regions

and ethnic groups may pronounce the same name in different

ways; and a hand-authored pronunciation lexicon can hardly

capture all such variations.

Ideally, G2P conversion should produce pronunciations

that best serve the target application, which in our case is

1This paper studies G2P conversion for the language of English, though

the ideas presented here can potentially be applied to other languages.

name recognition. To this end, we propose to leverage acous-

tic data obtained from a large-scale voice-dialing system to

adapt a G2P model for name recognition. In fact, there has

been various work on learning pronunciations for proper names

from acoustic data [5, 6, 7]. A common goal thereof is to di-

rectly augment or modify an existing pronunciation lexicon

with pronunciations generated from acoustic data. A key dif-

ference of our work is that we aim at adapting at the gra-

phoneme level, which will be introduced shortly. Theoreti-

cally speaking, given sufficient adaptation data, the resulting

G2P conversion should not only improve pronunciation for

those words that have occurred in adaptation data, but also

generalize to unseen words.

The rest of the paper is organized as follows: Section 2 re-

views a graphoneme ngram model for grapheme-to-phoneme

conversion. Section 3 introduces a joint model of acoustics

and graphonemes. Section 4 and Section 5 respectively present

maximum likelihood training and discriminative training for

G2P model adaptation. Section 6 discusses how to obtain

adaptation data in an unsupervised manner. Section 7 presents

name recognition experiments and results, and Section 8 con-

cludes.

2. GRAPHONEME NGRAM MODELS

In this work, we construct probabilistic relationships between

graphemes and phonemes using a graphoneme ngram model

(also referred to as a joint multi-gram model) [2, 3]. For

readers’ convenience, we briefly review how we create gra-

phoneme sequences from a pronunciation lexicon, based on

which a graphoneme ngram model can be trained.

grapheme seq. l e t t e r

phoneme seq. l eh t ε ax r

graphoneme seq. l:l e:eh t:t t:ε e:ax r:r

Table 1. An example of a graphoneme sequence

We let a random variable g denote a grapheme sequence

and let φ denote a phoneme sequence. Furthermore, we use

s to represent an alignment and a grouping of φ and g, as

will be defined in the following example. Consider the word
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letter, which has g = (l, e, t, t, e, r) and φ = (l, eh, t, ax, r).

One possible way of aligning g and φ is shown in Table 1,

where ε denotes a null phoneme. Given such an alignment,

primitive graphoneme units can be generated by associating

graphemes with their phoneme counterparts, as shown in the

last row of Table 1. Next, adjacent graphoneme units can be

grouped together to form larger units. In the above example,

merging l:l with e:eh, and e:ax with r:r, results in

l&e:l&eh t&t:t& ε e&r:ax&r (1)

The form of (1) is what we define a graphoneme sequence,

which is fully determined by (g, φ, s).
Having introduced the concept of graphonemes, we now

turn to the question of how to create such graphoneme se-

quences as in (1) from a pronunciation lexicon of parallel

grapheme and phoneme sequences, i.e., how to infer s given a

set of (g, φ) pairs. The first step is to automatically align g and

φ to form primitive graphonemes. This work adopts an EM

approach presented in [2], where alignment is inferred using

graphoneme unigram statistics. Secondly, we follow a proce-

dure similar to [3] to merge graphemes into larger units except

that our algorithm is based on mutual information instead of

co-occurring frequency, and that we allow a graphoneme unit

to have maximally k graphemes and l phonemes.

Once we create a corpus of graphoneme sequences, we

train a standard ngram model with backoff. Depending on the

amount of training data, we use a cutoff threshold to adjust

model complexity; an ngram will be excluded from the model

if it has a count no more than this threshold. Finally, G2P

conversion can be achieved by applying best-first search (or

other search algorithms) [3]. Details about training/decoding

of a graphoneme ngram model can be found in [2, 3]. Here

we focus our attention on the use of acoustics in adapting such

a model, which we will present next.

3. A JOINT MODEL OF ACOUSTICS AND
GRAPHONEMES

As mentioned in the introduction, the end-to-end goal of this

work is to optimize G2P conversion to improve name recogni-

tion. In this regard, acoustic data can be very useful in learn-

ing grapheme-phoneme relationships that occur in real-world

applications. We introduce another random variable x to rep-

resent acoustics, and we propose to jointly model x, g, φ and

s as follows,

log pθ(x, g, φ, s) = log p(x|φ) + log pθ(g, φ, s) (2)

The factorization follows the assumption that x is indepen-

dent of g and s given φ. Therein, the joint likelihood is ex-

pressed by an acoustic model score p(x|φ) and a graphoneme

model score pθ(g, φ, s), where θ represents ngram model pa-

rameters to be adapted. Note that we use a fixed acoustic

model, and p(x|φ) is therefore not parameterized. Moreover,

we add a scale factor a which serves similarly to a language

model scale factor in speech recognition; Equation (2) hence

becomes

≈ log p(x|φ) + a log pθ(g, φ, s) (3)

For simplicity, we omit a in all our following formulation, but

keep in mind that a is applied to Equation (2) in practice.

Moreover, we assume that both x and g are observable,

whereas φ and s are hidden. We specifically assume the avail-

ability of a set of adaptation data (xi, gi). In Section 6, we

will describe how we obtain grapheme labels g for acoustic

data x in an unsupervised manner. Given the labeled data, one

potential approach to adapting a graphoneme ngram model

is to re-estimate model parameters that maximize the joint

likelihood log p(x, g), leading to maximum likelihood esti-

mation (MLE). Alternatively, we can directly maximize the

conditional likelihood log p(g|x) using a discriminative train-

ing (DT) approach. We will discuss these two approaches

respectively in the following two sections.

4. MAXIMUM LIKELIHOOD TRAINING

4.1. Maximizing joint likelihood

Given a set of (xi, gi) pairs, the objective of MLE is to maxi-

mize

m∑

i=1

log pθ(xi, gi) =
m∑

i=1

log
∑

φi,si

pθ(xi, gi, φi, si) (4)

Standard EM algorithm can be applied to cope with hidden

variables {φi, si}m
i=1. Alternatively, we can apply the Viterbi

algorithm, which we adopt in this work for simplicity. The

special optimization procedure is as follows,

1. Start from a baseline graphoneme model θ0 that is trained

on a pronunciation lexicon (see Section 2).

2. Find the most likely φi and si, given the observed (xi,

gi), and the current model estimate θ, i.e.

φ̂i, ŝi = argmax
φi,si

log pθ(φi, si|xi, gi)

= argmax
φi,si

log p(xi|φi) + log pθ(gi, φi, si)

(5)

3. Re-estimate the model by

θ̂ = argmax
θ

m∑

i=1

log pθ(gi, φ̂i, ŝi) (6)

4. Repeat step 2 and 3 until convergence.

For computational convenience, for each i, the ”argmax”

operation in Equation (5) is taken only w.r.t. the top n phoneme

sequences φi that yield the highest log pθ(gi, φi, si) scores.
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In other words, we use the current model to generate n-best

phoneme sequences and then use Equation (5) to rescore them.

This is akin to the idea of combining linguistic knowledge and

acoustic data to generate pronunciation lexicons [6, 7]. Note

that the n-best list could also be generated by a phonetic de-

coder, but this would introduce “linguistically incorrect” pro-

nunciations that are not desired in training a G2P model.

Another issue worth attention is when gi is not the correct

label for xi (as will be explained in Section 6). We need to

discard such noisy samples which would otherwise “contam-

inate” the graphoneme model. A simple method is to use an

acoustic model confidence α; a sample is discarded if

log p(xi|φ̂i) < α (7)

The intuition is that, if gi is not the correct label for xi, then

it is unlikely that any of the n-best φi (and hence φ̂) would

yield a high acoustic model score.

4.2. Adaptation strategies

The above approach yields a graphoneme model that is op-

timized w.r.t. an adaptation set. Depending on the amount

of adaptation data, this model may or may not generalize

well. A more robust approach would be to leverage infor-

mation from the pronunciation lexicon on which the baseline

graphoneme model is trained. This resembles the idea of lan-

guage model adaptation which attempts to learn models for a

new domain (often with limited data) by leveraging existing,

out-of-domain data [8]. In this work, we investigate two sim-

ple strategies in the context of adapting a graphoneme model.

Model interpolation: we obtain model θML from Equa-

tion (6) (after convergence), and interpolate it linearly with

the baseline graphoneme model θ0. The interpolation weights

are tuned on a development set.

Data combination: we obtain φ̂i from Equation (5) (again

after convergence) for each i. Then we combine {(gi, φ̂i)}m
i=1

with the original pronunciation lexicon, and retrain a model

following Section 2. In this regard, {(gi, φ̂i)}m
i=1 functions

like a ”pronunciation lexicon” that is generated from acoustic

data. However, unlike a typical pronunciation lexicon where

each (g, φ) value is unique, {(gi, φ̂i)}m
i=1 can contain identi-

cal entries, i.e. (gi = g, φ̂i = φ) for multiple i. In fact, this

redundancy can be useful to our task, as it naturally defines a

prior distribution p(g, φ) that is absent from a pronunciation

lexicon. To support our argument, we will conduct an ex-

periment in which we remove this redundancy by collapsing

identical entries after data combination.

We formally evaluate these adaptation strategies in Sec-

tion 7, where we use adapted graphoneme models, instead of

the baseline model, to generate pronunciations for in-grammar

names, and where we measure recognition error rates on a test

set.

5. DISCRIMINATIVE TRAINING AND RESCORING

MLE aims to find parameters that best describe the data, and

is statistically consistent under the assumptions that the model

structure is correct, that the training data is generated from the

true distribution, and that we have an infinite amount of such

training data. Such conditions, however, are rarely satisfied in

practice. Discriminative training (DT), which directly targets

for better classification/recognition performance, often yields

superior performance.

5.1. Maximizing conditional likelihood

In the context of grapheme-phoneme conversion, the goal of

DT is to estimate graphoneme model parameters in such a

way that pronunciations generated by this model maximally

reduce recognition error. The goal is similar to DT of lan-

guage models for speech recognition [9]. In this work, we

maximize the conditional likelihood of a grapheme sequence

given acoustics, i.e.

m∑

i=1

log pθ(gi|xi) =
m∑

i=1

log
pθ(xi, gi)∑

g′
i

pθ(xi, g
′
i) (8)

The computation of p(xi, gi) involves the marginalization over

φi, si . Here we make the approximation that

pθ(xi, gi) =
∑

φi,si

pθ(xi, gi) ≈ pθ(xi, gi, φ̂i, ŝi) (9)

where φ̂i, ŝi are defined in Equation (5). Equation (8) conse-

quently becomes

≈
m∑

i=1

log
p(xi|φ̂i)pθ(φ̂i, ŝi, gi)∑

g′
i

p(xi|φ̂i)pθ(φ̂′
i, ŝ

′
i, g

′
i)

(10)

Stochastic gradient descent [10] can be applied to find a lo-

cally optimal estimate θDT .

Specifically, the training procedure is carried out as fol-

lows:

1. Start with an ML-adapted graphoneme model θML (Sec-

tion 4);

2. For xi, obtain n-best recognition results g′i using a speech

recognizer and using the ML-adapted graphoneme model;

3. For (xi, gi), obtain φ̂i, ŝi by Equation (5); and similarly

for each (xi, g
′
i), obtain φ̂′

i, ŝ
′
i by Equation (5);

4. Apply stochastic gradient descent to Equation (10) w.r.t.

θ; apply early stopping [11] to avoid overfitting.

5. Repeat step 2, 3 and 4 until convergence.
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There is one issue we would like to address before mov-

ing on. In an ngram model with backoff, if we encounter an

ngram that does not exist in the model, we compute its prob-

ability by backing off to a lower-order distribution. There are

several options regarding how to handle backoff in DT [9]. In

this work, we choose to fix backoff weights while updating

lower-order ngram parameters.

5.2. Rescoring

For consistency with training in which optimization is con-

ducted on n-best grapheme sequences (see Equation (10)), we

evaluate the discriminatively trained model in a similar fash-

ion. For each xi in the test set, we generate n-best g′i using

a speech recognizer and using the ML-adapted graphoneme

model θML. Then we rescore g′i using the model obtained by

discriminative training.

ĝi = argmax
g′

i

pθ∗(g′i|xi)

= argmax
g′

i

p(xi|φ̂′
i)pθDT (φ̂′

i, ŝ
′
i, g

′
i)

(11)

Here we make the same approximation as we did in Equa-

tion (10). Finally, we measure recognition error rates based

on ĝi obtained from rescoring.

6. ADAPTATION DATA ACQUISITION

Our discussion so far assumes the grapheme labels of acous-

tic data are available at adaptation time. Manual transcrip-

tion in a large-scale voice dialing system is an expensive and

error-prone task due to the large number of (and sometimes

confusable) names in the grammar. What we propose in this

work is to obtain grapheme labels for a subset of acoustic data

by dialog analysis. Specifically, we utilize data in “success-

ful” dialog sessions. Here by “successful”, we mean that the

dialog ends up with an automatic transfer (to the person of

interest) after a positive confirmation from the user, e.g.,

System: “Good morning. Who would you like to contact?”

User: “John Doe.”

System: “Did you say John Doe?” (generated by TTS)

User: “Yes.”

System: “O.K. I’ll transfer you in a moment.”

At the end of this dialog session, the system will log an event

that the call was transferred to John Doe. Since the user con-

firmed “yes” to the system before the transfer, it is reasonable

to assume that the name of the person to whom the call is

transferred is the correct grapheme label for the correspond-

ing waveform. Sometimes, the system may go through mul-

tiple rounds of interactions before the user gives a positive

confirmation, then the grapheme label obtained from the final

transfer may correspond to multiple waveforms in that dialog

session.

By making such an assumption, however, we potentially

introduce noise in our data — the destination to which a call is

transferred may not be the true grapheme label for the corre-

sponding waveform (waveforms). In fact, we have observed

instances where a user confirmed “yes” to the system even

he/she was recognized wrong (often due to confusable pro-

nunciations generated by TTS), and the call got transferred to

a wrong person in the end. This is the main reason we apply

Equation (7) to remove noisy data from the adaptation set.

7. EVALUATION

This section examines whether a G2P conversion system us-

ing adapted graphoneme models would improve name recog-

nition performance. For a fair comparison between different

graphoneme models, we disabled the pronunciation lexicon

lookup in our speech recognizer. In other words, all pronun-

ciations must be obtained via G2P conversion. In addition, we

set the graphoneme model scale factor α = 0.25 in all cases,

which empirically worked well.

7.1. Data sets

We have two professionally transcribed pronunciation lexi-

cons containing (g, φ) pairs. The first one is a “general lexi-

con” with common English words, including frequently used

names (some are foreign names). This lexicon has 81K pro-

nunciations for 65K unique words, where each word can have

multiple pronunciations. The other lexicon, which we call a

“name lexicon”, contains solely names. It has 64K pronun-

ciations for 53K unique words. These two lexicons are to be

used in training baseline graphoneme models.

Furthermore, following the procedure described in Sec-

tion 6, we obtained adaptation data, i.e., (x, g) pairs, from the

call logs of a corporate voice-dialing system with 58K names.

We collected an adaptation set with 30K utterances of first
name + last name. We also created a second adaptation set

(from a different period when the calls were made) to serve

as a development set.

Finally, we prepared a separate test set from the same

voice-dialing system. This test set contains 2844 utterances

and 5719 word tokens. It is different from an adaptation set

in that the grapheme labels of the waveforms were transcribed

by human. In evaluation, these 2844 utterances were tested

against a grammar with 58K names — the same grammar as

was used in the voice-dialing system.

7.2. Baseline setup

We first trained baseline graphoneme models using pronunci-

ation lexicons as described in Section 2, and evaluated their

performance on the test set using Microsoft telephony speech

recognition engine. Note that since each utterance in the test

set (also in the adaptation set) consists of a first name and a
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ID Description % WER % SER

(a) General lexicon 10.42 13.15
(b) Name lexicon 11.21 13.99

(c) General + name 10.70 13.29

(d) Adapt 10.61 13.40

(e) (a) & (d) interpolated 9.86 12.48

(f) General + adapt 9.58 12.20
(g) General + adapt collapsed 10.16 12.83

(h) General + increased adapt 9.65 12.31

Table 2. First-pass recognition results using baseline and

MLE models (graphoneme trigrams without cutoff); see de-

tailed experiment descriptions in the text.

last name, we measure both word error rate (WER) and sen-

tence error rate (SER). We empirically experimented with dif-

ferent graphoneme unit sizes, ngram orders and ngram cutoff

thresholds. The best recognition performance was achieved

when we allow maximally 4 graphemes and 3 phonemes in

a graphoneme unit, and when we use trigrams without cut-

offs. We report three experiments under this configuration:

(a) using the general lexicon only in training; (b) using the

name lexicon only; and (c) using the combined lexicon. As

shown in the first three rows of Table 2, the graphoneme tri-

gram model trained using the general lexicon outperformed

the other two. We thus use this model as the initial point in

adaptation.

Data analysis shows that the general lexicon covers 67%

of the words (first name or last name) in the test set, whereas

the name lexicon covers 74%. Despite the fact that the name

lexicon better matches our test set, it does not prevail in recog-

nition. This is probably because some name pronunciations

provided by linguists do not match those in real-world appli-

cations, or at least do not capture enough variations (consid-

ering there are only about 1.2 pronunciations per word in the

name lexicon).

7.3. MLE results

Next, we conducted a set of maximum likelihood adaptation

experiments as presented in Section 4, and we evaluated the

following adapted graphoneme models: (d) a model trained

by MLE using adaptation data only; (e) the baseline model

interpolated with the one trained using adaptation data (model

interpolation); (f) a model trained on a combined data set of

the general lexicon and adaptation data (data combination);

and (g) which is similar to (f) except that identical (g, φ) pairs

were collapsed into single entries.

As shown in Table 2, the model trained on combined data

obtained the largest reduction error rates — a relatively 8.6%
reduction in WER and 7.2% in SER. The model interpolation

approach performed almost as good. Moreover, a comparison

of (e) and (g) indicated that a prior distribution on p(g, φ),

8.5

9

9.5

10

10.5

11

11.5

0 1 2 3 4

WER

ngram cutoff threshold

Baseline

MLE

DT

Fig. 1. Rescoring results, in %WER, of the baseline, MLE,

and DT models, using trigrams with different cutoffs.
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Fig. 2. Rescoring results, in %SER, of the baseline, MLE,

and DT models, using trigrams with different cutoffs.

which was naturally modeled by allowing identical entries in

the combined data, was indeed helpful.

In addition, we doubled the amount of adaptation data (by

adding the development set into the adaptation set). We then

repeated the data combination experiment, shown as (h) in

Table 2, where we did not observe further improvement.

7.4. DT results

As explained in Section 5, we propose to conduct n-best rescor-

ing, as opposed to first-pass decoding, to evaluate DT perfor-

mance. Specifically, we initialized the model using the best

model obtained by maximum likelihood adaptation, i.e. (f)

in Table 2, then we applied DT on the adaptation set. In

Figure 1 and Figure 2, we compare WERs and SERs of the

baseline graphoneme model trained on the general lexicon,

the best ML-adapted model (trained on combined data), and

the discriminatively trained model. Note that the error rates
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of the first two models are slightly different from those in

Table 2 due to the difference between rescoring and first-

pass decoding. Furthermore, we tried a number of ngram

cutoff thresholds and found that moderately increasing the

threshold slightly improved DT performance. This is prob-

ably because more aggressive cutoffs would reduce model

complexity, thus preventing the model from overfitting the

adaptation data. When we used a cutoff threshold of 2, the

WER/SER of using the DT model are 9.23%/11.57%, a rel-

ative 11.5%/11.9% reduction from our best baseline from

first-pass decoding (the baseline from rescoring performed

worse).

Although DT of a graphoneme model significantly im-

proved G2P conversion as measured by recognition perfor-

mance, we need to be careful when applying a discrimina-

tively trained model in real-world systems. The caveat is that

such a model is no longer optimal once the grammar changes

— maximal discrimination on one set of names does not mean

the same on another. Therefore, the model needs to be re-

trained if the grammar is significantly changed. The MLE

approach, on the other hand, does not have this problem since

it aims at maximizing the joint likelihood, which is essentially

the numerator in Equation (8).

8. CONCLUSIONS

This paper presented a framework of leveraging acoustic data

in adapting G2P conversion for name recognition. We intro-

duced a joint model of acoustics and graphonemes, where

graphoneme parameters can be estimated using a maximum

likelihood criterion. We examined several adaptation strate-

gies which attempt to combine information from a pronun-

ciation lexicon and from acoustic data. Experiments showed

that the best performance came from a simple data combi-

nation strategy, which yielded a relative WER/SER reduc-

tion of 8.6%/7.2%. Furthermore, we then applied discrimi-

native training to our best ML-adapted model, enlarging the

WER/SER reduction to 11.5%/11.9%.
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