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ABSTRACT

Most state-of-the-art automatic transcription systems generate
word transcriptions of the incoming audio data through two or more
decoding passes interleaved by adaptation of acoustic models. It was
proved that better results are obtained when the adaptation proce-
dure exploits a supervision generated by a system different than the
one under adaptation. In this paper, cross-system adaptation is in-
vestigated by using supervisions generated by several systems built
varying the phoneme set and the acoustic front-end. Furthermore, an
adaptation procedure is presented that makes use of multiple super-
visions of the audio data for adapting the acoustic models within the
MLLR framework. The gain achieved with cross-system adaptation
and by adapting the acoustic models exploiting multiple, intra-site
and cross-site, supervisions is demonstrated on the English Euro-
pean parliamentary speeches task.

Index Terms— cross-system acoustic model adaptation, ASR
system combination, automatic speech recognition

1. INTRODUCTION

It has often been observed that different Automatic Speech Recog-
nition (ASR) systems can make errors of different nature, while
demonstrating similar Word Error Rates (WER). This characteris-
tic is often exploited to improve recognition performance through
cross-system Acoustic Model (AM) adaptation and system combi-
nation via ROVER (Recognizer Output Voting Error Reduction) or
confusion network combination [1, 2, 3, 4].

When performing unsupervised AM adaptation of a system, bet-
ter results are obtained if the supervision is generated by a different
system, provided the latter ensures an adequate level of recognition
performance. Several approaches have been proposed for building
complementary ASR systems able to produce sufficiently different
word transcriptions with uncorrelated errors. For example, the use of
different acoustic front-ends and/or pronunciation lexica [5], or the
randomization of the training procedure by randomizing the phonetic
decision tree growing procedure [3]. When possible, word transcrip-
tions generated by systems developed by different sites are exploited
[2, 6].

In this paper1, cross-system adaptation is first investigated by ex-
ploiting the output of several intra-site ASR systems each one using
a different phoneme set and/or acoustic front-end.

To further improve recognition performance we propose an adap-
tation procedure which exploits multiple supervisions, that is word
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hypotheses generated by different ASR systems, to adapt AMs be-
fore the final decoding pass. The method is conceptually straight-
forward: it consists of performing the adaptation step on as many
replicas of the audio data as there are supervisions, assigning to each
replica a different supervision. In other words, it cumulates the coun-
ters that result from adapting the AMs on each individual supervi-
sion. AM adaptation is carried out in the Maximum Likelihood Lin-
ear Regression (MLLR) framework [7]. This adaptation procedure
is compared to ROVER combination of the same system outputs.
ROVER is the most widely used system combination approach. It is
a post-recognition process which combines word hypotheses, gen-
erated by different ASR systems and ideally annotated with word
confidence information, to generate a word hypothesis with reduced
error rate [8].

The gain achieved with cross-system adaptation and by adapt-
ing the AMs exploiting multiple supervisions is demonstrated on the
English European parliamentary speeches task by using the FBK-irst
transcription system developed for the 2007 TC-STAR ASR evalua-
tion campaign.

To further validate results of intra-site adaptation experiments,
cross-site adaptation is investigated by exploiting as supervision the
outputs of several systems developed by another participant in the
2007 TC-STAR evaluation campaign. Experiments reported confirm
that better recognition results are achieved when supervisions for
adaptation are generated by systems developed independently.

The paper is organized as follows. In Section 2 the FBK-irst
transcription system is described while the procedure for AM adap-
tation with multiple supervisions is presented in Section 3. Intra-
site system adaptation experiments are presented in Section 4 while
cross-site system adaptation experiments are reported and discussed
in Section 5. Finally, we summarize our conclusions in Section 6.

2. TRANSCRIPTION SYSTEM DESCRIPTION

In this section we summarize the main features of the FBK-irst sys-
tems developed for the 2007 TC-STAR ASR evaluation. One of the
task of the evaluation was transcription of speeches delivered in En-
glish by politicians at the European Parliamentary Plenary Sessions
(EPPS).

Word transcription is generated in two decoding passes after par-
titioning of the input audio stream. The input audio signal is first di-
vided into homogeneous non overlapping segments using an acous-
tic classifier, based on Gaussian Mixture Models (GMMs), followed
by a segment clustering method based on the Bayesian information
criterion. The resulting segmentation and clustering is then exploited
by the recognition system to perform cluster-wise feature normaliza-
tion and AM adaptation.

Data for AM training were released to the participants in the
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Table 1. Recognition results (% WER) achieved by using several one-pass decoding systems.

Data Set One-Pass Decoding System
MFCC-USLex(1) MFCC-BEEPLex(1) PLP-USLex(1) PLP-BEEPLex(1)

dev06en 13.6 13.5 14.1 13.6

eval07en 12.8 12.7 13.1 12.9

evaluation: about 101h of transcribed audio recordings data and
200h of untranscribed recordings. The untranscribed recordings were
automatically transcribed using a preliminary version of the system.
In total, about 250h of speech data were used for training.

AMs for the first and second decoding pass were both trained ex-
ploiting a variant of the speaker adaptive training scheme proposed
by Gales [7], called Constrained MLLR-based Speaker Normaliza-
tion (CMLSN) [9]. In the CMLSN method there are two sets of
AMs, the target models and the recognition models. The method
makes use of an affine transformation to normalize acoustic features
on a cluster by cluster basis with respect to the target models. For
each cluster of speech segments an affine transformation is estimated
through CMLLR [7] with the aim of minimizing the mismatch be-
tween the cluster data and the target models. Once estimated, the
affine transformation is applied to cluster data. Recognition models
are then trained on normalized data. Leveraging on the possibility
that the structure of the target and recognition models can be deter-
mined independently, a GMM can be adopted as target model for
training AMs used in the first decoding pass [10]. This has the ad-
vantage that word transcriptions of test utterances are not required
for estimating feature transformations. Instead, target models for
training recognition models used in the second pass are usually tri-
phones with a single Gaussian per state [9]. The same target models
are used for estimating cluster-specific transformations during train-
ing and recognition.

In the current version of the system, a projection of acoustic fea-
ture space, based on Heteroscedastic Linear Discriminant Analysis
(HLDA), is embedded in the feature extraction process as follows.
A GMM with 1024 Gaussian components is first trained on an ex-
tended acoustic feature set consisting of static acoustic features plus
their first, second and third order time derivatives. Acoustic observa-
tions in each, automatically determined, cluster of speech segments,
are then normalized by applying a CMLLR transformation estimated
w.r.t. the GMM. After normalization of training data, an HLDA
transformation is estimated w.r.t. a set of state-tied, cross-word,
gender-independent triphone Hidden Markov Models (HMMs) with
a single Gaussian per state, trained on the extended set of normal-
ized features. The HLDA transformation is then applied to project
the extended set of normalized features in a lower dimensional fea-
ture space. Recognition models used in the first and second decoding
pass are trained on normalized, HLDA projected, features. HMMs
for the first decoding pass are trained through a conventional maxi-
mum likelihood procedure. Models used in the second decoding pass
are trained through the CMLSN method exploiting as target-models
triphone HMMs with a single Gaussian density per state.

At recognition stage, the output of the first decoding pass is
exploited as supervision for CMLSN-based feature normalization
and MLLR-based acoustic model adaptation. In order to investigate
cross-system adaptation, we trained several sets of AMs consider-
ing two acoustic front-ends and two pronunciation lexica. The two
acoustic front-ends were:

• MFCC: 13Mel-frequency Cepstral Coefficients, including the
zero order coefficient.

• PLP: 13 Perceptual Linear Prediction acoustic features.

In both cases, acoustic features were computed every 10ms us-
ing a Hamming window of 20ms length. First, second and third order
time derivatives were computed, after cluster-based mean and vari-
ance normalization, to form 52-dimensional feature vectors. Acous-
tic features were normalized and HLDA projected to obtain 39-
dimensional feature vectors as described above.

The two different lexica used to provide phonetic transcriptions
of words were as follows:

• USLex: Pronunciations in the lexicon are based on a set of
45 phones. The lexicon was generated by merging different
source lexica for American English (LIMSI ’93, CMU dictio-
nary, Pronlex).

• BEEPLex: This lexicon was generated by exploiting the
British English Example Pronunciations (BEEP) lexicon.
Pronunciation models in this lexicon are based on a set of
44 phones. Transcription for a number of missing words were
obtained by exploiting the pronunciation models in theUSLex
lexicon and mapping phonetic symbols into the BEEP phone
set.

By considering the different possible combinations of the two
acoustic front-ends with the two lexica, four sets of state-tied, cross-
word, gender-independent triphone HMMs were trained for each de-
coding pass. Around 300,000 Gaussian densities, with diagonal co-
variance matrices, were allocated for each model set.

Two different fourgram Language Models (LMs) were used in
the first and second decoding pass. For the first pass, a background
LMwas trained on texts from news agencies, about 164M words, re-
leased by the Linguistic Data Consortium (LDC) in addition to texts
from the EPPS Final Text Edition corpus, about 36M words, released
for the TC-STAR evaluation campaign. The EPPS Final Text Edi-
tion texts are the official transcriptions of the parliamentary debates.
The LM included 49k unigrams, 11M bigrams, 17M trigrams and
23M fourgrams. For the second decoding pass, the background LM
was trained on an extended selection of public texts from several
sources. In total, the training corpus consisted of 674M words. This
LM included 65k unigrams, 27M bigrams, 29M trigrams and 27M
fourgrams.

Both background LMs were adapted to the EPPS domain by
exploiting a text corpus consisting of the manual transcriptions of
the EPPS audio data released for training of the AMs (consisting of
about 0.8M words) plus texts, about 4M words, corresponding to
the EPPS Final Text Edition texts covering the same period of the
acoustic training data.

3. MULTIPLE SUPERVISION ADAPTATION

The unsupervised AM adaptation procedure proposed here aims at
mitigating the effect of errors in the recognition hypotheses relying
on the fact that sufficiently different systems should produce differ-
ent recognition errors, thus providing supervisions with complemen-
tary information. It assumes that several different system outputs are
available for the test data and consists in performing adaptation on as
many replicas of the audio data as there are supervisions, assigning
to each replica a different supervision. In other words, it cumulates
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Table 2. Recognition results (% WER) of cross-system adaptation experiments achieved on the dev06en development set.

First Pass Second Pass Decoding System
Decoding System MFCC-USLex(2) MFCC-BEEPLex(2) PLP-USLex(2) PLP-BEEPLex(2)

MFCC-USLex(1) 11.5 10.6 11.4 10.6

MFCC-BEEPLex(1) 11.0 11.1 10.9 11.0

PLP-USLex(1) 11.4 10.7 11.6 10.8

PLP-BEEPLex(1) 10.8 11.1 11.0 11.1

Table 3. Recognition results (% WER) of cross-system adaptation experiments achieved on the eval07en evaluation set.

First Pass Second Pass Decoding System
Decoding System MFCC-USLex(2) MFCC-BEEPLex(2) PLP-USLex(2) PLP-BEEPLex(2)

MFCC-USLex(1) 10.2 9.7 10.3 9.8

MFCC-BEEPLex(1) 9.7 10.1 9.8 10.1

PLP-USLex(1) 10.1 9.6 10.4 9.8

PLP-BEEPLex(1) 9.7 10.0 9.8 10.4

the counters that result from adapting the AMs on each individual
supervision.
Another approach that directly exploits multiple supervisions in

the adaptation procedure is the lattice-based unsupervised MLLR
speaker adaptation [11]. In this case, however, multiple supervisions
are represented as a word lattice generated by a single system.
With respect to the ASR system described in the previous sec-

tion, the proposed adaptation procedure, slightly complicated by the
fact that segmentations and lexica may be not aligned among the
different systems generating the supervisions, is as follows [6]:

• All the word hypotheses generated by different systems are
time aligned with a reference segmentation, that in our case is
provided by the FBK-irst audio partitioner. The segmentation
includes a cluster label for each segment, that will be used
in the following steps for performing cluster-based acoustic
feature normalization and model adaptation.

• To identify pronunciation variants, a forced alignment of the
audio data with the word-level transcriptions is performed by
applying the pronunciation model. Words in the transcrip-
tions that are outside the FBK-irst lexicon are mapped to an
out-of-vocabulary acoustic model.

• Clusters of speech segments are built according to the refer-
ence segmentation. Each cluster includes as many copies of
its speech segments as there are supervisions, each copy hav-
ing assigned a different supervision.

• Cluster-wise CMLLR normalization of audio data is per-
formed with respect to target HMMs. Target HMMs are tri-
phone HMMs with a single Gaussian per state and trained on
normalized, HLDA projected, acoustic features.

• Cluster-wise adaptation of acoustic models used in the final
decoding pass is performed on normalized acoustic data re-
sulting from the previous step.

With this approach, the same portion of the audio data can con-
tribute to counters of different model states, and its influence is
weighted both by agreement among word hypotheses and by the
acoustic match with the reference models.
The latter step in the adaptation procedure, that is cluster-wise

AM adaptation, is performed in the MLLR framework [7] to adapt
Gaussian means of triphone HMMs. Instead of a few affine trans-
forms, a variant which is based on many simple “shift” transforms is
adopted. Based on past experience [6], we consider transformations
that consist in a shift vector added to the Gaussian means, that is

μ
′
= μ + c. For this kind of transforms, a reliable estimate can be

achieved on a small amount of data.

Regression classes are determined dynamically based on adap-
tation data. For this purpose a full regression class tree is top-down
explored and a regression class is defined at the lower level for which
the class occupancy counter is still over a fixed minimal threshold.
The minimal occupancy threshold adopted can be much smaller than
the one commonly used for full matrix estimation, e.g. 50 or 100
frames instead of 1000. This adaptation set up is common to all ex-
periments reported in this paper, including adaptation experiments
with a single supervision.

4. INTRA-SITE ADAPTATION EXPERIMENTS

Table 1 reports on recognition results achieved on the TC-STAR ’06
development (dev06en) and ’07 evaluation (eval07en) sets by per-
forming a single decoding pass with systems using different acous-
tic front-ends and lexica. Each test set consists of about 3 hours of
speech data.
In the table, and in the following ones, systems are identified

with a label that specifies the acoustic front-end (MFCC or PLP),
the lexicon (BEEPLex or USLex), and the presence of adaptation,
denoting with (1) the decoding with unadapted AM and with (2) the
decoding after AM adaptation.
Results show that, for single pass decoding systems, MFCC de-

rived features are better than the PLP derived features and that the
BEEPLex lexicon provides slightly better pronunciation models than
the USLex lexicon on this task.
Tables 2 and 3 report on results achieved by performing two

decoding passes with several systems. Results reported on the main
diagonals correspond to the case in which systems used in the first
and second decoding pass make use of the same acoustic front-end
and lexicon. We have to point out however that, in all experiments
reported, the language models as well the acoustic models used in
the first and second decoding pass were different. Preliminary ex-
periments showed that this may also induce some cross-adaptation
effects leading to improved recognition performance.
In the tables cross-adaptation effects can be observed when the

system used for the second decoding pass makes use of different lex-
icon or/and acoustic front-end with respect to the system generating
the supervision exploited for acoustic feature normalization and AM
adaptation. Results show that cross-adaptation effect is more visi-
ble when systems used in the two decoding passes exploit different
lexica, resulting in WER relative reductions around 4-5%.

119



Table 4. Recognition results (% WER) of cross-system adaptation experiments achieved on the dev06en development set with three decoding
passes.

Pass System WER System WER System WER System WER

1 MFCC-BEEPLex(1) 13.5 MFCC-USLex(1) 13.6 MFCC-BEEPLex(1) 13.5 MFCC-USLex(1) 13.6

2 MFCC-BEEPLex(2) 11.1 MFCC-USLex(2) 11.5 PLP-USLex(2) 10.9 PLP-BEEPLex(2) 10.6

3 MFCC-BEEPLex(2) 11.0 MFCC-BEEPLex(2) 10.4 MFCC-BEEPLex(2) 10.5 MFCC-BEEPLex(2) 10.3

Table 5. Recognition results (% WER) of cross-system adaptation experiments achieved on the eval07en evaluation set with three decoding
passes.

Pass System WER System WER System WER System WER

1 MFCC-BEEPLex(1) 12.7 MFCC-USLex(1) 12.8 MFCC-BEEPLex(1) 12.7 MFCC-USLex(1) 12.8

2 MFCC-BEEPLex(2) 10.1 MFCC-USLex(2) 10.2 PLP-USLex(2) 9.8 PLP-BEEPLex(2) 9.8

3 MFCC-BEEPLex(2) 10.0 MFCC-BEEPLex(2) 9.4 MFCC-BEEPLex(2) 9.3 MFCC-BEEPLex(2) 9.5

Best results achieved on the development and evaluation sets
are 10.6% and 9.6% WER, respectively. In Table 3, a 9.7% WER
is reported for the configuration using in the first decoding pass
the MFCC-USLex(1) system and in the second decoding pass the
MFCC-BEEPLex(2) system, which corresponds to the configuration
chosen for the 2007 TC-STAR evaluation submission. Due to a post
evaluation refinement, the recognition score reported here is 0.1%
absolute better than the score reported in the official results of the
evaluation.
Additional recognition experiments were then carried out to as-

certain whether better recognition results could be obtained through
an additional recognition pass. Tables 4 and 5 report recognition re-
sults achieved on the development and evaluation sets, respectively,
by performing three decoding passes interleaved by acoustic feature
normalization and acoustic model adaptation. Intermediate recog-
nition results, achieved with one and two decoding passes, are also
reported. In all recognition experiments the final decoding pass was
performed with the MFCC-BEEPLex(2) system. In both tables, the
first column corresponds to the case in which all the three decoding
passes exploit the same acoustic features and the same lexicon. It can
be seen that little improvement is achieved after the second decoding
pass. Instead, in all the other cases, in which acoustic features and/or
the lexicon change across decoding passes a more tangible perfor-
mance gain is achieved. Best recognition results achieved with three
decoding passes are 10.3% and 9.3% WER for the development and
the evaluation sets, respectively.
By exploiting the adaptation procedure described in Section 3,

we carried out AM adaptation experiments by exploiting multiple
supervisions of the same acoustic data. We used the outputs of two
or more systems corresponding to system outputs scored in Tables 2
and 3 for the development and evaluation sets, respectively:

• 2Sups: 2 supervisions corresponding to system outputs gener-
ated by performing an initial decoding pass with the MFCC-
USLex(1) system and two parallel second decoding passes
with the PLP-USLex(2) and PLP-BEEPLex(2) systems.

• 3Sups: 3 supervisions corresponding to system outputs gen-
erated by performing an initial decoding pass with the
MFCC-USLex(1) system and three parallel second decoding
passes with the MFCC-USLex(2), PLP-USLex(2) and PLP-
BEEPLex(2) systems.

• 4Sups: 4 supervisions generated by adopting in the first
and second decoding pass systems using the same acoustic
front-end and lexicon, for example the combination MFCC-
USLex(1) and MFCC-USLex(2). Scores of the system out-
puts included in the supervision set are reported on the main
diagonals of Tables 2 and 3.

• 8Sups: 8 supervisions generated by adopting in the first
and second decoding pass systems using different lexica,
that is the combinations MFCC-USLex(1) with MFCC-
BEEPLex(2), MFCC-USLex(1) with PLP-BEEPLex(2), etc.

For comparison purposes, supervisions in each set were first
combined through ROVER leading to the recognition performance
reported in Table 6. In this work, ROVER combinations were al-
ways performed taking into account confidence scores associated to
word hypotheses. We note that performing ROVER on just two or
three system outputs (2Sups and 3Sups columns) does not always
improve performance w.r.t. the best system output entering in the
combination. When four or eight system outputs enter in the ROVER
combination some advantage is ensured.

Table 6. Recognition results (% WER) achieved by combining the
outputs of several systems through ROVER.

Data Set ROVER Input
2Sups 3Sups 4Sups 8Sups

dev06en 10.7 10.8 10.6 10.2

eval07en 9.7 9.7 9.4 9.1

After having performed acoustic feature normalization and AM
adaptation by exploiting multiple supervisions, a final decoding pass
was carried out with the MFCC-BEEPLex(2) system. Recognition
results are reported in Table 7, upper part. Results show that the
use of multiple supervisions for AM adaptation is effective and gives
better performance than performing ROVER of the same system out-
puts (see Table 6). With respect to the three decoding passes exper-
iments whose results are reported in Tables 4 and 5, multiple super-
vision adaptation always provides some benefit, and tangibly better
results are achieved when exploiting eight supervisions, leading to
9.9% and 9.0% WER on the development and evaluation sets, re-
spectively. The 9.2% WER achieved on the eval07en evaluation set
exploiting the 3Sups and 4Sups supervision sets were obtained with
the same system configurations chosen for the contrastive systems
participating in the 2007 TC-STAR evaluation.
The ROVER output was used in its turn as a supervision for AM

adaptation. Results achieved are reported in the lower part of Ta-
ble 7. They show that adapting the system by using only the ROVER
output is less effective than adapting with multiple supervisions.

5. CROSS-SITE ADAPTATION EXPERIMENTS

Leveraging on the fact that cross-system adaptation should be more
effective when the system generating the word transcription is inde-
pendently developed with respect to the system to be adapted, in [2]
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Table 7. Recognition results (% WER) achieved adapting the
MFCC-BEEPLex(2) system by exploiting multiple supervisions, up-
per part, and by exploiting the output of the ROVER combination as
a single supervision, lower part.

Data Set Supervision Set
2Sups 3Sups 4Sups 8Sups

dev06en 10.2 10.1 10.1 9.9

eval07en 9.3 9.2 9.2 9.0

Data Set Supervision
ROVER of ROVER of ROVER of ROVER of
2Sups 3Sups 4Sups 8Sups

dev06en 10.3 10.3 10.3 10.3

eval07en 9.4 9.4 9.2 9.2

it was proposed to use a cascaded cross-site adaptation scheme in
which the output of a system developed at a given site was used to
adapt a system developed by another site.
In this work, for cross-site adaptation experiments we exploited

the outputs of several transcription systems developed by RWTH,
Aachen University. Table 8 reports recognition performance achieved
by the RWTH systems. Four systems, denoted as s1, s2, s3 and s4,
were designed in order to be sufficiently different one from each
other in view of their use in system combination schemes. The
1-best outputs of these systems were combined through ROVER.
RWTHwas able to further improve recognition results by combining
the word lattices generated by the four systems s1-s4 and perform-
ing frame-based, minimum fWER decoding for generating the final
hypotheses [12]. In the table recognition results achieved with lat-
tice and 1-best combination techniques are denoted with fWER and
ROVER, respectively. The result achieved with the fWER combi-
nation was the best reported in the 2007 TC-STAR ASR evaluation
under condition “public” for which any publicly available training
data could be used for LM and AM training.

Table 8. Recognition results (% WER) achieved by each individual
system developed by RWTH (s1-s4) and combining the four systems
through ROVER and minimum fWER combinations.

Data Set RWTH System
s1 s2 s3 s4 ROVER fWER

dev06en 11.5 12.0 11.8 10.7 10.1 9.7

eval07en 10.1 10.9 11.8 9.8 9.3 9.0

Table 9 reports recognition results achieved adapting the MFCC-
BEEPLex(2) system by exploiting as supervision word transcrip-
tions generated by the RWTH systems. It can be seen that cross-site
adaptation leads to better recognition results with respect to results
achieved by performing three decoding passes with intra-site sys-
tems (see Tables 4 and 5). These results confirm that cross-system
adaptation is more effective when systems generating the supervi-
sions are independently developed with respect to the system to be
adapted. Noticeable are the results achieved using as supervisions
the outputs of the s4 system which are only little worse than results
achieved using as supervisions the outputs of the ROVER and fWER
combinations.
Results of cross-site adaptation experiments with multiple su-

pervisions are reported in Table 10. We first carried out adapta-
tion experiments using the supervisions generated by the four sys-
tems, s1-s4, developed by RWTH and scored in Table 8. Finally, we
performed adaptation experiments exploiting supervisions from two
sites: the outputs of the four s1-s4 RWTH systems and the outputs of

Table 9. Recognition results (% WER) achieved adapting the
MFCC-BEEPLex(2) system by exploiting as supervision word tran-
scriptions generated by the RWTH systems.

Data Set RWTH Supervision
s1 s2 s3 s4 ROVER fWER

dev06en 9.6 9.9 9.6 9.5 9.3 9.2

eval07en 8.6 8.8 9.0 8.4 8.3 8.3

the four FBK-irst systems (4Sups set) scored on the main diagonals
of Tables 2 and 3 for the two test sets. It can be noted that when us-
ing the s1-s4 RWTH supervisions, multiple supervision adaptation
provides better performance than ROVER and fWER combinations
(see Table 8) even when the outputs of these combinations are used
as single supervisions (see Table 9).

Results reported in Table 10 also show that when both inter-
nal and external system outputs are used as supervisions no advan-
tage with respect to using only external supervisions is achieved.
Furthermore, in this case, comparison between multiple supervision
adaptation and ROVER is slightly in favor of the latter: 8.9% and
8.1% WER for the development and evaluation sets, respectively.
These results were not improved by exploiting the ROVER output as
a single supervision for system adaptation. Effectiveness of ROVER
in this case can be explained by considering that while ROVER is
neutral with respect to the different systems generating the word hy-
potheses, multiple supervision adaptation is biased towards the intra-
site systems and therefore is less effective in exploiting the additional
information provided by their outputs.

Table 10. Recognition results (% WER) achieved adapting the
MFCC-BEEPLex(2) system by exploiting the four s1-s4 RWTH su-
pervisions (s1+s2+s3+s4) and by exploiting eight supervisions gen-
erated by systems developed in two sites: the four s1-s4 RWTH su-
pervisions and the four FBK-irst supervisions corresponding to the
4Sups supervision set (s1+s2+s3+s4+4Sups).

Data Set RWTH Supervision
s1+s2+s3+s4 s1+s2+s3+s4

+ 4Sups

dev06en 9.0 9.0

eval07en 8.2 8.2

6. CONCLUSIONS

In this paper we have presented a series of experiments concern-
ing cross-system adaptation and we have proposed a method for
exploiting multiple supervisions for AM adaptation. Cross-system
adaptation experiments confirmed the importance of designing sys-
tems able to produce sufficiently different word transcriptions, with
uncorrelated errors, to be used as a supervision for acoustic model
adaptation in a multi-pass transcription process.

The proposed method for acoustic model adaptation with mul-
tiple supervisions is effective and can provide an alternative to the
well known ROVER combination.
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