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ABSTRACT 
 
In this paper, we propose a new approach to detecting and utilizing 
reliable frames and segments in corrupted signals for robust speech 
recognition. Novel approaches to estimating an energy-based 
measure and a harmonicity measure for each frame are developed. 
SNR-dependent GMM Classifiers are then trained, together with a 
Reliable Frame Selection and Clustering module and a Reliable 
Segment Identification module, to detect the most reliable frames 
in an utterance. These reliable frames and segments thus obtained 
can be properly used in both front-end feature enhancement and 
back-end Viterbi decoding. In the extensive experiments reported 
here, very significant improvements in recognition accuracies were 
obtained with the proposed approaches for all types of noise and 
all SNR values defined in the Aurora 2 database. 
 

Index Terms—Harmonic analysis, robustness, speech 
recognition, Viterbi decoding. 

1. INTRODUCTION 
Robust speech recognition under noisy conditions has been an 
important yet unsolved problem. In this paper we propose a new 
approach, which considers the fact that even in seriously corrupted 
speech utterances, very often there still exist some signal frames 
which are reliable enough. If these reliable frames can be precisely 
identified or even clustered into reliable segments, they can be very 
helpful for recognition. Stronger voiced frames are the first 
candidates for such purposes, because they actually carry stronger 
harmonicity and higher energy. But some weak voiced and 
unvoiced speech frames which are reliable enough are also 
necessary for this purpose. This is the basic idea of this paper. 

Previous works have indicated that carefully examining the 
characteristics of speech signals and identifying the reliability of 
speech information in different portions of an utterance can be 
helpful to many speech processing systems [1, 2]. A good example 
in this direction is the concept of usable speech [2-5], in which 
various features including pitch information were developed and 
integrated for extracting the usable speech segments. On the other 
hand, substantial efforts have been made and many approaches 
verified very effective for improving the speech recognition 
performance in noisy environments. In the category of front-end 
feature enhancement, good examples include feature normalization 
techniques such as Cepstral Mean Subtraction (CMS) [6] and 
Cepstral Mean and Variance Normalization (CMVN) [7], and 
feature transformation techniques such as PCA-based [8] or multi-
eigenvector temporal filtering [9]. In these approaches accurate 

estimation of the statistical parameters of speech and noise signals 
in the utterances is the key, and correctly identifying the reliable 
frames and segments in the signals is certainly important. In the 
category of back-end processing techniques, good examples 
include missing data speech recognition [10-13] and weighted 
Viterbi decoding [14-19]. Missing data approaches consider some 
parts of the signals as unreliable or missing, which are thus ignored 
in the subsequent processing, or filled up by their optimal 
estimates. However, accurately identifying the missing parts in the 
signals remains a difficult task [10-13]. On the other hand, the 
concept of weighted Viterbi decoding (WVD) is that during 
Viterbi decoding different weights can be assigned to the acoustic 
scores obtained from different frames or even different feature 
parameters in an utterance [14-19]. 

The work of this paper follows the general direction 
mentioned above. We propose a series of approaches to detecting 
and utilizing reliable frames and segments in corrupted signals, 
including special energy and harmonicity measures, various ways 
to identify reliable frames/segments and approaches to using them 
in front-end feature enhancement and back-end Viterbi decoding. 
Certainly there can be infinite number of ways to realize the basic 
idea, and the work presented below is just one of them. 

This paper is organized as follows. In section 2.1, we present 
an overview of the proposed approach, followed by sections 2.2-
2.7 containing the details for each module. Section 3 introduces 
the experimental conditions, and extensive experimental results are 
presented in section 4. Section 5 finally makes the concluding 
remarks. 

 
Figure 1. Overall block diagram of the proposed approach.  
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2. PROPOSED APPROACH 
2.1. Overall picture 
The overall picture of the proposed approach is shown in Figure 1. 
The upper-most left-to-right path is the conventional robust speech 
recognition core: Feature Extraction followed by Front-end Feature 
Enhancement (e.g. feature normalization and/or transformation) 
and Back-end Viterbi Decoding. The approach proposed here in 
this paper is the lower part of the figure. We first perform Robust 
Harmonicity and Energy Analysis (Blocks (A)(B)) for each frame, 
and use the results to train the SNR-dependent GMM Classifier at 
the lower left corner of the figure (Block (C)). The Reliable 
Frame/Segment Identification then includes two parts. The 
Reliable Frame Selection and Clustering (Block (D)) first uses the 
frame energy measure to select reliable frames and cluster them 
into reliable segments. The Reliable Segment Identification (Block 
(E)) then uses the outputs of the SNR-dependent GMM Classifier 
to detect the most reliable frames and segments to be used. 

All these results can then be properly utilized in Front-end 
Feature Enhancement and Back-end Viterbi Decoding. For 
example, if CMVN [7] is used in Front-end Feature Enhancement, 
the mean and variance can be estimated from those frames 
identified as being reliable. In Back-end Viterbi Decoding, the 
likelihood scores of each frame can also be weighted differently 
based on its reliability. 
2.2. Robust Energy Analysis and Reliable Frame 
Selection and Clustering 
We first discuss the functions of Robust Energy Analysis in Block 
(B) of Figure 1. For each input utterance, we first calculate the 
smoothed instantaneous sample energy e[n] for each signal sample, 
which is the energy averaged within a small window centered on 
the sample being considered. Here n is the sample index. We then 
sort all the samples in the utterance into a queue with increasing 
e[n], and assign a binary parameter b[n] to each sample, where b[n] 
is 1 if e[n] is large enough, 

 1,  if e[n]     - K ,
b[n]   

 0,  otherwise,
μ σ> ∗

=  (1) 

where  and  are the mean and standard deviation of all e[n] 
within the utterance, and K is an empirical parameter. The 
threshold in Eq. (1) is set automatically for each utterance, and is 
different from the fixed threshold used in [20]. An energy-based 
measure rt is then defined for each signal frame with frame index t 
within the utterance, which is the average of b[n] values (0 or 1) 
for all the samples in the frame. Thus rt is a real number between 0 
and 1, indicating how possible a frame is reliable considering its 
energy behavior in the frame. 

We then discuss the functions of Reliable Frame Selection 
and Clustering in Block (D) of Figure 1. The histogram of rt for 
each utterance is first constructed with a typical example as shown 
in Figure 2. Note that for most frames rt tends to either 1 or 0. A 
threshold T is then automatically set as the first local minimum 
above 0 in the histogram, as shown in Figure 2, and all frames with 
rt above T are taken as first stage reliable frames. Consecutive 
reliable frames are then clustered. A reliable segment is obtained if 
the number of reliable frames in a cluster exceeds a threshold M. 
Isolated reliable frames or smaller clusters are simply deleted. The 
value of M is chosen in such a way that M frames form a segment 
with the minimum length of a phoneme perceivable by human 
auditory systems [1]. 

 
Figure 2. Histogram of rt for a typical example utterance. 

 
Figure 3. (a) An example utterance and (b) its cross-correlated 
spectra. 

2.3. Robust Harmonicity Analysis 
The purpose of Robust Harmonicity Analysis in Block (A) is to 
detect harmonic structure in the signals, since harmonic structure is 
a very strong indicator for voiced speech sounds. 
2.3.1. Cross-correlation of frame spectra 
The input frames are Hamming-windowed, low-pass filtered and 
transformed to the frequency domain using FFT. The magnitude 
spectrum of a frame is squared and cross-correlated with that of the 
previous frame. Harmonic structure of a frame can be enhanced 
with cross-correlation because of the short-term stationary property 
of voiced speech signals. The spectrum of the previous frame can 
also be considered as a “matched filter” for the current frame 
spectrum. Figure 3 shows an example utterance and the cross-
correlated spectra of all its frames. 
2.3.2. Comb-filterbank 
A set of comb filters, or a “comb filterbank,” is applied on the 
cross-correlated spectra of an utterance for robust detection of 
harmonic structure. A narrow Gaussian-shaped kernel function 
K[k], which is common to all comb filters in the filterbank, is used 
here to model the spreading of harmonic components in the voiced 
speech spectra [21, 22], as shown in Figure 4(a), 

2 2exp(  k / ), k  [-2, 2],
K[k]  

0,  otherwise,
- Σ ∈

=  (2) 

where k is the bin index inside a cross-correlated frame spectrum, 
and 2Σ  is a chosen constant [21, 22]. To construct a particular 
comb filter Comb[k, p] for a target pitch p, an intermediate filter 
Comb[k, p]  is first defined, 

m = 0, 1, 2, ...
mp  N

K[k+mp],  k = 1, 2, ..., N,
Comb[k, p] = 

      K[1],                     k = 0,

± ±
≤

± ± ±  (3) 

where p is the discrete pitch frequency, and N is the FFT order. 
The final comb filter Comb[k, p] is obtained by subtracting the 
mean of the coefficients of Comb[k, p]  in Eq. (3) from all 
coefficients (this zero-mean property makes its response negligible 
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to noise with white or flat spectrum), and then normalizing all the 
coefficients with the vector norm of the filter coefficients such that 
the response is unified for all different values of p. Coefficient of 
Comb[k, p]  for k = 0 is intentionally suppressed to suppress the 
weight for the zero-lag term when defining the frame harmonicity 
measure. The final comb filter Comb[k, p] for p = 12 is plotted in 
Figure 4(b). The comb filterbank then includes many such comb 
filters for all possible values of p for human voice. 
2.3.3. Frame harmonicity 
The logarithm of the cross-correlated spectra is filtered by the 
comb filterbank, and the outputs are half-wave rectified. Figure 5(a) 
is the output from the filertbank for an example utterance, where 
the vertical scale is the different values of p, and the horizontal 
scale is the frame index t. Figure 5(b) shows the same output after 
being sorted vertically in descending order, ( )tY l  (l = 1, 2, ..., L), 
where l is the order after sorting, t is the frame index, and L is the 
number of comb filters in the filterbank. The proposed frame 
harmonicity for a frame at time t, ht, is evaluated first by the 
weighted sum of the sorted filterbank outputs ( )tY l  in Figure 5(b), 

1
t

1
h  = ( )

L
l

t
l

Y lα −

=

⋅  (4) 

where α  is a weighting parameter smaller than 1. Typically we set 
α  to above 0.8 for emphasizing the largest four terms in Eq. (4). 
In this way, all possible pitch patterns are considered, and those 
having high cross-correlation with neighboring frames are 
emphasized. The final frame harmonicity ht is then th  in Eq. (4) 
but normalized to the range of 0 to 1 for each input utterance. The 
contour of ht obtained in this way is shown in Figure 5(c). 
2.4. SNR-dependent GMM Classifier 
This corresponds to Block (C) in Figure 1. Given a clean speech 
training corpus and its transcriptions, hidden Markov models 
(HMMs) can be trained and used to perform forced alignment on 
the clean training utterances. Then voiced, unvoiced speech and 
non-speech frames can be located on the training utterances. If we 
add noise signals to these training utterances with different SNR 
values, for each SNR value the energy-based measure rt defined in 
section 2.2 and the frame harmonicity measure ht defined in 
section 2.3.3 can be calculated for each frame of these utterances. 
A pair of GMMs can then be trained based on the two parameters rt 
and ht, one for voiced speech frames (with strong harmonicity and 
relatively higher energy), and the other for unvoiced speech and 
non-speech frames (with weak or no harmonicity and relatively 
lower energy) [1], where the training frames for each class are 
obtained via forced alignment. In this way we have a set of very 
reliable SNR-dependent GMM Classifier trained for each SNR 
value, to be used to detect speech frames with strong voicing 
nature, or the nuclei of voiced phones, which are usually the most 
reliable parts in the noise-corrupted speech signal. 

For this work based on the Aurora 2 testing environment [23], 
the multi-condition training set of Aurora 2 consists of utterances 
in five SNR conditions, i.e., clean, 20, 15, 10 and 5 dB SNR, and 
each utterance has a clean version in the clean training set. 
Therefore, for each SNR condition it is possible to train a GMM 
Classifier based on the stereo data from the two training sets. 
During testing, an SNR detector based on voice activity detection 
(VAD) can be used to estimate the closest SNR condition, and the 
classifier for 5 dB SNR is also used for all the cases with SNR 
lower  than  5  dB.  A frame  is classified  as a voiced speech frame  

 
Figure 4. (a) The kernel function K[k] and (b) the final comb filter 
Comb[k, p] for p = 12. 

 
Figure 5. (a) The original and (b) the sorted output from the comb 
filterbank for each frame in the utterance in Figure 3, and (c) the 
final frame harmonicity ht. 

only if the confidence measure obtained from the ratio of the 
likelihood score from the GMM of voiced speech frames to that 
from the GMM of unvoiced speech and non-speech frames is 
above a threshold. 
2.5. Reliable Segment Identification 
In Block (E), Reliable Segment Identification, we first check to see 
if a reliable segment obtained from Block (D) is really reliable. 
This is performed based on the outputs of the SNR-dependent 
GMM Classifier in Block (C). A segment obtained from Block (D) 
is verified to be really reliable, or include reliable strong voiced 
frames, as long as it includes at least one frame classified as a 
strong voiced speech frame by the GMM Classifier. If not, the 
segment is deleted. This is the first step of Block (E). 

The frames that are within the reliable segments verified 
above and also classified as speech frames by the GMM Classifier 
are of course confirmed as reliable frames. 

The above SNR-dependent GMM Classifier is based on frame 
harmonicity and energy-based measures. So it can be used to 
reliably detect speech frames with a strong voicing nature, usually 
the nuclei of voiced phones or the most reliable parts in corrupted 
speech. However, unvoiced speech frames usually have low 
harmonicity values, and weak voiced speech frames usually have 
low energy values. They are also reliable enough due to the 
relatively slow-changing nature of the corrupting noise, but cannot 
be identified by the GMM classifier simply because they are 
unvoiced or weak. Fortunately, it is found that within the same 
reliable segment obtained via Frame Clustering, very often these 
two kinds of speech frames appear in the vicinity of strong voiced 
speech frames identified by the GMM Classifier. Therefore as the 
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second step of Block (E), a distance threshold D is chosen, and D 
frames of signals on both sides of the speech frames classified by 
the GMM Classifier, as long as they are within the same reliable 
segment identified in the above first step of Block (E), are also 
confirmed as reliable frames, so as to include unvoiced and weak 
voiced speech frames. All other frames not confirmed in this way, 
even if they are within the reliable segments identified by the first 
step of Block (E), are finally deleted. The value of D can be 
estimated from the statistics obtained from the noisy training set, 
for example the multi-condition training set of Aurora 2. 
2.6. Reliable frames/segments used in front-end feature 
enhancement 
The reliable frames/segments obtained in Blocks (D) and (E) can 
be properly utilized in various ways for front-end feature 
enhancement. A recently proposed feature enhancement front-end 
[20], as shown in Figure 6, is taken as a typical example of existing 
robust speech recognition approaches to be integrated with the 
approaches proposed in this paper. This front-end consists of two 
parts: Cepstral Mean and Variance Normalization (CMVN) for 
feature normalization and Two-stage PCA for feature 
transformation. In Two-stage PCA, a first stage PCA first 
transforms 14 MFCC features (C0~C12 and log-E) into 13 
principal components, and in the second stage multi-eigenvector 
temporal filtering [9] is then performed on the temporal trajectories 
of these 13 principal components obtained above. 

For the example four-stage feature enhancement front-end, the 
only changes made here are that only those frames considered as 
reliable in Block (D), or those identified as reliable in Block (E), 
are used for evaluating all the required parameters, for example the 
mean and variance needed for CMVN and covariance matrices 
needed for PCA analysis. This represents of course only one of 
many possible ways to use these reliable frames and segments in 
the front-end feature enhancement. 
2.7. Reliable frame/segment information used in back-
end Viterbi decoding 
During Viterbi decoding, the log-likelihood scores of a feature 
vector for a frame at time t can be weighted by a factor wt. The 
weighting factor wt can be defined in various ways. A simple 
example is to have wt dependent on the confidence measure 
obtained from the ratio of likelihood scores from the SNR-
dependent GMM Classifier. We can further divide the evaluation 
of the likelihood scores in the Gaussian mixtures in HMMs into 
three sections, i.e. those for the original MFCC parameters, and for 
their first and second derivatives. The above weighting factor wt 
can be used for the first section. Those used for the first and 
second derivatives can then be defined as below, 

wt
(1)  = 

1 1

1 1

t+kw
I I

k I k I
k k

= − = −

⋅ , (5) 

and 

wt
(2)  = 

2 2

2 2

(1 )
t+kw

I I

k I k I
k k

= − = −

⋅ . (6) 

For simplicity we can set I1 = 3 and I2 = 2, exactly the window 
sizes used respectively for defining the first and second derivatives 
in the Aurora 2 baseline settings [23]. Again, the above represents 
only one of many possible ways to use information about these 
reliable frames and segments in the back-end decoder. 
 

 
Figure 6. The feature enhancement front-end consisting of CMVN 
for feature normalization and Two-stage PCA for feature 
transformation, as a typical example of existing robust speech 
recognition techniques [20]. 

3. EXPERIMENTAL CONDITIONS 
3.1. Aurora 2 database and front-end feature extraction 
The experiments reported in this paper were conducted on the 
AURORA 2 testing environment [23], which is based on a clean 
speech corpus of English connected digit strings sampled at 8 kHz. 
Each of the two training sets, i.e. clean training and multi-
condition training sets, consists of 8440 utterances. Only the clean 
training set was used to train the acoustic models here for tests in 
highly mismatched conditions. The multi-condition training set 
was used to train the SNR-dependent GMM Classifiers. Ten 
combinations of noise and channel distortions, as representatives 
of real-world environments and each with different SNR values, 
were defined in three testing sets A, B, and C and tested here. The 
WI007 front-end [23] gave 14 MFCC parameters (C0~C12 and 
log-E) as the original features for further processing, including 
obtaining the first and second derivatives. The HMM settings and 
HTK-based training and testing procedures follow the Aurora 2 
specifications [23]. For tasks different from Aurora 2, a 
development set can be defined to play the role of multi-condition 
training set here. 

4. EXPERIMENTAL RESULTS 
4.1. Recognition performance with back-end Viterbi 
decoding only 
We first applied the reliable frame/segment information in the 
back-end Viterbi decoding only. The results obtained by the 
proposed weighted Viterbi decoding (WVD) as mentioned in 
section 2.7 are in the second bar in Figure 7, as compared to the 
MFCC baseline of Aurora 2 in the first bar. These results are 
separated for different types of noise but averaged over all SNR 
values in Figure 7(a), for different SNR values but averaged over 
all types of noise in Figure 7(b), and for the three testing sets A, B, 
C and their average in Figure 7(c). Significant improvements were 
obtained in all cases. As typical examples, in Figure 7(a), the error 
rate reductions were 19.95% for babble noise (accuracy from 
49.89% to 59.88%) in set A, and 19.79% for restaurant noise 
(52.59% to 61.98%) in set B. 
4.2. Combination with front-end feature normalization 
The results of using the reliable frames and segments obtained in 
Blocks (D) and (E) in front-end CMVN for feature normalization 
and further combined with back-end weighted Viterbi decoding are 
shown in Figure 8. In each set of results, the first bar is for the 
conventional CMVN with the mean and variance evaluated in the 
conventional way. The next two bars are then respectively for the 
results obtained  with the mean and variance  evaluated  only  from 
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Figure 7. Comparison of recognition accuracies (%) obtained with 
the MFCC baseline and with weighted Viterbi decoding further 
applied, (a) averaged over all SNR values but separated for 
different types of noise, (b) averaged over all types of noise but 
separated for different SNR values, and (c) averaged over all SNR 
values and noise types but separated for sets A, B, C. 
the frames selected by Block (D) ((D) Frames) or from the 
segments identified in Block (E) ((E) Segments). The last bar 
shows the results with weighted Viterbi decoding further applied 
(plus WVD). Clearly, very significant incremental improvements 
were obtained in all cases. 

In Figure 8(a), the most significant improvements were 
obtained for car noise in set A (68.80% for CMVN to 84.73% plus 
WVD), airport noise (71.03% to 84.77%) and train-station noise 
(68.52% to 83.62%) in set B. As a good example of non-stationary 
noise, for airport noise the relative error rate reductions were about 
32.53% (71.03% to 80.45%), 41.58% (to 83.08%), and 47.43% 
when Blocks (D), (E) and weighted Viterbi decoding were applied 
one by one in addition. In Figure 8(b), taking 10 dB as an example, 
the achievable accuracy was 86.29%, 88.75% and 89.72% when 
Blocks (D), (E), and weighted Viterbi decoding were applied one 
by one, corresponding to a relative error reduction of 35.74%, 
47.24%, and 51.80% respectively as compared to conventional 
CMVN. Similar incremental improvements can be obtained in 
Figure 8(c) for the three sets A, B, and C, and the improvements 
are consistent and uniform for all three sets, with overall average 
improvement from 69.13% to 81.39%, which implied a relative 
error reduction of 39.70%. 
4.3. Integration with front-end feature transformation 
Here we further consider the situation that the proposed approach 
was applied with some existing robust speech recognition 
techniques, say the Two-stage PCA for feature transformation as 
discussed in section 2.6. The results are in Figure 9, where the first 
bar in each set is for conventional CMVN plus Two-stage PCA 
(CMVN + Two-stage PCA), i.e., using all frames to estimate the 
required parameters, and the rest with the proposed approaches 
applied one by one in addition. 

In Figure 9(a) with the proposed approaches applied one by 
one, significant improvements were obtained for all types of noise 
over the original front-end. When Two-stage PCA was applied 
based on the reliable frames and segments identified in Block (D) 
or Block (E) in Figure 1, accuracies for all types of noise were 
successfully improved stage by stage to over 82% or more, among 
which the case of babble noise in set A (82.73%) is the lowest. 

 
Figure 8. Incremental improvements in recognition accuracies (%) 
obtained with the conventional CMVN and further with the 
proposed approaches, (a) averaged over all SNR values but 
separated for different types of noise, (b) averaged over all types of 
noise but separated for different SNR values, and (c) separated for 
sets A, B, C. 

 
Figure 9. Incremental improvements in recognition accuracies (%) 
obtained with CMVN plus Two-stage PCA and with the proposed 
approaches applied in addition, for (a) averaged over all SNR 
values but separated for different types of noise, (b) averaged over 
all types of noise but separated for different SNR values, and (c) 
separated for sets A, B, C. 

With weighted Viterbi decoding further applied, the most 
significant improvements are obtained for the babble, exhibition, 
restaurant, and airport cases. For example, for non-stationary 
airport noise the relative error rate reduction is 77.10% (from 
53.25% to 89.29%) compared to the MFCC baseline result in 
Figure 7(a), or 24.75% compared to conventional CMVN plus 
Two-stage PCA in the first bar (85.77%). 

In Figure 9(b), slight degradation occurred in the clean speech 
case, but when the SNR decreases from 20 dB all the way to 0 dB, 
the accuracy was improved with the proposed approaches applied 
one by one in addition. The effectiveness of each method becomes 
significant. The exact numbers for Figure 9 (b) for all SNR values 
are also listed in Table 1, where the last row is the error rate 
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reduction with respect to the results obtained with conventional 
CMVN + Two-stage PCA. In Table 1, the greatest improvements 
are obtained for the cases of 15 to 5 dB SNR, but for other SNRs 
the relative improvements are also significant. These results verify 
that the proposed approaches are useful for noisy conditions over a 
wide range of SNR values. 

Similar observations can be made from Figure 9(c) for the 
three testing sets. All the above results verify that the proposed 
approaches can be well integrated with systems with advanced 
techniques. 

5. CONCLUSIONS 
In this paper, we propose a new approach for improved robust 
speech recognition by properly utilizing the reliable frames and 
segments obtained from noise-corrupted signals. An energy-based 
measure and a frame harmonicity measure are defined, and SNR-
dependent GMM Classifiers are developed. We proposed various 
approaches to identifying reliable frames and segments, which can 
then be used in both front-end feature enhancement and back-end 
Viterbi decoding of a speech recognizer, or an advanced system 
with improved techniques. Very significant improvements were 
obtained in extensive experiments with the Aurora 2 testing 
environment under a wide range of noise types and SNR 
conditions. The results verified that the integration of these 
approaches can actually offer improved robust speech recognition 
techniques. 
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