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ABSTRACT

We are addressing a new problem of improving automatic speech
recognition performance, given multiple utterances of patterns from
the same class. We have formulated the problem of jointly decod-
ing K multiple patterns given a single Hidden Markov Model. It
is shown that such a solution is possible by aligning the K patterns
using the proposed Multi Pattern Dynamic Time Warping algorithm
followed by the Constrained Multi Pattern Viterbi Algorithm. The
new formulation is tested in the context of speaker independent iso-
lated word recognition for both clean and noisy patterns. When 10
percent of speech is affected by a burst noise at -5 dB Signal to Noise
Ratio (local), it is shown that joint decoding using only two noisy
patterns reduces the noisy speech recognition error rate to about 51
percent, when compared to the single pattern decoding using the
Viterbi Algorithm. In contrast a simple maximization of individual
pattern likelihoods, provides only about 7 percent reduction in error
rate.

Index Terms— Robust Speech Recognition, Viterbi Algorithm,
Dynamic Time Warping, Burst Noise

1. INTRODUCTION

In our normal day to day telephone conversations, it is quite common
to ask the person speaking to us, to repeat certain portions of their
speech, because we don’t understand it. This happens more often in
the presence of background noise where the intelligibility of speech
is affected significantly. Although exact nature of how humans de-
code multiple repetitions of speech is not known, it is quite possi-
ble that we use the combined knowledge of the multiple utterances
and decode the unclear word or phrase. If humans, with exceptional
speech recognition capabilities, require repetitions of spoken words,
then it is more important that speech recognition machines to utilize
such repeated information, especially in the presence of heavy/bursty
background noise.

The problem that we are formulating is: how to increase auto-
matic speech recognition (ASR) performance given multiple utter-
ances (repetitions) of the same word? If we have K test utterances
(K ≥ 2) of a word, is it possible to improve the speech recognition
accuracy over a single test utterance, for the case of both clean and
noisy speech?

The two classical approaches to speech pattern matching are
Dynamic Time Warping (the non-parametric approach) and by us-
ing Hidden Markov Models (the parametric approach). We have
developed a novel formulation in which we use both the paramet-
ric and non parametric approaches for speech recognition - a hy-
brid approach - to solve the problem of jointly decoding multiple
speech patterns. This is achieved by using the proposed Multi Pat-
tern Dynamic Time Warping (MPDTW) algorithm followed by the

new Constrained Multi Pattern Viterbi Algorithm (CMPVA). We ex-
perimented the new algorithms for both clean speech and speech
with burst noise for Isolated Word Recognition (IWR). Similar ex-
tensions are possible for connected word recognition and continuous
speech recognition cases also.

In speech recognition, researchers have proposed various meth-
ods to handle burst noises. A burst or impulse noise could be a door
slam or a lip smack. Various versions of the Viterbi Algorithm (VA)
[1] has also been proposed to handle burst noise, for example the
recently proposed weighted VA [2]. A Robust VA to handle short
impulsive noises with unknown characteristics by means of joint de-
coding and detection during Viterbi Search was proposed in [3]. In
our paper, we remove the noise, which is impulsive with unknown
characteristics, by choosing the clean speech portion from the other
clean utterances.

A time-synchronous Viterbi-style beam search procedure called
the N-best algorithm, has been proposed in literature [4] to find the
N most likely whole sentence alternatives that are within a given
”beam” of the most likely sequence. This N-best algorithm was used
to simultaneously decode multiple utterances to derive one or more
allophonic transcriptions for each word in [5]. Work has been done
to extend HMMs to two-dimensions, to offer a more realistic ap-
proach to speech recognition. A 2D extension of Hidden Markov
Model (HMM) was introduced in [6] to improve the modeling of
speech signals. A 3D HMM search space and a Viterbi-like decod-
ing algorithm was proposed for Utterance Verification [7]. In [7],
the two axes in the trellis belonged to HMM states and one axis be-
longs to the observational sequence. In our paper, for the CMPVA,
we have one axis for the HMM states, and K axes, one for each of
the K observational sequences. We try to use multiple utterances of
a word by the same speaker to improve speech recognition perfor-
mance using this CMPVA whose time path is fixed by the MPDTW
algorithm.

Dynamic Time Warping (DTW) has been used in areas other
than speech recognition to deal with multidimensional data. For
sequences which are multidimensional, like on-line signature se-
quences, 2D curves, etc., an Extended R-squared [8] is proposed
as a similarity measure. It was used for multidimensional sequence
matching and it was coupled with DTW to enhance robustness in
signature verification. For large sequence databases, an effective
processing of similarity search that supports time warping was in-
troduced in [9]. Dynamic Space Warping, which is similar to DTW,
was used to determine the pose angle of a face [10], even from a 2D
face image. DTW was extended to deal with multi modal sequences
[11] which consist of the data or feature sequences acquired from
multiple heterogeneous sensors over a period of time.

However, none of these papers are addressing the problem of
jointly decoding multiple utterances of spoken words to improve
speech recognition performance. To the best of our knowledge, the
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problem of multi pattern joint decoding has not been addressed in the
speech recognition literature. We illustrate that by using even two ut-
terances, we can get a significant improvement in speech recognition
accuracy for speech with burst noise.

2. JOINT DECODING OF MULTIPLE PATTERNS

We have K number of observational speech sequences (patterns)
OT1,1

1 , OT2,2
1 , . . ., OTK ,K

1 , of lengths T1, T2 , . . ., TK , respectively,
where OTi,i

1 = (Oi
1, O

i
2, . . . , O

i
Ti

) is the observational sequence of
the ith pattern and Oi

ti
is the feature vector of the ith pattern at time

frame ti. Let each of these K observation sequences belong to the
same pattern class (spoken word). They are different utterances of
the same word by the same speaker.

For the sake of simplicity, let us define the following terms:
T̄ = (T1, T2, . . . , TK), 1̄ = (1, 1, . . . , 1), t̄ = (t1, t2, . . . , tK).
For joint decoding of multiple patterns using the HMM λ, the ob-
jective is to maximize P(OT1,1

1 ,OT2 ,2
1 , . . .,OTK ,K

1 /λ) jointly. Since
OT1,1

1 , OT2 ,2
1 , . . ., OTK ,K

1 are of different lengths and uttered in-
dependently, a new multi-dimensional trellis is constructed for joint
decoding. In this case, state sequence qT̄

1̄ = (q1̄, . . . , qT̄ ), where
qt̄ is the HMM state at the joint time vector (t1, t2, . . . , tK) and a
coordinate in the K+1 dimensional space, where ti is the time frame
when Oi

ti
has occurred. We are now looking at a multi-dimensional

trellis having K+1 dimensions, where K time dimensions are for the
K utterances (patterns) of the repeated words, and one dimension is
for the HMM states (K+1 dimensional space). The most likely state
sequence q̂T̄

1̄ is defined as

q̂T̄
1̄ = arg max

qT̄
1̄

log P (qT̄
1̄ /OT1 ,1

1 , . . . , OTK ,K
1 , λ) (1)

q̂T̄
1̄ = arg max

qT̄
1̄

log P (qT̄
1̄ , OT1 ,1

1 , . . . , OTK ,K
1 /λ) (2)

We can perform this joint decoding using the MPDTW algo-
rithm followed by the CMPVA. Using the MPDTW algorithm we
find the ”least distortion joint warping path” (which is the ”most
similar path” or the ”aligned path” or the ”MPDTW path”) between
the K test patterns belonging to the same class. We then fit a layer of
HMMs on this path {(K + 1)thaxis} and then apply the CMPVA
for decoding the HMM states, as shown in Figure 1. Here, the CM-
PVA, and not MPDTW algorithm, is used for IWR. MPDTW is used
only for finding the aligned path between the K patterns.

3. MULTI PATTERN DYNAMIC TIME WARPING
(MPDTW)

The Dynamic Time Warping (DTW) [12] gives us the least distor-
tion path between two given patterns. We extend this case to that of
multi-pattern DTW wherein an optimum path in multi-dimensional
space is determined to optimally warp all the K patterns jointly, lead-
ing to the minimum distortion, referred to as MPDTW path. As in

t1

t2

P (1,1) (0,1) (1,0) (1,1)

Fig. 2. An example path P for K = 2

standard DTW, all K patterns are warped with respect to each other
and they all belong to the same pattern class. (The case of test pattern
and reference pattern coming from different classes does not arise in
our application. Here, all the patterns are test patterns of a word
spoken by the same speaker.) To find the MPDTW path, we need to
traverse through a multi-dimensional trellis which has K time axes.

We define a path P (see [12]) as a sequence (concatenation) of
moves in the trellis diagram, each specified by a set of coordinate
increments, i.e.,

P → (p1
1, p

2
1, . . . , p

K
1 )(p1

2, p
2
2, . . . , p

K
2 ) . . . (p1

T , p2
T , . . . , pK

T ) (3)

where pi
k is the increment at step k by utterance i (ith dimension).

An example of a path P through a trellis, when number of patterns K
= 2, is shown in Figure 2.

Let the k = 1 step correspond to (1, 1, . . ., 1), where (1, 1, . . .,
1) is the staring point in the trellis where all the K utterances begin.
Let us set p1

1 = p2
1 = . . . = pK

1 = 1 (as if the path originates from
(0, 0, . . . , 0)). Let k = T correspond to (T1, T2, . . . , TK), which
is the ending point in the trellis. φ1(k), φ2(k), . . ., φK(k) are K
warping functions such that φi(k) = ti for the ith utterance. Let us
define:

φl(k) =

kX
i=1

pl
i (4)

l = 1, 2, . . . , K
The coordinate increments satisfy the constraints:

TX
k=1

pl
k = Tl (5)

l = 1, 2, . . . , K
Endpoint constraints are as follows:

φ1(1) = 1, . . . , φK(1) = 1 (6)

φ1(T ) = T1, . . . , φK(T ) = TK (7)
Relaxed end pointing can also be introduced. Various types of Local
Continuity Constraints (LCCs) and Global Path Constraints as de-
fined for DTW, are extended to K dimensional space. We define a
multi-vector distance measure d(t1, t2, . . ., tK) at time t̄, between
the K vectors O1

t1 , O
2
t2 , . . ., O

K
tK
, as follows:

d(t1, . . . , tK) =

KX
i=1

d(Oi
ti

, Ct̄) (8)

where Ct̄ is the centroid of the K vectors O1
t1 , O

2
t2 , . . ., O

K
tK
and

d(Oi
ti

, Ct̄) is the Euclidean distance between Oi
ti
and Ct̄.
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m(k) is the slope weighting function which controls the contribution
of d(φ1(k), . . . , φK(k)) and

Mφ =

TX
k=1

m(k) (9)

whereMφ is the global normalization factor.

3.1. MPDTW Algorithm

LetD(t1, t2, . . . , tK) be the accumulated cost function, which is to
be minimized.
1. Initialization

D(1, . . . , 1) = d(1, . . . , 1)m(1) (10)

2. Recursion

D(t1, . . . , tK) = min
(t
′

1,...,t
′

K
)

[D(t
′

1, . . . , tK
′) +

ζ((t
′

1, . . . , t
′

K)(t1
1, . . . , tK

K))] (11)

where (t
′

1, . . . , tK
′) are the candidate values as given by the LCC

and

ζ((t
′

1, . . . , t
′

K)(t11, . . . , t
K
K)) =

LsX
l=0

d(φ1(T
′

− l), . . . , φK(T
′

− l))m(T
′

− l) (12)

φ1(T
′

) = t1, . . ., φK(T
′

) = tK and φ1(T
′

− Ls) = t
′

1, . . .,
φK(T

′

− Ls) = t
′

K where Ls being the number of moves in the
path from (t

′

1, . . . , tK
′) to (t1, . . . , tK) according to φ1, . . ., φK .

A backtracking pointer I is defined to remember the best path.

I(t1, . . . , tK) = arg min
(t
′

1,...,t
′

K
)

[D(t
′

1, . . . , tK
′) +

ζ((t
′

1, . . . , t
′

K)(t1
1, . . . , tK

K))] (13)

3. Termination

d(OT1,1
1 , . . . , OTK ,K

1 ) = D(T1, . . . , TK)/Mφ (14)

where d(OT1,1
1 , . . . , OTK ,K

1 ) is the total distortion between OT1 ,1
1 ,

. . ., OTK ,K
1 .

4. Path Backtracking
Path backtracking is done using the path back tracking pointer I.

(t∗1, . . . , t
∗
K) = I(t1, . . . , tK) (15)

(t1, . . . , tK) = (t∗1, . . . , t
∗
K) (16)

where (t1, . . . , tK) = (T1, . . . , TK), . . . , (1, . . . , 1)
We now get the least distortion path (MPDTW path) for K pat-

terns, which gives us the most similar non linear time warped path
between them. An example of a MPDTW path for 3 utterances (P1,
P2, P3) of the word ”Voice Dialer” by one female speaker is shown
in Figure 3.

Let φ be theMPDTWpath for K patterns. Letφ(k) = (t1, . . . , tK)
where (t1, . . . , tK) is a point on theMPDTWpath. φ(1) = (1, . . . , 1)
and φ(T ) = (T1, . . . , TK). φ = (φ(1), φ(2), . . ., φ(K)).
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Fig. 3. MPDTW path for 3 utterances of the word ”Voice Dialer”

4. CONSTRAINED MULTI PATTERN VITERBI
ALGORITHM (CMPVA) USING VARIOUS DISCRIMINANT

LIKELIHOODS

For a T length observational sequence, OT
1 = (O1, O2, . . . , OT ),

denote the state sequence to be qT
1 = (q1, q2, . . . , qT ), where qt is

state index at time frame t. The standard Viterbi Algorithm (VA)
[1] is used to search for the optimum state sequence q̂T

1 of a given
HMM λ for the maximum likelihood of the given observation se-
quence. Now we have K number of observational sequences OT1,1

1 ,
. . ., OTK ,K

1 , of lengths T1, . . . , TK , respectively, where OTi ,i
1 =

(Oi
1, Oi

2, . . ., Oi
ti
, . . ., Oi

Ti
) is the observation sequence of the ith

pattern and Oi
ti
is the feature vector of the ith pattern at time frame

ti. The path among the time axes is fixed according to the MPDTW
(φ) path. The CMPVA is used to find the optimum state sequence
and joint maximum likelihood of K patterns. We perform the CM-
PVA along the MPDTW path to search for the optimum state se-
quence. We call the Constrained Multi Pattern Viterbi Algorithm
”constrained” because the path traversed in the time axes is fixed by
the MPDTW algorithm. To solve equations (1) and (2), we use the
CMPVA, to find the most likely state sequence q̂

φ(T )
φ(1) = (qφ(1), . . .,

qφ(T )), where qφ(k) is the state index at time (t1, . . . , tK).
We define δφ(k)(j) as the log likelihood of the first φ(k) obser-

vations of the K patterns through the most likely state sequence up to
time φ(k − 1) with qφ(k) = j. Mathematically, δφ(k)(j) is defined
as,

δφ(k)(j) = max
q

φ(k−1)
φ(1)

log P (Ot1,1
1 , . . . , OtK ,K

1 , q
φ(k−1)
φ(1) ,

qφ(k) = j/λ) (17)

A recursive equation can be derived as follows:

δφ(k)(j) = max
i

[ δφ(k−1)(i) + log aij ] + log bj(O
1
t1 , . . . , OK

tK
)

(18)
k = (2, 3, . . . , T ), j = 1, 2, . . . , N
Initialization is done as follows:

δφ(1)(j) = log Πj + log bj(O
1
1 , . . . , OK

1 ), (19)

j = 1, 2, . . . , N
where N is the number of states in the HMM. aij is the state tran-
sition probability between two states qφ(k−1) = i and qφ(k) = j,
Πj is the state initial probability at state j, log bj(O

1
t1 , . . . , OK

tK
) is
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the joint likelihood of the observations O1
t1 , . . . , OK

tK
generated by

state j. Equation (18) is an approximation of equation (17). This
is because in equation (18), each state j is emitting a fixed number
(K) of feature vectors at a each time instant. So it is possible that
some of the feature vectors from some utterances are reused based
on the MPDTW path. So we are basically creating a new virtual ut-
terance which is some kind of a combination of all the K utterances
(with repetitions of feature vectors possible) and which lies on the
MPDTW path. We are decoding this virtual utterance.

ψφ(k)(j) = arg max
i

[ δφ(k−1)(i) + log aij ] (20)

where k = (2, 3, . . . , T ), j = 1, 2, . . . , N , and ψφ(k)(j) is a back
tracking pointer which stores the value of best previous state.
The algorithm is terminated as follows:

P ∗ = max
1≤i≤N

δφ(T )(i) (21)

P ∗ is the joint maximum likelihood or final CMPVA likelihood.

q̂φ(T ) = arg max
1≤i≤N

[δφ(T )(i)] (22)

Path Backtracking is done as follows:

q̂φ(k) = q̂φ(k+1) (23)

where k = T-1, . . . , 1.
For IWR, we use the CMPVA to calculate the probability P ∗ of the
optimal sequence.

As said before, we are looking at a multi-dimensional trellis hav-
ing K+1 dimensions, where K dimensions belong to time axes of
K utterances and +1 dimension is the HMM states. To determine
the joint likelihood P (O1

t1 , . . . , OK
tK

/j, λ) we can resort to various
formulations. Since the path traversed in the time axes is already
optimized, how we choose bj(O

1
t1 , . . . , OK

tK
) affects only the final

CMPVA likelihood P ∗ (of equation (21) ) and the state sequence.
We define some criteria for calculating bj(O

1
t1 , . . . , OK

tK
) as below:

4.1. Criteria 1

We know that OT1,1
1 , OT2 ,2

1 , . . ., OTK ,K
1 are different speech pat-

terns which come from the same class (word) and uttered by the
same speaker. Given that they come from the same class these pat-
terns are uttered independently. Even though the feature vectorsO1

t1 ,
O2

t2 , . . ., O
K
tK
come from the same class, we can assume that they

are independent if it is given that they occur from the same state j, so
as to compute the joint likelihood of the vectors being emitted from
the HMM. So we get equation (24).

bj(O
1
t1 , . . . , OK

tK
) = bj(O

1
t1).bj(O

2
t2) . . . bj(O

K
tK

) (24)

where bj(O
i
ti

) is likelihood of observation Oi
ti
emitted by state j.

The independence assumption is also valid because successive vec-
tors in a pattern are only linked through the underlying Markov
model and the emission densities act only one symbol at a time. If
Oi

ti
is emitted from its actual state j from the correct HMMmodel λ,

we can expect that bj(O
i
ti

) to have a higher value than that if Oi
ti
is

emitted from state j of the wrong model. And taking all the product
of all the bj(O

i
ti

) brings in a kind of ”reinforcing effect”. Therefore,
while doing IWR, the values of final CMPVA likelihood P* using the
correct model and the P ∗ when using the other mismatched models,
is likely to widen. Therefore we can expect better speech recogni-
tion accuracy to improve. Even if some of the K vectors are noise,
this reinforcing affect will improve speech recognition because the
rest of the vectors are clean. In Criteria 1, we are not excluding any
of the K patterns to calculate P ∗.

4.2. Criteria 2

Let us consider the case when some (or all) of the K utterances is
affected by burst noise somewhere randomly. It can also be that some
parts of some (or all) utterances may be badly articulated. We have K
feature vectors at each point in the trellis. Since we are considering
distorted vectors for the point of increasing the likelihood, it would
be better to choose only the ”best” vector, for each state; i.e., we
choose bj(O

1
t1 , . . . , OK

tK
) as follows:

bj(O
1
t1 , . . . , OK

tK
) = max(bj(O

1
t1), bj(O

2
t2), . . . , bj(O

K
tK

)) (25)

If the speech patterns are affected by noise, we would expect Criteria
2 to give better speech recognition accuracy than Criteria 1 because
we are leaving out the noisy vector/s, and choosing only the best
one to calculate P ∗. However, for the case of clean speech, it is
possible that Criteria 2 can reduce speech recognition accuracy than
Criteria 1 because the max operation will also increase the likelihood
P ∗ for the mismatched model and bring it closer to the P ∗ of the
correct model. Also, this reinforcing effect will be absent in Criteria
2. So we would prefer to use Criteria 2 when the speech patterns
are noisy or badly spoken, and for the clean speech case we would
prefer Criteria 1. Note that in Criteria 2 (unlike Criteria 1), at every
point in the trellis, we are using only one feature vector among the
K utterances to calculate bj(O

1
t1 , . . ., OK

tK
). That is, to calculate

P ∗ we are using only one feature vector at a time from one of the K
patterns, at every time instant.

4.3. Criteria 3

In Criteria 1 we use all speech patterns at each point in the trellis, in
Criteria 2 we use only one pattern at a time to calculate P ∗. Now
we look at the case when at some points in the path taken inside the
trellis, we use all the K patterns and at some other points we use only
one pattern at a time. Basically we use a combination of Criteria 1
and Criteria 2 switched based on a threshold. Equation (26) below
gives us Criteria 3.

bj(O
1
t1 , . . . , OK

tK
)=

8>>>><
>>>>:

ˆ
bj(O

1
t1).bj(O

2
t2) . . . bj(O

K
tK

)
˜ 1

K

if d(t1, t2, . . . , tK) < γ

max(bj(O
1
t1), bj(O

2
t2), . . . , bj(O

K
tK

))
if d(t1, t2, . . . , tK) ≥ γ

(26)

where γ is a threshold and d(t1, t2, . . . , tK) is the multi-vector dis-
tance between K vectors O1

t1 , O
2
t2 , . . ., O

K
tK
as defined in equation

(8).
For bursty noise case (or even mispronunciation), it is likely

that some vectors in one speech pattern (or more) are corrupted
and the others are intact. The goal is to determine a robust likeli-
hood estimation measure, in spite of the noise. The first option of
d(t1, t2, . . . , tK) < γ is provided to take care of the statistical vari-
ation among the patterns, even without noise. If the distortion is low
(less than γ), it implies no noise and a proper alignment between
patterns at that point in the trellis. However high distortion (greater
than or equal to γ) could be due to misalignment as well as distor-
tion in the patterns. So, we choose only one vector out of K vectors,
corresponding to the pattern which gives the maximum probability
of occurrence with respect to state j. Thus, only a clean vector is
chosen to calculate joint maximum likelihood P ∗. We should not
do this max operation at all time instants, because it can reduce the
gap between the likelihood P ∗ when we test the patterns with re-
spect to the correct model and the likelihood P ∗ when we test the
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patterns with other mismatched models. The increased likelihoods
can reduce the gap between the likelihood of the correct model and
the likelihood of the closest competitor of the test word, can lead to
deteriorating the speech recognition performance.

In equation (26), if we choose γ = ∞ (infinity), then bj(O
1
t1 ,

. . .,OK
tK

) is always equal to [bj(O
1
t1).bj(O

2
t2) . . . bj(O

K
tK

)]1/K (prod-
uct operation), and when γ < 0, then it is always equal tomax{bj(O

1
t1),

bj(O
2
t2), . . ., bj(O

K
tK

)} (max operation), corresponding to Criteria
1 and 2 respectively.

The physical significance of γ is related to the statistical vari-
ance of the vectors emitted in state j. For simplicity we can choose
a fixed γ for all j or we can vary it. Since for each j, there is a mix-
ture Gaussian density, we can choose γ to be the average standard
deviation between different mixtures. The value of γ can also be
determined experimentally.

4.4. Criteria 4

In Criteria 3, while doing the max operation, we are taking only the
best pattern. In practice a variable number of patterns could be noisy
and we would like to use the max operation only to omit the noisy
patterns and use the product operation for the rest of the patterns.
So we choose only pairwise distortion between two vectors at a time
and define a new criteria for the joint likelihood.

Let 1 ≤ m, n ≤ K be the indices of vectors belonging to the
K patterns. Let us define the clean (undistorted) set of vectors be
denoted as Z, such that m, n ∈ Z iff d(Om

tm
, On

tn
) < γ, where

d(Om
tm

, On
tn

) is the Euclidean distance between Om
tm
and On

tn
. Let

Z be the set of remaining vector indices, such that Z ∪ Z = {1, 2,
. . ., K}. We can search all pairs of vectors among K exhaustively,
i.e.,K(K−1)/2 combinations, since K is usually small (K ∼ 2, 3).

bj(O
1
t1 , . . . , OK

tK
)=

8>>>><
>>>>:

Q
{i|i∈Z}

ˆ
bj(O

i
ti

)
˜ 1

r

if Z 	= φ

max{k|1≤k≤K} (bj(O
k
tk

))
if Z = φ

(27)

where r is the cardinality of set Z, and φ stands for null set.
Note that Criteria 4 becomes same as Criteria 3 if number of

patterns (utterances) K is equal to 2.

5. EXPERIMENTAL RESULTS

Based on the formulations of sections 2, 3 and 4, we conducted two
experiments - A1 and A2 for speaker independent IWR along with
the base line system of standard VA for a single pattern, for the cases
of both clean and noisy speech. Since the normal VA uses one ut-
terance (pattern) to make a recognition decision and the proposed
algorithms use K utterances to make a decision, the comparison of
results may not be fair. For a fairer comparison we formulated the
experiment A1, which also uses K utterances using the standard VA
and the best likelihood of the K utterances is chosen. So we compare
the new algorithms (experiment A2) with this experiment A1 also.

The experiment A1 is as described. Given OT1,1
1 , OT2 ,2

1 , . . .,
OTK ,K

1 as the individual patterns, we can obtain the joint likelihood
score as αj = max1≤i≤K P (OTi,i

1 /λj), where λj are the clean
word models and the VA is used to calculate P (OTi,i

1 /λj). We se-
lect the word as j∗ = arg maxj αj . We have restricted to two pat-
terns. For each word of a test speaker, A1 is done for utterance 1 and

Table 1. Comparison of ASR percentage accuracy (ASRA) for clean
speech for VA, A1, and A2 using Criteria 3 and 4 (C34).

Algorithm ASRA
VA 89.70%
A1 89.87%

A2, γ = ∞ 91.82%, C34
A2, γ = 1 91.43%, C34
A2, γ = 0.5 91.21%, C34
A2, γ < 0 91.17%, C34

Table 2. Comparison of ASR percentage accuracy for noisy speech
for VA, A1, and A2 using Criteria 3 and 4 (C34).

Algorithm -5 dB ASRA 0 dB ASRA 5 dB ASRA
VA 57.13% 61.49% 67.38%
A1 60.33% 64.29% 69.49%

A2, γ = ∞ 61.16%, C34 66.27%, C34 72.40%, C34
A2, γ = 2 73.91%, C34 76.89%, C34 80.20%, C34
A2, γ = 1 77.96%, C34 80.38%, C34 83.33%, C34
A2, γ = 0.5 79.02%, C34 81.62%, C34 84.40%, C34
A2, γ = 0.25 78.98%, C34 81.67%, C34 84.36%, C34
A2, γ < 0 78.98%, C34 81.67%, C34 84.36%, C34

utterance 2, utterance 2 and 3, utterance 3 and 1. Experiment A2
is the MPDTW algorithm followed by CMPVA described in this pa-
per. In all joint decoding experiments (A2), we have restricted to two
pattern joint decoding and compared the performance with respect to
single pattern decoding (VA and A1). Thus, for each word of a test
speaker, utterance 1 is jointly decoded with utterance 2, utterance 2
with 3, utterance 3 with 1. Please note that in the noisy case (burst
noise), all the three utterances are noisy. As the number of test utter-
ancesK = 2, for the new experiments we chose LCCs for MPDTW
as (1,0) or (0,1) or (1,1) and the slope weighting functionm(k) = 1.

We carried out the experiments for IISc-BPL database1 which
contains 75 word vocabulary for 36 female and 34 male adult speak-
ers, with three repetitions for each word by the same speaker, dig-
itized at 8kHz sampling rate. The vocabulary consists of a good
number of phonetically confusing words used in Voice Dialer ap-
plication. Left to Right HMMs are trained using the Segmental K
Means (SKM) algorithm. 25 male and 25 female speakers are used
for training, with three repetitions of each word by each speaker. We
tested the algorithm for 20 unseen speakers (11 female and 9 male)
in both clean and noisy cases. Test words are three utterances for
each word by each speaker, at each Signal to Noise Ratio (SNR). In
the noisy case, burst noise was added to 10% of the frames of each
word at -5 dB, 0 dB, 5 dB SNRs to all the three utterances. (The
remaining 90% of the frames are clean; the range of -5dB to +5dB
indicates severe to mild degradation of the 10% frames.) The burst
noise can occur randomly anywhere in the spoken word with uni-
form probability distribution. MFCC,ΔMFCC, andΔ2 MFCC (to-

1IISc-BPL database is an Indian accented English database used for Voice
Dialer application. This database consists of English isolated words, En-
glish TIMIT sentences, Native language (different for different speakers)
sentences, spoken by 36 female and 34 male adult speakers recorded in a lab-
oratory environment using 5 different recording channels: PSTN-telephone
(8 KHz sampling), Cordless local phone (16 KHz sampling), Direct micro-
phone (16 KHz sampling), Ericsson (GSM) mobile phone (8 KHz sampling),
Reverberant room telephone (Sony) (8 KHz sampling).
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tal 39 dimension vector) is used. Energy components are neglected
and Cepstral Mean Subtraction was included. Variable number of
states are used for each word model; i.e. using the average duration
of the training patterns, for each second of speech, 8 HMM states
were assigned, with 3 Gaussian mixtures per state.

Since in the experimentation, the number of patterns K is equal
to 2, Criteria 3 and 4 are same. We experimented for various values
of the threshold γ. In Criteria 3, γ < 0 implies that only the max op-
eration is used for the joint likelihood in equations (26), and Criteria
3 is same as Criteria 2. γ = ∞ implies that only the product oper-
ation is used, and Criteria 3 corresponds to Criteria 1. As discussed
earlier, only for the noisy frames we would like to use the max op-
eration. Hence we experimented with a range of values for γ and
found that there is indeed an optimum value. For the noisy patterns
with burst noises at -5 dB SNR, γ = 0.5 is found to be optimum.
It is also clear that γ = 0 provides closer to optimum performance
than γ = ∞, indicating that the max operation is more robust than
the product operation.

The results for clean speech are summarized in Table 1. Table 2
gives the results for noisy speech, where 10% of the speech is added
with burst noise at a particular SNR. In these tables, ASRA stands
for ASR accuracy. In the tables, for experiment A2, in the ASRA
column, the ASR accuracy and the symbol C34 is written. C34
stands for experiment A2 carried out using Criteria 3 and 4 (both
are same as K = 2). In these tables -5dB ASRA stands for ASR Ac-
curacy for noisy speech which has burst noise of 10% at SNR -5dB.
It can be seen that the baseline performance of VA for clean speech
is close to 90%. For example, for noisy case at -5 dB SNR burst
noise it decreases to ≈ 58%. Interestingly, the experiment A1 pro-
vides a mild improvement of ≈ 0.2% and 2% for clean and noisy
speech (at -5dB SNR burst noise) respectively, over the VA bench-
mark. This shows that use of multiple patterns is indeed beneficial,
but just maximization of likelihoods is weak. The proposed new
algorithm of joint decoding provides dramatic improvement for the
noisy case, w.r.t. the VA performance. For example at -5 dB SNR
burst noise the proposed algorithms (experiment A2) using Criteria
3 and 4 at threshold γ = 0.5, gave an improvement of about 22%
speech recognition accuracy compared to VA performance and about
19% improvement compared to experiment A1. We also see that as
the SNR improves, the gap in the speech recognition accuracy be-
tween Criteria 1 (γ = ∞) and Criteria 2 (γ < 0) reduces. In fact
as SNR approaches to that of clean speech, Criteria 1 is better than
Criteria 2. We see that for clean speech, the speech recognition accu-
racy improved by more than 2%. As expected, the product operation
worked better than max operation for clean speech (see section 4).

In a real time spoken dialogue ASR system, the system uses the
standard VA for decoding speech. If the ASR system has a con-
fusion whether it has succeeded in recognizing a spoken word in a
sentence, then it asks the user to repeat that word. The ASR system
can decide whether or not it has recognized the word correctly based
on some confidence measure. If the final probability of word match
is too low, or if the difference in the final probabilities of the best
and the second best matched word is too low, then the system can
ask the user to repeat the word. And that is where the algorithms we
proposed can be used to improve speech recognition performance.
In a real working ASR system, if threshold γ cannot be found, we
can go for Criteria 2 as it gives near optimal performance.

An example from the experiments is given as follows. In the ex-
periments for noisy speech at -5 dB SNR (10% burst noise), the word
”Oh” was commonly mismatched with words ”Home” and ”Four”,
for many speakers, when we used the standard VA. But by using the
proposed algorithms with Criteria 2, 3 and 4, for most of the cases,

this mismatch was removed and the word ”Oh” was correctly recog-
nized.

6. CONCLUSIONS

The problem of jointly decoding multiple speech patterns was ad-
dressed. We proposed a hybrid approach comprising of both the non
parametric and parametric approaches to speech recognition to solve
this problem. We proposed two novel algorithms - the MPDTW and
CMPVA, and applied them sequentially, to jointly decode multiple
patterns of speech. We got a huge improvement in speech recog-
nition accuracy for noisy speech. We also got an improvement in
speech recognition accuracy for clean speech.
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