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ABSTRACT 
 

The performance of current automatic speech recognition 
(ASR) systems often deteriorates radically when the input 
speech is corrupted by various kinds of noise sources. Quite 
a few of techniques have been proposed to improve ASR 
robustness over the last few decades. Related work reported 
in the literature can be generally divided into two aspects 
according to whether the orientation of the methods is either 
from the feature domain or from the corresponding 
probability distributions. In this paper, we present a 
polynomial regression approach which has the merit of 
directly characterizing the relationship between the speech 
features and their corresponding probability distributions to 
compensate the noise effects. Two variants of the proposed 
approach are also extensively investigated as well. All 
experiments are conducted on the Aurora-2 database and 
task. Experimental results show that for clean-condition 
training, our approaches achieve considerable word error 
rate reductions over the baseline system, and also 
significantly outperform other conventional methods. 
 

Index Terms — speech recognition, robustness, 
histogram equalization, polynomial regression, clustering 
 

1. INTRODUCTION 
 

Most of the current state-of-the-art ASR systems can 
achieve quite high recognition performance levels in 
controlled laboratory environments. However, as the 
systems are moved out of the laboratory environments and 
deployed into real-world applications, the performance of 
the systems often degrade dramatically due to the reason 
that varying environmental effects will lead to mismatch 
and uncertainty between the acoustic conditions of the 
training and test speech data. Therefore, the development of 
robustness methods has attracted a great deal of attention in 
recent years. Related work reported in the literature can be 
generally divided into two aspects according to whether the 
orientation of the methods is either from the feature domain 
or from the corresponding probability distributions. Each of 
them has their own advantages and limitations.  

Methods conducted from the feature domain, such as 
feature compensation [1-3], feature transformation [4-6], or 
feature reconstruction [7-8], can usually achieve higher 
performance by having a prior knowledge about the actual 

distortions caused by various kinds of noises, or by 
assuming that there exist a fixed (or known) relationship 
between the clean speech and the corresponding noisy one. 
Nevertheless, some of them are only effective in tackling 
the linear distortions but sometimes fails in handling the 
non-linear distortions. This might be explained by the fact 
that noise corruptions do not always appear with a one-to-
one linear relationship. On the other hand, it is difficult to 
enumerate all possible noise conditions in real-world 
scenarios, so their effectiveness is restricted. Another 
research line is relied on exploring noise-resistant 
distribution characteristics of speech features. 
Representative methods, include, but not limited to, CMS 
[9], CMVN [10], HOCMN [11], HEQ [12-15], etc. 
Although these methods have already been demonstrated 
their capability in preventing performance degradation of 
speech recognition systems under various noisy 
environments and also have been proven their effectiveness 
in compensating the environmental mismatch between the 
training and test speech data, they to some extent have their 
inherent limitation. Most of the approaches still have room 
for improvement. For example, some of them must assume 
the speech features follow a predefined distribution (e.g., 
Gaussian), but such an assumption is not entirely correct. 
The other problem is that noises will not only modify the 
distributions of the speech features but also inject 
uncertainties into the speech features due to the random 
behavior of them. However, most of these methods can only 
deal with the mismatch between the training and test 
conditions but few with such uncertainties. 

Based on the above observations, we believe that these 
two research orientations could complement each other, and 
it might be possible to inherit the individual merits from 
them to overcome their inherent limitations. As an example, 
in our previous work, we proposed a cluster-based 
polynomial-fit histogram equalization (CPHEQ) approach 
[16], which makes use of both the speech features and their 
corresponding distribution characteristics for speech feature 
compensation. CPHEQ inherits the merits of above two 
orientations and uses the data fitting technique in a purely 
data-driven manner to approximate the actual distributions 
without the need of unrealistic assumptions about the 
speech feature distributions. Experimental results have 
shown that CPHEQ could achieve a considerable word error 
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rate reduction over the baseline MFCC-based system. In this 
paper we attempt to elucidate the theoretical foundation of 
CPHEQ based on a more rigorous mathematical treatment. 
Moreover, two variants derived from CPHEQ by making 
additional assumptions and extensions are presented as well, 
namely, the polynomial-fit histogram equalization (PHEQ) 
[15] and the selective cluster-based polynomial-fit 
histogram equalization (SCPHEQ). 

The remainder of this paper is organized as follows. 
Section 2 first elucidates the theoretical foundation of 
CPHEQ. Moreover, the two extensions of CPHEQ, i.e., 
PHEQ and SCPHEQ, are described in detail in Section 3. 
Then, Section 4 presents the experimental settings, as well 
as the experimental results and discussions. Finally, 
conclusions and future work are drawn in Section 5. 
  

2. THEORETICAL FOUNDATION OF CPHEQ 
 

The basic idea of CPHEQ is inspired from two diverse 
approaches. The first one is SPLICE (Stereo-based 
Piecewise Linear Compensation for Environments) [1], 
which attempts to use a Gaussian mixture model (GMM) to 
model the noisy feature space, and each Gaussian 
component represents one specific distortion condition, or it 
can be treated as the condition that a certain phoneme class  
interfered with a particular kind of noise. In addition, each 
Gaussian component has one corresponding correction 
vector (or bias) for compensating the noisy speech. The 
estimation of the correction vector is generally done by 
utilizing the MMSE (Minimum Mean Squares Error) 
criterion with a set of stereo data. However, the main 
drawback of SPLICE is that it simply uses a set of linear 
additive biases to approximate the true nonlinear 
relationship between the clean and noisy speech for each 
distortion condition. In order to overcome this shortcoming, 
we additionally take the idea from HEQ [12-14]. HEQ uses 
non-linear transformation functions to compensate the 
nonlinear distortions by utilizing the relationship between 
the cumulative distribution functions (CDFs) of the test 
speech and those of the corresponding training (or reference) 
one. The critical success factor behind HEQ is strongly 
relied on the assumption that the distribution of test data 
should be identical to the one of the training data. 
Nevertheless, this assumption is sometimes invalid due to 
the fact that the data distribution will be affected by 
different noise corruptions and phonetic characteristics, 
especially when the test utterance becomes much shorter. 
For this reason, the use of only a single global 
transformation (or inverse) function seems inadequate to 
compensate the noisy feature vector component. Therefore, 
we purpose the use of CPHEQ to combine the merits of 
both SPLICE and HEQ, as well as to overcome their 
shortcomings. 

For CPHEQ, we first use the noisy speech data to train 
a GMM whose parameters are estimated by the K -means 

algorithm followed by the expectation maximization (EM) 
algorithm. The GMM is expressed as follows: 
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where K is the total mixture number used in GMM; 
kYp t |  and kp  are the likelihood of feature vector tY  

being generated by the k -th mixture and the corresponding 
weight of the k -th mixture, respectively; and each Gaussian 
is associated with a mean vector k  and a diagonal 
covariance matrix k . Furthermore, we assume the 
compensated feature vector can be derived by: 
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where E  is the expectation operation and tYkp |  is the 
posterior probability given by: 
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Then, we further assume that the feature vector component 
ty of tY  is independent of each other given the k -th 

mixture, and the restored value of ty  can be obtained by 
utilizing a polynomial regression model and taking its 
corresponding CDF value as the explanatory variable [13]. 
Therefore, the restore value of  ty  for the k -th mixture is 
defined as: 
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where tyCDF  is the CDF value of the feature vector 
component ty , which can be obtained by using the 
cumulative histogram [12] or order statistics [13]; and kG  
is the transformation function which maps CDF values onto 
their corresponding predefined feature values for the k -th 
mixture. In contrast to the conventional time-consuming 
table-lookup based HEQ [12], we use the polynomial 
functions to approximate the inverse function of CDF. The 
reason why we choose the polynomial function here is 
mainly because that it has a simple form, without the need 
of a complicated computation procedure, and it has 
moderate flexibility in controlling the shape of the function. 
Though the polynomial function is efficient to delineate the 
transformation function, it is worth mentioning that the 
polynomial function, to some extent, has its inherent 
limitations. For example, high order polynomial functions 
might lead to over-fitting of the training data. Moreover, the 
polynomial function would provide good fits for the input 
data points that are located within the range of values of the 
training data, but would also probably have rapid 
deteriorations when the input data points are located outside 
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the range of values of the training data when the order 
becomes much higher. 

During the training phase, the coefficients kma  of the 
polynomial function kG  for the k -th mixture can be 
estimated by using a set of stereo data and by minimizing 
the squares error defined by: 
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where T  is the total number of frames in training data; ty  
and tx are respectively the feature vector component for 
noisy speech and its corresponding clean one. During the 
speech recognition process, each feature vector component 
of test speech ty  is first used to estimate its corresponding 
CDF value, and then the restored value tx~  of ty  hence can 
be expressed by: 
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As can be seen from Eq. (6), the restored value tx~  is 
obtained by a weighted sum of the output of each 
transformation function kG . Obviously, the computation 
time will increase when the number of mixtures becomes 
larger. In order to reduce the computation time, we therefore 
use the maximum a posteriori probability (MAP) criterion 
and redefine Eq. (5) and (6) as follows: 
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That is, each feature vector tY  will be assigned to a specific 
mixture k . The main difference between Eq. (5) and (7) is 
the amount of data pairs being considered for obtaining the 
polynomial functions. The estimation using Eq. (5) can be 
viewed as a soft-decision approach, where the error 
contributed by each data pair is weighted by the 
corresponding posterior probability of the mixture it 
probably belongs to. On the other hand, a hard-decision 
approach is used in Eq. (7), where each frame is exactly 
associated with one mixture. During the recognition phase, 
each feature vector tY  is first assigned to a specific mixture 
k  by using Eq. (9) and then each of its feature vector 
component ty  is replaced by a restored value tx~  using Eq. 
(8). 

3. TWO VARIANTS OF CPHEQ 
 

In the previous section, we have described the theoretical 
details of CPHEQ. In this paper, we also present two 
different extensions of CPHEQ. The first extension, named 
the polynomial histogram equalization (PHEQ) [15], 
assumes that only a global transformation function was used 
for restoring the noisy component values and the 
transformation function is instead delineated from the clean 
speech data without the use of the noisy speech data. This 
extension in fact is in analogy with the conventional HEQ 
approaches. The other extension, named the selective 
cluster-based polynomial-fit histogram equalization 
(SCPHEQ), combines the missing feature theory (MST) [7-
8] and the prediction capabilities of polynomial functions to 
reconstruct the unreliable feature vector components. 

3.1. Polynomial-Fit Histogram Equalization (PHEQ) 

For PHEQ, we simply assume that only a single global 
transformation function is utilized to obtain the restored 
value tx~  of the noisy feature vector component ty , and 
therefore Eq. (6) can be rewritten as:  
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where the coefficients ma  can be estimated by minimizing 
the squares error expressed in the following equation: 
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Notice that only the clean speech data tx  is used for 
estimating the coefficients. During speech recognition, for 
each feature vector dimension, the CDF value of each 
feature vector component is first estimated and then taken as 
an input to the polynomial function to obtain its restored 
value. The advantage of PHEQ is it can efficiently 
approximate the inverse of the cumulative density function 
of training speech for HEQ, which has the merits of lower 
storage and time consumption compared to the conventional 
table-lookup based HEQ (THEQ) [12] or quantile-based 
HEQ (QHEQ) approaches [14]. 

3.2. Selective Cluster-based Polynomial-Fit Histogram 
Equalization (SCPHEQ) 

Generally, there are two essential steps in using the missing 
feature theory to compensate the corrupted spectral vector. 
The first one is to identify which spectral vector component 
is unreliable or missing, and the second one is to either 
reconstruct the unreliable components for recognition [8] or 
ignore them during the decoding process [7]. In this paper, 
we only focus on using the same concept of CPHEQ to 
reconstruct the unreliable spectral vector components given 
that the oracle data mask of reliable or unreliable 
components is known in advance. We simply assume that 
the unreliable components can be reconstructed by Eq. (6) 
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or (8). It is worth noting that the feature vectors used here 
for SCPHEQ is represented in the spectral domain, in 
comparison to that of CPHEQ in the cepstral domain. The 
discrepancy is because the noise that corrupts the speech 
may only occur in some particular frequency bands (or 
spectral vector components), so the noise corruptions can be 
easily identified in the spectral domain, but much more 
difficult in the cepstral domain since each cepstral feature 
vector component will encompass the information from all 
spectral bands. On the other hand, because of the range of 
spectral values varying dramatically, the use of cumulative 
histograms or order statistics to estimate the corresponding 
CDF value is no longer applicable. Therefore, we use the 
Gaussian error function to estimate the CDF values of each 
feature vector. If the distribution of a univariate random 
variable x  belongs to a Gaussian, i.e. 2 , ~ Nx , then its 
CDF is thus defined by [17]: 
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where  and  are the sample mean and standard 
deviation of x , respectively; and the Gaussian error 
function verf  is defined as 
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Nevertheless, as mentioned earlier, it would be 
inappropriate by simply assuming the feature vector 
component follows a Gaussian distortion. Thus, GMM is 
instead used to approximate the true distribution of the 
feature vector component. Consequently, txCDF in Eq. (12) 
can be further expressed by using GMM: 
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where J  is the total number of Gaussian distributions used 
in GMM; j  and j  are the mean and standard deviation 
of the j -th Gaussian distribution, respectively; and jc  is 
the mixture weight. Therefore, there are two GMMs being 
used in SCPHEQ: one for modeling the noisy feature space 
and the other for estimating the CDF value. The training 
procedure of SCPHEQ is almost as the same as that of 
CPHEQ except for the way to estimate the CDF value 

txCDF . The main difference between SCPHEQ and 
CPHEQ lies in their applications in the recognition phase. 
Due to the additive property in the spectral domain, the 
noisy spectral value must be greater than the clean one. 
Thus, for SCPHEQ, we can not directly take the restored 
value of the unreliable component from the output of the 
polynomial functions, since the restored value might be 
abnormal. Therefore, a bounded function is applied to 
ensure that restored value must be no greater than the 
corresponding noisy one: 
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4. EXPERIMENTAL SETUP AND RESULTS 
 

4.1 Experimental Setup 

The speech recognition experiments were conducted under 
various noise conditions using the Aurora-2 database and 
task [18]. The Aurora-2 database is a subset of the TI-
DIGITS, which contains a set of connected digit utterances 
spoken in English; while the task consists of the recognition 
of the connected digit utterances interfered with various 
noise sources at different signal-to-noise ratios (SNRs), in 
which the Test Sets A and B are artificially contaminated 
with eight different types of real world noises (e.g., the 
subway noise, street noise, etc.) in a wide range of SNRs (-5 
dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and Clean) and the 
Test Set C additionally includes the channel distortion. For 
the baseline system, the training and recognition tests used 
the HTK recognition toolkit [19], which followed the setup 
originally defined for the ETSI evaluations [18]. All the 
experimental results reported below are based on clean-
condition training, i.e., the acoustic models were trained 
only with the clean training utterances. 

4.2 Experimental Results 
 

The average WER result obtained by the MFCC-based 
baseline system is 41.04%, which is an average of the WER 
results of the test utterances respectively contaminated with 
eight types of noises under different SNR levels (0 dB to 20 
dB) for the three test sets (Sets A, B and C). We first 
evaluate the performance of CPHEQ when different criteria 
were used to obtain the polynomial transformation functions. 
The number of GMM mixtures is set from 32 to 1,024, and 
the order of the polynomial is initially set to 3. The 
associated results are shown in Table 1. It can be found that 
CPHEQ provides significant performance boosts over the 
MFCC-baseline system, especially when the number of 
mixtures becomes much larger (e.g., 512 or 1,024), and 
there is no significant difference between soft-decision and 
hard-decision approaches. This might be due to the fact that 
when the transformation functions are estimated using Eq. 
(5), the error contributions are prone to be dominated by the 
mixture with the highest posterior probability for each 
training speech feature vector component, which would 
make the estimation of the transformation functions using 
Eq. (5) have the same effect as that using Eq. (7). 
Accordingly, this may also suggest that using Eq. (7) to 
derive the polynomial functions for CPHEQ is enough and 
it can also simplify the computation of CPHEQ.  

In the next set of experiments, we evaluated the 
performance of CPHEQ with respect to different number of 
mixtures and different orders of the polynomial function. 
The corresponding WER results are illustrated in Figure 1. 
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As can be seen from Figure 1, the WER is slightly improved 
when the order of the polynomial regression becomes 
higher, but in the case of large number (e.g., 512 or 1,024) 
of mixtures, the performance seems to degrade substantially 
if the order of the polynomial functions becomes too large. 
These results may be explained by the facts that the limited 
training data was used in this study (the fact of the curse of 
dimensionality), and the use of higher order polynomial 
functions might led to oscillations between the exact-fit 
values. As we further compare the best result obtained from 
Table 1 with the result of the MFCC-based baseline system, 
it can be found that CPHEQ can provide a relative WER 
reduction of about 62% over the MFCC-based baseline 
system. 

In the third set of experiments, we evaluate the 
performance of PHEQ with respect to different polynomial 
orders and the associated results are presented in Table 2. 
Due to the end behavior property of polynomial functions, 
the even order polynomials are either “up” on both ends or 
“down” on both ends which is not appropriate to 
characterize the behavior of a cumulative distribution. 
Therefore, only odd-order polynomials are utilized in this 
study for PHEQ. As evidenced by the results shown in 
Table 2, the average WER results of PHEQ are slightly 
improved when the order of the polynomial functions 
become higher. However, as the order increases, the 
polynomial functions might sometimes tend to over-fit the 
training data and further degrade the performance. As it is 
indicated, PHEQ yields about a relative WER reduction of 
about 48.51% as compared to the MFCC-based baseline 
system. The performance of PHEQ does not outperform the 
CPHEQ, but it only requires clean speech data to estimate 
the polynomial coefficients without the needs of stereo data. 

Then, we evaluate the performance of SCPHEQ. Since 
the objective of this paper is to deal with the unreliable 
feature vector component, we preliminarily used the oracle 
mask to identify whether a spectral vector component 
belong to reliable or unreliable component for our 
experiments. Moreover, we found that four mixtures are 
sufficient to estimate the CDF value expressed in Eq. (14), 
and this setting was thus used for the following experiments 

of SCPHEQ. Figure 2 shows the average WER results with 
respect to different number of mixtures for modeling the 
noisy speech characteristics and different orders of the 
polynomial functions. As it is illustrated, increasing the 
mixtures can have a steady improvement in WER results, 
but the performance seems not to degrade even we used a 
large number of mixtures together with a higher order of the 
polynomial functions. This may be probably explained by 
the reason that a bounded function is applied for ensuring 
the reconstructed spectral feature vector components must 
be lower than noisy ones. Even though the value of 
reconstructed component is abnormal, the bounded function 
can alleviate, to some extent, the effect caused by it. The 
best result achieved with a relative WER reduction of about 
72% over the MFCC-based baseline system. 

To go a step further, SCPHEQ can be thought as a 
spectral subtraction operation that removes noise effects in 
the spectral domain, but sometimes the residual noise may 
still present in the resulting cepstral feature vectors. It may 
be possible to use HEQ approaches to reduce the residual 
noise in the cepstral domain. Therefore, we evaluate the 
ASR performance when combining SCPHEQ with PHEQ. 
The experiment result shows that the combination of 
SCPHEQ with PHEQ can further provide a very significant 
improvement as compared to the results obtained by using 

Number of Mixtures  
32 64 128 256 512 1024

Hard 19.84 19.49 18.24 17.33 16.36 15.41
Soft 19.88 19.46 18.23 17.31 16.33 15.40

Table 1: Comparison of the average WER results (%) 
between hard/soft decision approaches used for deriving 
the polynomial transformation functions of CPHEQ 

Number of  Polynomial Orders  
1-th 3-th 5-th 7-th 9-th 11-th

PHEQ 23.25 21.80 21.46 21.13 21.16 22.14
Table 2: Average WER results (%) of PHEQ with respect 
to different orders of the polynomial transformation 
functions. 
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Figure 1: Average WER results (%) of CPHEQ with 
respect to different number of mixtures and different orders 
of the polynomial transformation functions. 
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Figure 2: Average WER results (%) of SCPHEQ with 
respect to different numbers of the mixtures and different 
orders of the polynomial transformation functions. 
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each of them individually. It yields an average WER result 
of about 4.30%. 

Finally, we compare our proposed approaches with the 
other conventional approaches. Table 3 shows the average 
WER results obtained by various conventional approaches 
and our proposed approaches. The number of mixtures used 
in SPLICE was set to 1,024, which was the same as that 
used in CPHEQ and SCPHEQ. As can be seen from Table 3, 
our proposed approaches are considerably better or 
competitive to all the other conventional approaches.  
 

5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have investigated the use of speech 
features and their corresponding distribution characteristics 
for robust speech recognition. Three variants of polynomial 
regression approaches were proposed to increase the 
robustness of the ASR system. Their performance has been 
extensively tested and verified by comparison with the other 
conventional approaches. Very encouraging results on the 
Aurora-2 database have been obtained. Finally, we list 
below some possible future extensions of the proposed 
polynomial regression approaches: 1) The stereo data 
sometimes is difficult to collected, and therefore a possible 
future work is using mono data (either clean speech or noisy 
speech) alone to estimate the parameters of the 
transformation functions. 2) The data-fitting technique is 
prone to be affected by abnormal values. Therefore, another 
possible future work is outlier detection/elimination, or the 
so-called robust regression. 3) Speech signal is slowly time-
varying, so the contextual information between consecutive 
speech feature vectors might be an important cue that can 
help in improving the ASR robustness. 
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Method Test A Test B Test C Average
Baseline(MFCC) 41.06 41.52 40.03 41.04 

CMS 32.40 27.16 34.15 30.65 
CMVN 22.73 19.60 31.70 23.27 
THEQ 18.37 16.92 19.51 18.02 
QHEQ 23.08 22.03 24.08 22.86 
PHEQ 20.92 18.12 25.68 21.73 

SPLICE 17.03 17.13 26.90 19.04 
CPHEQ 14.35 14.04 20.28 15.41 

SCPHEQ 10.21 15.09 6.30 11.38 
SCPHEQ+PHEQ 4.29 4.11 4.70 4.30 

Table 3: Average WER results (%) obtained by the MFCC-
based baseline system and various approaches. 
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