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ABSTRACT 

Recently an ensemble speaker and speaking environment 
modeling (ESSEM) approach to characterizing unknown testing 
environments was studied for robust speech recognition. Each 
environment is modeled by a super-vector consisting of the entire 
set of mean vectors from all Gaussian densities of a set of HMMs 
for a particular environment. The super-vector for a new testing 
environment is then obtained by an affine transformation on the 
ensemble super-vectors. In this paper, we propose a minimum 
classification error training procedure to obtain discriminative 
ensemble elements, and a super-vector clustering technique to 
achieve refined ensemble structures. We test these two extensions 
to ESSEM on Aurora2. In a per-utterance unsupervised adaptation 
mode we achieved an average WER of 4.99% from 0dB to 20dB 
conditions with these two extensions when compared with a 
5.51% WER obtained with the ML-trained gender-dependent 
baseline. To our knowledge this represents the best result reported 
in the literature on the Aurora2 connected digit recognition task. 

Index Terms—environment modeling, noise robustness 
 

1. INTRODUCTION 
 
For an automatic speech recognition (ASR) system, maintaining a 
robust performance over a wide range of unknown environments is 
a key design issue. Many techniques have been proposed to reduce 
mismatches between training and testing conditions and enhance 
ASR performance. The first category of approaches generates a 
new set of hidden Markov models (HMMs) for the testing 
environment by adapting the parameters of the original HMMs to 
the new environment. MAP [1] and MLLR [2] are two most 
prevailing methods used in most state-of-the-art ASR systems.  
The second group targets at reducing the differences between 
training and testing speech features according to signal 
conditioning or blind compensation. Spectral subtraction [3] and 
the ETSI advanced front-end [4] achieve very good robustness 
under noisy conditions. Finally some approaches, such as 
stochastic matching [5], jointly adapt model parameters and 
compensate for speech feature differences. Although these methods 
provide good performance improvement, they are not designed to 
handle multiple distortions, such as combined speaker variations, 
convolutive channels and additive noises.  

In our previous study, an ensemble speaker and speaking 
environment modeling (ESSEM) [6] approach was proposed to 
characterizing unknown environments under the presence of either 
a single or multiple distortions. Here each environment is modeled 
by a super-vector consisting of the entire set of mean vectors from 

all Gaussian components of a set of HMMs for the particular 
environment. In the offline phase a large collection of ensemble 
super-vectors are built by simulating different combinations of 
multiple distortions. On the other hand in the online phase the 
super-vector for the unknown testing environment is obtained by 
converting the ensemble super-vectors with an affine 
transformation that is estimated with adaptation data from that 
environment. In [6] we proposed to use a cluster selection 
technique to optimally reduce the dimension of the environment 
super-vector. Based on the acoustic knowledge, we tested the 
performance of the cluster selecting method by implementing 
ESSEM on a gender-dependent system where the full set of 
environments were clustered into two groups, one for each gender.  

In this paper we propose two ESSEM extensions, namely a 
general environment clustering procedure on the environments and 
a minimum classification error (MCE) training method [7] to 
obtain parameters of the environment space for discriminative 
modeling. We tested the extended ESSEM on the full evaluation 
set of the Aurora2 [8] task on both gender-independent (GI) and 
gender-dependent (GD) systems. For the averaged performance 
from 0dB to 20dB the best ESSEM result we achieved in the GI 
system was 5.39% WER, yielding a 16.56% WER reduction over 
the ML baseline result of 6.46% WER. The best result for the GD 
system was 4.99% WER which represents a 9.44% WER reduction 
over the ML-based GD baseline result of 5.51% WER.       
 

2. ENSEMBLE SPEAKER AND SPEAKING 
ENVIRONMENT MODELING (ESSEM) 

 
We first review the two stages in the ESSEM approach.  In the 
offline phase we collect a wide range of speech data from different 
speaker and speaking environments, e.g., different speakers, noise 
types, SNR levels, and channel distortions. It is usually prohibitive 
to collect data from many different real world environments, so the 
Monte Carlo (MC) [9] technique can be used to artificially 
simulate these training sets. If there are P sets of training data 
collected, we can train P sets of HMMs. For each environment, the 
entire set of mean vectors of a set of HMMs is then concatenated 
into a super-vector Xp ,p=1,…,P. If there are M Gaussian mixture 
components in one set of HMMs, and every mean vector has D 
dimensions, the super-vector for the p-th environment is an R-dim 
(R=D×M) vector. These P super-vectors form an ensemble speaker 
and speaking (ESS) environment space }  , { 1 PE ,Span X…X= . 

Finally we concatenate them to form an ESS super-vector 
TTT

2
T
1 ]     [ PX…XX=Q of dimension (R×P). This ESS super-vector 

assumes a priori knowledge for the unknown testing environments. 
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In the online phase, we intend to estimate an R-dim super-
vector Xtest for an unknown testing environment by converting the 

ESS super-vector Q with a transformation matrix Â of dimension 
R*(R×P) and a compensation vector b̂ of dimension R: 

.ˆˆ
test   b+QA=X         (1) 

Many optimal criteria can be used to estimate }{ bA ˆ,ˆ , while a 
maximum likelihood (ML) algorithm is the most popular one. For 
the ML algorithm, with a given segment of speech data from the 
testing environment Otest, we have:  

, ) ( }{
}{

b+QAO=bA
bA

~~
|Lmaxargˆ,ˆ

test~
,

~                                      (2) 

where L(.) is the likelihood function, and }{ bA ˆ,ˆ is referred to as an 
ensemble speaker and speaking (ESS) affine transformation. 

       We can decompose the matrix Â to P distinct R*R matrices 
A1, A2…, AP , and partition the ESS super-vector Q into P sub-
vectors, X1, X2…, XP, such that Eq.  (1) can be re-written as: 

1
) ( 

P

p
ppptest

=
b+XA=X with .  

1

P

p
p

ˆ
=

b=b                             (3) 

Therefore Xtest can also be seen as a linear combination of 
transformed super-vectors for the P distinct environments.  

The correlation across different mean vectors in each sub-
vector can be ignored by setting each distinct matrix Ap in Eq. (3) 
to a block-diagonal formation. Then the m-th mean vector test,m  in 

the super-vector Xtest can be obtained by: 

1
) ( 

P

p
p,mp,mp,mtest,m

=
b+A=                                                 (4) 

where Am,p and bm,p are matrix of dimension (D×D) and 
compensation vector of dimension D to the m-th Gaussian mixture 
component for the p-th environment. An extreme case is that only 
one environment is selected in the ESS super-vector, and ESSEM 
is equivalent to the conventional MLLR approach.  

On the other hand a simpler matrix formulation can be used 
for the affine transformation in Eq. (3). For example, a matrix 

I×=A pp  (with p a weighting coefficient and I is an identity 

matrix) neglecting the global bias vector p,mb in Eq. (4), we have: 

.   
1

P

p
p,mptest,m

=
=                                                                     (5) 

The formulation in Eq. (5) is equivalent to that used in the 
interpolation-based environment modeling (IEM) [10] approach, 
and the weighting coefficients P...p,p ,1,= , in Eq. (5) are 

estimated based on the ML algorithm presented in Eq. (2).  
 

3. TWO ESSEM EXTENSIONS 
 
3.1. Tree Structure Environment Clustering  
 
In order to enrich the variety of the ESS environment space, i.e., to 
have more complete a priori knowledge, we want to collect or 
artificially simulate speech data from many different conditions. 
However the dimension of ESS super-vector must be carefully 
limited to avoid a possible over-fitting when the amount of 
adaptation data is very limited (self adaptation or compensation). 
Moreover we want to fully employ the a priori knowledge in 
modeling unknown testing environments. In our previous study [6] 
we applied principle component analysis (PCA) to the ESS super-

vector. We verified that PCA-imposed ESSEM achieves better 
accuracy than that with the full set of ESS super-vector. Here we 
propose tree structure clustering to reduce the super-vector 
dimension and provide better a priori knowledge for ESSEM. 

The root of the tree is the entire set of training environments, 
and the tree is constructed by several layers, with each layer of 
environment clustering performed based on dissimilarity between 
each pair of environments. In the offline phase with the 
constructed tree structure of environment clustering the super-
vectors belonging to the same cluster are concatenated to form a 
cluster-selected (CS) ESS super-vector Qc, c=1,…,C for C 
different clusters. If there are S super-vectors in the c-th cluster, the 

CS-based ESS super-vector is T T
)(

T
)(2,

T
)(1, ]    [ c,Sccc X…XX=Q . A 

particular function R (.) is used to find the most representative 

super-vector )(
rep
cX for the c-th cluster with )()(

rep c
c R Q=X .  

In the online phase, an additional best first process is 
performed to locate a cluster of environments QT where its 

representative super-vector )(
rep
TX yields the highest likelihood with 

the given speech data from the unknown testing environment: 
. 1,2...,     ))(|(

 
CcRLmaxarg ctest

c
T =QO=Q                              (6) 

From the general formulation of ESSEM in Eq. (1), the super-
vector for the testing environment Xtest can be estimated by: 

TTTtest
ˆˆ b+QA=X  ,                                                                     (7) 

where QT is the CS-based ESS super-vector, and }{ TT
ˆ,ˆ bA is the 

affine transformation for the selected T-th cluster.  
 
3.2. MCE Retraining of ESS Super-vector Parameters 
 
We use the MCE training [7] to increase the average distance 
between pairs of components within the ESS super-vector. Two 
feasible procedures are presented here. First, if we consider each 
environment as a particular class, with training data 

} { 1 Ptrain ,...,OO=O  of totally I utterances for P different 

environments in the training set, we use the objective function:  

1 )),,( (-1  
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)( 

I

i
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traindexpI

l
= +QO+

=Q                                  (8) 

where is for the parameter set other than means of HMMs, both 
and are control parameters for the sigmoid function, and the 

misclassification measure d (.) is defined as: 

),,( G),,( -),( QO+QO=QO i
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i
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where  is a positive control parameter, and cW and }..., ,{ 1 NWW  
are the given correct transcription and the decoded N-best 

competing word sequence of the training utterance i
trainO , 

respectively. We used a logarithm of the likelihood for the 

discriminant function of ),,( c
i
train W,g~ QO in the implementation. 

The generalized probabilistic descent (GDP) algorithm [7] is used 
to update parameters in the ESS super-vector Q iteratively.  

Second, we increase distance between components within 
each particular environment in the ESS super-vector. With the 
training data Op of Ip utterances from the p-th environment, we 
have the following objective function: 
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Again the misclassification measures in Eqs. (9) and (10) are used, 
and parameters within Xp are updated iteratively. 

In our implementation, all parameters in the ESS super-vector 
are originally estimated with the ML criterion, and followed by the 
MCE training. Finally we have a MCE-refined ESS super-vector. 

 

4. EXPERIMENTS AND RESULTS 
 
We evaluated the ESSEM approach on the Aurora2 database. The 
multicondition training set is used both to train HMMs and to 
build the environment spaces. In this training set there are the same 
four types of noise as in test set A, at four SNR levels: from 5dB to 
20dB, along with clean data. Therefore there are 17 different 
speaking environments. The training set is further divided into two 
gender-specific subsets, and now we have 34 (17×2) speaker and 
speaking environments. The complete test sets in Aurora2 are used 
for testing. There are totally 70 different testing environments with 
1001 testing utterances in each environment. We test ESSEM in an 
unsupervised adaptation mode. Each testing utterance is first 
decoded into an N-best list, and then used as adaptation statistics 
for ESSEM. No end-pointing process was applied.  

Here ESSEM with a simplified transformation presented in Eq. 
(5) is implemented and tested on both the GI and GD systems. In 
the GI system, a set of GI HMMs is trained on the multicondition 
training data, and 34 sets of environmental HMMs are trained 
corresponding to the 34 particular environments in the training set. 
We use a two-layered binary tree structure to cluster the 34 speaker 
and speaking environments into four groups. With this data-driven 
clustering scheme it is observed that in the first layer the 34 
environments were exactly divided into two groups of two genders. 
This phenomenon exactly matches our intuition that genders 
assume the most discriminative power even under very noisy 
conditions. Then in the second layer another two groups of 
environments were defined roughly according to high/low SNR 
levels. In other words for the Aurora2 task the first layer of the tree 
structure clustering corresponds to speaker clustering, and the 
second layer is speaking environment clustering.  

In the GD system, two sets of GD HMMs and 17 sets of 
environmental HMMs are trained corresponding to 17 different 
speaking environments for each gender. The data-driven clustering 
is used to further cluster speaking environments into two groups, 
again high/low SNR levels, for each gender. There is an additional 
set of HMMs for automatic gender identification (AGI) that 
determines a speaker’s gender for every incoming testing utterance. 
It is noted that in the online phase two stages of cluster selection 
for the two-layered binary tree are sequentially performed based on 
Eq. (6) in the GI system. Contrarily there is only one layer of 
cluster selecting performed in the GD system because the gender 
identity is already determined by AGI. To maintain an adequate 
number of environments in every group, some environments, such 
as environments at middle SNR levels, are shared across different 
groups. Finally each cluster has 12 to 14 different environments. 

 
4.1. Speaker and Speaking Environment Clustering for ESSEM 
 
For the experiments in this section, each frame is characterized by 
39 coefficients consisted of 13 MFCC parameters with their first 
and second order time derivatives. An utterance-level cepstral 

mean subtraction (CMS) was performed for normalization. All 
digits were modeled by 16-state whole word HMMs with each 
state characterized by 3 Gaussian components. There are 3 states 
for the background model and 1 state for the short pause model, 
with each state of background and pause characterized by 6 
Gaussian mixture components.  
 
4.1.1. Gender Independent System 

 
We compared performance of ESSEM with different ESS super-
vectors. Average word error rates from 0dB to 20dB across the 
three testing sets for four types of ESS super-vectors along with the 
baseline results are illustrated in Fig. 1. “Full” indicates the full 
ESS set was used; “PCA” is for using a PCA-imposed ESS super-
vector;  “CS (1)” and “CS(2)” denote CS-based ESS super-vector 
with a one layer (cluster number C=2) and two layers (cluster 
number C=4) tree structure environment clustering.  

From Figure 1, it is clear that both “CS(1)” and “CS(2)” 
provide better performance over “Full” and “PCA”. Moreover it is 
observed that the two-layered tree structure gives better 
performance than the one-layered tree.  

 
Fig. 1. Comparison of ESSEM with different ESS super-vectors  
 
4.1.2. Gender Dependent System 
 
We list results of ESSEM with the full set of ESS super-vectors 
and with a CS-based ESS super-vector in the GD system in Table 1. 
Because there is an AGI process beforehand, and the environments 
are already clustered into two groups for two genders, the original 
ESSEM does not need to do online cluster selection as presented 
in Eq. (6). These original results are listed [6] in the second row in 
Table 1 and denoted as “GD-ESSEM+Full”. Next the results of 
using one-layered environment clustering are listed in the bottom 
row and denoted as “GD-ESSEM+CS(1)”. We use the AGI 
process followed by one-layered environment clustering as 
presented in Eq. (6) to locate one set of HMMs to test recognition 
for the baseline results. This set of configuration has better 
recognition accuracy than that of the AGI-only process presented 
in [6]. We listed and denoted them as “GD-Baseline” in Table 1. 

Similar results to the GI system were observed by comparing 
results of “GD-ESSEM+Full” and “GD-ESSEM+CS(1)” that in 
addition to two genders, a speaking environment clustering further 
enhances the performance of ESSEM.  

 
Test conditions Clean 0dB-20dB -5dB 
GD-Baseline 1.15 8.63 69.59 

GD-ESSEM+Full 1.08 7.95 66.97 
GD-ESSEM+CS(1) 1.07 7.89 66.84 

Table 1. WER (in %) for ESSEM with 2 and 4 clusters. 
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4.2. MCE-training of Parameters in ESS Super-vector  
 
Next we verify that using MCE-trained ESS super-vector provides 
a better accuracy than using the original ML-trained ESS super-
vector. Here we presented results for the second procedure 
described in Section 3.2. We tested performance using a modified 
ETSI advanced front-end (AFE) suggested in [11] where the log-
energy feature of each frame is replaced with the C0 coefficient. 
Every feature vector consists of 13 static plus their first and second 
order time derivatives. A complex back-end model topology 
suggested in [4] is used, where there are 20 mixtures per state for 
the digits and 36 mixtures per state for the silence and short pause.  
 
4.2.1. Gender Independent System 
 
The experimental results for the GI system are listed in Table 2. 
“GI-Baseline+ML” and “GI-Baseline+MCE” indicate that the 
recognition results using multicondition-trained HMMs with ML 
and MCE, respectively, while “GI-ESSEM+ML” and “GI-
ESSEM+MCE” indicate recognition results for ESSEM with ML- 
and MCE-trained ESS super-vectors, respectively.  

It can be seen from Table 2 that ML-trained ESSEM provides 
a performance improvement of 12.85% relative WER reduction 
(from 6.46% to 5.63% WER) when using such a more complex 
HMM topology.  Next by comparing “GI-Baseline+ML” with “GI-
Baseline+MCE”, we observed that the improvement provided by 
using a MCE parameter refined multicondition HMM set is not 
significant (from 6.46% WER to 6.33% WER). Next, it can be 
easily observed that “GI-ESSEM+MCE” achieves clear 
improvements of 16.56% and 14.85% relative WER reductions 
over “GI-Baseline+ML” and “GI-Baseline+MCE”, respectively. 
By comparing results of the “GI-ESSEM+ML” and “GI-
ESSEM+MCE” tests, we verified that with a MCE-trained ESS 
super-vector, performance of ESSEM can be further enhanced.   
 

Table 2. Average word error rates (in %) from 0dB to 20dB. 
 
4.2.2. Gender Dependent System 
 
Finally we tested ESSEM on the GD system. We use the same 
procedure as described in Sec.4.1.2 for CS(1) to obtain the results 
for the “GD-Baseline+ML”. Similar to the GI case, ESSEM with 
an MCE-trained ESS super-vector achieves a better performance 
than an ML-trained ESS one, so only results with the MCE-trained 
ESS super-vector, denoted as “GD-ESSEM+MCE”, are listed in 
Table 3.  We find that “GD-ESSEM+MCE” achieves a WER 
reduction of 9.44% over the “GD-Baseline+ML”. (5.51% to 
4.99%). This 4.99% WER is the best result we achieved using both 
tree structure clustering and MCE training for ESS super-vector. 

    Table 3. Average word error rates (in %) from 0dB to 20dB. 
 

5. CONCLUSION 
 
We propose two ESSEM extensions with tree structure speaker 
and speaking environment clustering and MCE training to improve 
environment characterization and enhance ASR performance 
robustness. The framework is evaluated on the Aurora2 database. 
We first verified that clustering can be a better dimension 
reduction technique and can provide more suitable a priori 
knowledge to the testing environments than PCA. We then show 
that MCE-trained ESSEM is better than ML-trained cases. By 
integrating these two methods into the ESSEM framework, we 
achieves our best WERs of 5.39% and 4.99% WERs, 
corresponding to 16.56% and 9.44% relative WER reductions over 
the ML-trained baselines in the GI and GD systems, respectively.   
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