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ABSTRACT

In this work, we address an acoustic beamforming application
where two speakers are simultaneously active. We construct one
subband domain beamformer in generalized sidelobe canceller (GSC)
configuration for each source. In contrast to normal practice, we then
jointly adjust the active weight vectors of both GSCs to obtain two
output signals with minimum mutual information (MMI). In order
to calculate the mutual information of the complex subband snap-
shots, we consider four probability density functions (pdfs), namely
the Gaussian, Laplace,K0 and Γ pdfs. The latter three belong to the
class of super-Gaussian density functions that are typically used in
independent component analysis as opposed to conventional beam-
forming. We demonstrate the effectiveness of our proposed tech-
nique through a series of far-field automatic speech recognition ex-
periments on data from the PASCAL Speech Separation Challenge.
In the experiments, the delay-and-sum beamformer achieved a word
error rate (WER) of 70.4 %. The MMI beamformer under a Gaus-
sian assumption achieved 55.2 % WER which was further reduced
to 52.0 % with a K0 pdf, whereas the WER for data recorded with
close-talking microphone was 21.6 %.

Index Terms— microphone array, beamforming, independent
component analysis, far-field speech recognition

1. INTRODUCTION

In acoustic beamforming, it is typically assumed that the position of
the speaker is estimated by a speaker localization system. A con-
ventional beamformer in generalized sidelobe canceller (GSC) con-
figuration is structured such that the direct signal from the speaker
is undistorted [1, §6.7.3]. Subject to this distortionless constraint,
the total output power of the beamformer is minimized through the
appropriate adjustment of an active weight vector, which effectively
places a null on any source of interference, but can also lead to an
undesirable signal cancellation. To avoid the latter, the adaptation
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of the active weight vectors is typically halted whenever the desired
source is active.

In this work, we consider a situation where two speakers are si-
multaneously active. We construct one subband domain beamformer
GSC configuration for each source. In contrast to normal practice,
we then jointly adjust the active weight vectors of both GSCs to ob-
tain two output signals with minimum mutual information (MMI).
Parra and Alvino [2] proposed a geometric source separation (GSS)
algorithm with similarities to the algorithm proposed here. Their al-
gorithm attempts to decorrelate the outputs of two beamformers. We
discuss Parra and Alvino’s GSS algorithm in Section 3.3, and pro-
pose novel algorithms which assume the probability density function
(pdf) of subband snapshots are Gaussian and super-Gaussian.

We demonstrate the effectiveness of our proposed technique through
a series of far-field automatic speech recognition experiments on
data from the PASCAL Speech Separation Challenge (SSC). As this
data was recorded from actual speakers in a real, reverberant room, it
provides the possibility of conducting source separation experiments
under realistic conditions, which is noteably different from the vast
majority of the experiments reported in the beamforming and blind
source separation literature.

The balance of this work is organized as follows. In Section 2,
we review the definition of mutual information, and demonstrate
that, under a Gaussian assumption, the mutual information of two
complex random variables is a simple function of their cross-correlation
coefficient. We discuss our MMI beamforming criterion in Sec-
tion 3, and compare it to the approach of Parra and Alvino [2].
Section 4 presents the framework needed to apply minimum mu-
tual information beamforming when the Gaussian assumption is re-
laxed. In particular, we develop multivariate pdfs for the Laplace,
K0 and Γ density functions, and then develop parameter estimation
formulae based on these for optimizing the active weight vector of
a GSC. In Section 5, we present the results of far-field automatic
speech recognition experiments conducted on data from the PAS-
CAL Speech Separation Challenge; see Lincoln et al. [3] for a de-
scription of the data collection apparatus. Finally, in Section 6, we
present our conclusions and plans for future work.

2. MUTUAL INFORMATION

Here we derive the mutual information of two zero-mean Gaussian
random variables (r.v.s).

Consider two r.v.s Y1 and Y2. By definition, the mutual infor-
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mation [4] of Y1 and Y2 can be expressed as

I(Y1, Y2) = E
j
log

p(Y1, Y2)

p(Y1)p(Y2)

ff
(2.1)

where E{} indicates the ensemble expectation.
The univariate Gaussian pdf for complex r.v.s Yi can be ex-

pressed as
p(Yi) =

1

πσ2
i

exp
`−|Yi|2/σ2

i

´
(2.2)

where σ2
i = E{YiY

∗

i } is the variance of Yi. Let us define the zero-
mean complex random vector Y =

ˆ
Y1 Y2

˜T and the covariance
matrix.
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(2.3)

where

ρ12 =
ε12

σ1 σ2
and ε12 = E{Y1 Y ∗2 }

The bivariate Gaussian pdf for complex r.v.s is given by

p(Y1, Y2) =
1

π2|ΣY | exp
“
−Y

TΣ−1
Y Y

”
(2.4)

It follows that the mutual information (2.1) for jointly Gaussian com-
plex r.v.s can be expressed as [5]

I(Y1, Y2) = − 1
2
log

`
1− |ρ12|2

´
(2.5)

From (2.5), it is clear that minimizing the mutual information be-
tween two zero-mean Gaussian r.v.s is equivalent to minimizing the
magnitude of their cross correlation coefficient ρ12, and that I(Y1, Y2) =
0 if and only if |ρ12| = 0.

3. BEAMFORMING

Consider a subband beamformer in GSC configuration as shown in
Figure 1. Assuming there are two such beamformers aimed at differ-
ent sources, the output of the i-th beamformer for a given subband
can be expressed as,

Yi = (wq,i − Biwa,i)
H

X (3.1)

where wq,i is the quiescent weight vector for the i-th source, Bi is
the blocking matrix, wa,i is the active weight vector, and X is the
input subband snapshot vector. In keeping with the GSC formalism,
wq,i is chosen to preserve a signal from the look direction and, at the
same time, to suppress an interference [1, §6.3]. Bi is chosen such
that BH

i wq,i = 0. The active weight vector wa,i is typically cho-
sen to maximize the signal-to-noise ratio (SNR). Here, however, we
develop an optimization procedure to find thatwa,i whichminimizes
the mutual information I(Y1, Y2). Minimizing a mutual information
criterion yields a weight vector wa,i capable of canceling interfer-
ence that leaks through the sidelobes without the signal cancellation
problems encountered in conventional beamforming.

The subband analysis and resynthesis can be performed with a
perfect reconstruction filterbank such as the popular cosine modu-
lated filterbank [6, §8]. Beamforming in the subband domain has
the considerable advantage that the active sensor weights can be op-
timized for each subband independently, which saves a tremendous
computation. In addition, the GSC constraint solves the problems
with source permutation and scaling ambiguity typically encoun-
tered in conventional blind source separation algorithms [7].

wq,1
H

Bq,1
H wa,1

H

X(f)
Y(f)+

-
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-
+ 2

for the first source

for the second source

 MMI

Fig. 1. A beamformer in GSC configuration.

3.1. Parameter Optimization

In the absence of a closed-form solution for thosewa,i, we must use
a numerical optimization algorithm. Such an optimization algorithm
typically requires gradient information. We used a conjugate gradi-
ent algorithm to obtain active filter vectors wa which
provides minimum mutual information[8, §1.6]. The detail is re-
ported in [5].

3.2. Regularization

In conventional beamforming, a regularization term is often applied
that penalizes large active weights, and thereby improves robustness
by inhibiting the formation of excessively large sidelobes [1, §6.10].
Such a regularization term can be applied in the present instance by
defining the modified optimization criterion

I(Y1, Y2;α) = I(Y1, Y2) + α‖wa,1‖2 + α‖wa,2‖2 (3.2)

for some real α > 0. α = 0.01 is set in this experiment.

3.3. Geometric Source Separation

Parra and Alvino [2] proposed a geometric source separation (GSS)
algorithm which has many similarities to the proposed algorithm.
Instead of minimizing the mutual information between two signals,
Parra and Alvino sought to diagonalize the cross-power spectra un-
der geometric constraints which are equivalent to the distortionless
constraint inherent in the GSC. In the case of a Gaussian pdf, the
principal difference between GSS and the algorithm proposed here,
is that GSS seeks to minimize |ε12|2 instead of |ρ12|2. Although the
difference between minimizing |ε12|2 instead of |ρ12|2 may seem
very slight, it can in fact lead to radically different behavior. To
achieve the desired optimum, both criteria will seek to place deep
nulls on the unwanted source; this characteristic is associated with
|ε12|2, which also comprises the numerator of |ρ12|2. Such null
steering is also observed in conventional adaptive beamformers [1,
§6.3]. The difference between the two optimization criteria is due
to the presence of the terms σ2

i in the denominator of |ρ12|2, which
indicate that, in addition to nulling out the unwanted signal, improve-
ments are possible by increasing the strength of the desired signal.
In acoustic beamforming in realistic environments, there are typi-
cally strong reflections from hard surfaces such as tables and walls.
A conventional beamformer would attempt to null out all such strong
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Fig. 2. Configuration of the simulation environment.

reflections. The GSS algorithm would attempt to null out those re-
flections from the unwanted signal. But in addition to nulling out
reflections from the unwanted signal, the MMI beamforming algo-
rithm would attempt to strengthen those reflections from the desired
source; assuming statistically independent sources, strengthening a
reflection from the desired source would have little or no effect on
the numerator of |ρ12|2, but would increase the denominator, thereby
leading to an overall reduction of optimization criterion. Of course,
any reflected signal would be delayed with respect to the direct path
signal. Such a delay would, however, manifest itself as a phase shift
in the subband domain, and could thus be removed through a suitable
choice ofwa. Hence, the MMI beamformer offers the possibility of
steering both nulls and sidelobes; the former towards the undesired
signal and its reflections, the latter towards reflections of the desired
signal.

In order to verify that the MMI beamforming algorithm forms
sidelobes directed towards the reflections of a desired signal, we
conducted experiments with a simulated acoustic environment. As
shown in Figure 2, we considered a simple configuration where there
are two sound sources, a reflective surface, and an eight-channel
linear microphone array that captures both the direct and reflected
waves from each source. Actual speech data were used as sound
sources in this simulation, which was based on the image method [9].

Figure 3 shows beam patterns at fs = 1500 Hz and fs = 3000
Hz obtained with the MMI beamformer and the GSS algorithm. In
order to make the techniques directly comparable, the implementa-
tion of the GSS algorithm used for the simulation was based on two
GSCs, each aimed at one target. Both MMI beamformer and GSS
algorithm formed the beam patterns so that the signal from Source
2 in Figure 2 was enhanced while the other from Source 1 was sup-
pressed. It is clear that both algorithms have unity gain in the look
direction, and place deep nulls on the direct path of the unwanted
source. The suppression of Reflection 1, the undesired interference,
by the MMI beamformer is equivalent to or better than that provided
by the GSS algorithm for both frequencies. Moreover, the enhance-
ment of Reflection 2, the desired signal, by the MMI beamformer is
stronger than that of the GSS algorithm.

Fancourt and Parra [10] proposed a generalized sidelobe decor-
relator (GSD) based on minimization of the coherence function,
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Fig. 3. Beam patterns produced by the MMI beamformer and GSS
algorithm using a spherical wave assumption for (a) fs = 1500 Hz
and (b) fs = 3000 Hz.

which is in fact equivalent to minimizing |ρ12|2. Hence, under a
Gaussian assumption the GSD and MMI beamformer should pro-
duce very similar results. As discussed in the next section, however,
the MMI beamformer will behave differently when the Gaussian as-
sumption is removed.

4. SUPER-GAUSSIAN PROBABILITY DENSITY
FUNCTIONS

In the field of independent component analysis (ICA), it is common
practice to use mutual information as a measure of the independence
of two or more signals as in the prior sections. The entire field of
ICA, however, is founded on the assumption that all signals of real
interest are not Gaussian-distributed. A concise and very readable
argument for the validity of this assumption is given by Hyvärinen
and Oja [4].

Table 1 shows the average log-likelihood of subband samples of
speech recorded with a close-talking microphone (CTM) as calcu-
lated with the Gaussian and three super-Gaussian pdfs, namely, the
Laplace, K0 and Γ pdfs. It is clear from these log-likelihood values
that the complex subband samples of speech are in fact better mod-
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pdf 1
T

PT−1
t=0 log p(Xt; pdf)

Γ -0.779
K0 -1.11

Laplace -2.48
Gaussian -9.93

Table 1. Average log-likelihoods of subband speech samples for
various pdfs.
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Fig. 4. Plot of the log-likelihood of the super-Gaussian and Gaussian
pdfs.

elled by the super-Gaussian pdfs considered here than the Gaussian.
Hence, the abstract arguments on which the field of ICA are founded
correspond well to the actual characteristics of speech.

A plot of the log-likelihood of the Gaussian and three super-
Gaussian real univariate pdfs considered here is provided in Fig-
ure 4. From the figure, it is clear that the Laplace, K0 and Γ den-
sities exhibit the “spikey” and “heavy-tailed” characteristics that are
typical of super-Gaussian pdfs. This implies that they have a sharp
concentration of probability mass at the mean, relatively little prob-
ability mass as compared with the Gaussian at intermediate values
of the argument, and a relatively large amount of probability mass in
the tail; i.e., far from the mean.

The kurtosis of a r.v. Y , defined as

kurt(Y ) = E{Y 4} − 3(E{Y 2})2

is a measure of how non-Gaussian it is [4]. The Gaussian pdf has
zero kurtosis; pdfs with positive kurtosis are super-Gaussian; those
with negative kurtosis are sub-Gaussian. Of the three super-Gaussian
pdfs considered here, the Γ pdf has the highest kurtosis, followed by
the K0, then by the Laplace pdf. This fact manifests itself in Fig-
ure 4, where it is clear that as the kurtosis increases, the pdf becomes
more and more spikey and heavy-tailed. It is also clear from Table 1
that the average log-likelihood of the subband samples of speech
improves significantly as the kurtosis of the pdf used to measure the
log-likelihood increases. This is a further proof of the validity of the
assumptions on which ICA is based for speech processing.

As explained in Brehm and Stammler [11], Laplace, K0 and Γ
density pdfs belong to the class of spherically invariant random pro-

cesses (SIRPs), which is a very attractive feature for two reasons.
Firstly, it implies that multivariate pdfs of all orders can be readily
derived from the theory of Meijer G-functions [12] based solely on
the knowledge of the covariance matrix of the random vectors. Sec-
ondly, such variates can be extended to the case of complex r.v.s,
which is essential for our current development.

For complex Laplace r.v.s Yi ∈ C, the univariate pdf can be
expressed as

pLap(Yi) =
4√
πσ2

Y

K0

„
2
√
2|Yi|
σY

«
(4.1)

where K0(z) is the modified Bessel function of the second kind
Mathematica [13, §3.2.10] and σ2

Y = E{|Yi|2}. For Y ∈ C
2, the

bivariate Laplace pdf is given by

pLap(Y) =
16

π3/2|ΣY |√s
K1

`
4
√

s
´

(4.2)

where
ΣY = E{YY

H} and s = Y
HΣ−1

Y Y

Similarly, we can write the univarite K0 pdf for complex r.v.s
Yi ∈ C as

pK0
(Yi) =

1√
πσY |Yi| exp (−2 |Yi|/σY ) (4.3)

The bivariateK0 pdf forY ∈ C
2 can be expressed as

pK0
(Y) =

√
2 + 4

√
s

2π3/2 |ΣY | s3/2
exp

“
−2

√
2 s

”
(4.4)

Those formulas are different from the forms of the real univariate
pdfs because those are derived from the Meijer G-functions and ex-
tended for a complex valued vector. Derivations of (4.1–4.4) are
provided in [5]. For the Γ pdf, the complex univariate and bivariate
pdfs cannot be expressed in closed form in terms of elementary or
even special functions. However, it is possible to derive Taylor se-
ries expansions that enable the required variates to be calculated to
arbitrary accuracy [5].

The mutual information can no longer be expressed in closed
form as in (2.5) for the super-Gaussian pdfs. We can, however, re-
place the exact mutual information with the empirical mutual infor-
mation

I(Y1, Y2) ≈ 1

N

N−1X
t=0

h
log p(Y(t))

−
2X

i=1

log p(Y
(t)
i )

# (4.5)

Such an empirical approximation was used for the experiments de-
scribed in the next section.

5. EXPERIMENTS

We performed far-field automatic speech recognition experiments on
development data from the PASCAL Speech Separation Challenge
(SSC) [3]. The data contain recordings of five pairs of speakers and
each pair of speakers reads approximately 30 sentences taken from
the 5,000 word vocabulary Wall Street Journal (WSJ) task. The data
were recorded with two circular, eight-channel microphone arrays.
The diameter of each array was 20 cm, and the sampling rate of the
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recordings was 16 kHz. The database also contains speech recorded
with close talking microphones (CTM). This is a challenging task for
source separation algorithms given that the room is reverberant and
some recordings include significant amounts of background noise.
In addition, as the recorded data is real and not artificially convoluted
with measured room impulse responses, the position of the speaker’s
head as well as the speaking volume varies.

The directivity of the circular array at low frequencies is poor;
this stems from the fact that for low frequencies, the wave is much
longer than the aperture of the array. At high frequencies, the beam
pattern is characterized by very large sidelobes; this is due to the
fact that at high frequencies, the spacing between the elements of
the array exceeds half the length of the wave, thereby causing spatial
aliasing [1, §2.5].

Prior to beamforming, we first estimated the speaker’s position
with the speaker localization system described in [14]. In addition to
the speaker position, our source localization system is also capable
of determining when each source is active. This information proved
very useful to segment the utterance of each speaker, given that the
utterance spoken by one speaker was often much longer than that
spoken by the other. In the absence of perfect separation, which we
could not achieve with the algorithms described here, running the
speech recognizer over the entire waveform from the beamformer
instead of only that portion where a given speaker was actually ac-
tive would have resulted in significant insertion errors. These inser-
tions would also have proven disastrous for speaker adaptation, as
the adaptation data from one speaker would have been contaminated
with speech of the other speaker.

The active weights for each subband were initialized to zero for
estimation with the Gaussian pdf. For estimation with the super-
Gaussian pdfs, the active weights were initialized to the optimal val-
ues under the Gaussian assumption.

After beamforming, the feature extraction of our ASR system
was based on cepstral features estimated with a warped minimum
variance distortionless response [15] (MVDR) spectral envelope of
model order 30. We concatenated 15 cepstral features, each of length 20,
then applied linear discriminant analysis (LDA) [16, §10] and a semi-
tied covariance (STC) [17] transform to obtain final features of length 42
for speech recognition. The far-field ASR experiments reported here
were conducted entirely with theMillenium automatic speech recog-
nition system. Millenium is based on the Enigma weighted finite-
state transducer (WFST) library, which contains implementations
of all standard WFST algorithms, including weighted composition,
weighted determinization, weight pushing, and minimization. The
word trace decoder inMillenium is implemented along the lines sug-
gested by Saon et al. [18], and is capable of generating word lattices,
which can then be optimized with WFST operations as in [19].

The training data used for the experiments were taken from the
ICSI, NIST, and CMU meeting corpora, as well as the Transenglish
Database (TED) corpus, for a total of 100 hours of training material.
In addition to these corpora, approximately 12 hours of speech from
the WSJCAM0 corpus [20] was used for HMM training in order to
cover the British accents for the speakers [3]. Acoustic models esti-
mated with three different HMM training schemes were used for the
several decoding passes: conventional maximum likelihood (ML)
HMM training [21, §12], speaker-adapted training under a ML crite-
rion (ML-SAT) [22]. Our baseline system was fully continuous with
3,500 codebooks and a total of 180,656 Gaussian components.

We performed four passes of decoding on the waveforms ob-
tained with each of the beamforming algorithms. Parameters for
speaker adaptation were estimated using the word lattices generated
during the prior pass as in [23]. A description of the individual de-

Beamforming Pass (%WER)
Algorithm 1 2 3 4
Delay & Sum 85.1 77.6 72.5 70.4

GSS 80.1 65.5 60.1 56.3
MMI: Gaussian 79.7 65.6 57.9 55.2
MMI: Laplace 81.1 67.9 59.3 53.8
MMI:K0 78.0 62.6 54.1 52.0
MMI: Γ 80.3 63.0 56.2 53.8
CTM 37.1 24.8 23.0 21.6

Table 2. Word error rates for every beamforming algorithm after
every decoding passes.

coding passes follows:

1. Decode with the unadapted, conventional ML acoustic model and
bigram language model (LM).

2. Estimate vocal tract length normalization (VTLN) [24] param-
eters and constrained maximum likelihood linear regression pa-
rameters (CMLLR) [25] for each speaker, then redecode with the
conventional ML acoustic model and bigram LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear re-
gression (MLLR) [26] parameters for each speaker, then rede-
code with the ML-SAT model and bigram LM.

4. Estimate VTLN, CMLLR,MLLR parameters, then redecode with
the ML-SAT model and bigram LM.

Table 2 shows the word error rate (WER) for every beamform-
ing algorithm and speech recorded with the CTM after every decod-
ing pass on the SSC data. After the fourth pass, the delay-and-sum
beamformer has the worst recognition performance of 70.4% WER.
This is not surprising given that the mixed speech was not well sep-
arated by the delay-and-sum beamformer for the reasons mentioned
above. The MMI beamformer with a Gaussian pdf (55.2%) was
somewhat better than the GSS algorithm (56.3%), which is what
should be expected given the reasoning in Section 3.3. The best
performance was achieved with theK0 pdf assumption (52.0%).

Although Γ pdf assumption gave the highest log-likelihood, as
reported in Table 1, theK0 pdf achieved the best recognition perfor-
mance. There are several possible explanations for this: Firstly, as
mentioned in Section 6, the subband filter bank used for the exper-
iments reported here may not be optimally suited for beamforming
and adaptive filtering applications [27]. Hence, aliasing introduced
by the filter bank could be masking the gain which would otherwise
be obtained by using a pdf with higher kurtosis to calculate mutual
information and optimize the active weight vectors. Secondly, data
recorded in the real environments contains background noise as well
as speech. If the pdf of the noise is super-Gaussian, it could conceiv-
ably be emphasized by the MMI beamformer with a super-Gaussian
pdf assumption. Feature and model adaptation algorithms such as
CMLLR and MLLR can, however, robustly estimate parameters to
compensate for the background noise. As a result, such an effect is
mitigated by the speaker adaptation. From Table 2, this is evident
from the significant improvement after the second pass when the Γ
pdf is used; to wit, the results obtained with the Γ pdf go from being
somewhat worse than the Gaussian results after the first unadapted
pass to significantly better after the second pass with VTLN and CM-
LLR adaptation, and remain significantly better after all subsequent
adapted passes.
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6. CONCLUSIONS AND FUTUREWORK

In this work, we have proposed a novel beamforming algorithm for
simultaneous active speakers based on minimizing mutual informa-
tion. The proposed method does not exhibit the signal cancella-
tion problems typically seen in conventional adaptive beamform-
ers. Moreover, unlike conventional BSS techniques, the proposed
algorithm does not have permutation and scaling ambiguities that
cause distortions in the output speech. We evaluated the Gaussian
and three super-Gaussian pdfs in calculating the mutual information
of the beamformer outputs, and found theK0 pdf to provide the best
ASR performance on the separated speech.

De Haan et al [27] observe that a DFT filter bank based on a
single prototype impulse response designed to satisfy a paraunitary
constraint [6, §8] and thereby achieve perfect reconstruction, such
as that used for the experiments reported in Section 5, may not be
optimally suited for applications involving beamforming and adap-
tive filtering. This follows from the fact that the PR design is based
on the concept of aliasing cancellation [6, §5], whereby the alias-
ing that is perforce present in a given subband is cancelled off by
the aliasing in all other subbands. Aliasing cancellation only works,
however, if arbitrary magnitude scale factors and phase shifts are not
applied to the individual subbands, which is exactly what happens
in beamforming and adaptive filtering. The solution proposed by de
Haan et al [27], is to give up on achieving perfect reconstruction, but
rather to design an analysis prototype so as to minimize the inband
aliasing, then to design a separate synthesis prototype to minimize
a weighted combination of the total response and aliasing distortion.
Moreover, they demonstrate that both distortions can be greatly re-
duced through oversampling. In future, we plan to investiage such
oversampled DFT filter bank designs.
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