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ABSTRACT

It is well known that the addition of background noise alters the cor-
relations between the elements of, for example, the MFCC feature
vector. However, standard model-based compensation techniques
do not modify the feature-space in which the diagonal covariance
matrix Gaussian mixture models are estimated. One solution to this
problem, which yields good performance, is Joint Uncertainty De-
coding (JUD) with full transforms. Unfortunately, this results in a
high computational cost during decoding. This paper contrasts two
approaches to approximating full JUD while lowering the compu-
tational cost. Both use predictive linear transforms to modify the
feature-space: adaptation-based linear transforms, where the model
parameters are restricted to be the same as the original clean sys-
tem; and precision matrix modelling approaches, in particular semi-
tied covariance matrices. These predictive transforms are estimated
using statistics derived from the full JUD transforms rather than
noisy data. The schemes are evaluated on AURORA 2 and a noise-
corrupted Resource Management task.

Index Terms— Noise robust speech recognition, joint uncer-
tainty decoding, precision matrix modelling.

1. INTRODUCTION

Speech recognition in noise has been an area of active research for
many years. Good performance using model-based compensation
schemes, such as Parallel Model Combination (PMC) [1] and Vec-
tor Taylor Series (VTS) [2], can be obtained. However, these ap-
proaches are computationally expensive compared to front-end en-
hancement based schemes. Furthermore, standard model-based com-
pensation schemes do not modify the feature-space in which the
acoustic models are estimated. As diagonal covariance matrix Gaus-
sian Mixture Models (GMMs) are commonly used to model the state
output distributions, changes in the correlations between the ele-
ments of the feature-vector may be expected to affect the perfor-
mance of the system1. In particular as the signal-to-noise ratio (SNR)
decreases, this may be expected to become more important. In con-
trast, some feature-space enhancement schemes, such as Probabilis-
tic Optimal Filtering (POF) [3] and versions of SPLICE [4], trans-
form the feature-space, but these are explicitly linked to using stereo
training data and a fixed set of basis transforms. This transformation
of the feature-space may in some conditions allow feature-compensation
schemes to out-perform model-based approaches.

Recently there has been interest in examining an elegant com-
promise between model-based approaches and front-end schemes,
uncertainty decoding. These approaches propagate a measure of the
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1PMC and VTS can in theory be used to obtain full covariance matrix
systems, but these have the full covariance matrix decoding cost.

uncertainty introduced by the background acoustic noise into the
recognition process [5, 6]. One attribute of Joint Uncertainty De-
coding (JUD) [6] is that full transforms of the feature-space, that
model the changes in the correlation as the noise changes, may be
estimated. This yields a model-based scheme that allows changes
in the correlations to be modelled. However, when full transforma-
tions are used the resultant covariance matrices associated with each
Gaussian becomes full with the large associated computational cost
during recognition. This paper considers how JUD with full trans-
forms can be efficiently approximated.

Two forms of approach to improving the efficiency of full JUD
are examined. The first is based on linear adaptation transforms,
such as constrained MLLR (CMLLR) and full-covariance transfor-
mations (MLLRCov) [7]. These transforms modify the feature-space,
and possibly transform the original “clean” model parameters. The
second class is based on efficient precision matrix models [8, 9, 10].
Here the covariance matrix of the component of the state GMMs are
modified to better model the correlations in the data without signif-
icantly increasing the computational cost. Both of these approaches
are referred to as predictive linear transforms as their parameters are
estimated based on statistics “predicted” from JUD rather than noisy
data. This is similar to the predictive model-based compensation
schemes which use noise estimates and mismatch functions [11].

This paper is organised as follows. The next section briefly de-
scribes JUD. This is followed by a description of predictive linear
transforms and how they may be efficiently estimated from the JUD
parameters. The computational costs associated with estimating and
applying these transforms are then described. Finally, the results on
the AURORA 2 and noise corrupted Resource Management tasks
are given.

2. JOINT UNCERTAINTY DECODING

This section gives an overview of the uncertainty decoding frame-
work used in [5, 6]. The effects of environmental noise can be rep-
resented in a dynamic Bayesian network as shown in figure 1. Here,
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Fig. 1. Uncertainty Decoding Dynamic Bayesian Network.

the noise corrupted speech observation yt at time t is assumed to be
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conditionally independent of all other observations given the clean
speech xt and the noise nt at that time. The clean speech and noise
are assumed to be generated by HMMs with states θn

t for the noise
and θt for the clean speech. Under these assumptions the likelihood
of the corrupted observation may be expressed as

p(yt|M,M̌, θt) =

Z
p(yt|xt,M̌)p(xt|M, θt)dxt (1)

where

p(yt|xt,M̌) =

Z
p(yt|xt, nt)p(nt|M̌, θn

t )dnt (2)

and M̌ the front-end compensation model. The acoustic model M
consists of Gaussian components each defined by a prior, cm, mean,

μ(m), and diagonal covariance matrix, Σ
(m)
diag , so

p(xt|M, θt) =
X

m∈θt

cmN
“
xt; μ

(m),Σ
(m)
diag

”
(3)

The likelihood calculation thus has two distinct parts. Only the first,
p(yt|xt,M̌), is a function of the noise. Equation 1 does not depend
on the noise given the form of p(yt|xt,M̌). Uncertainty decoding
takes advantage of this factorisation by using an appropriate form
of approximation for the conditional distribution of the corrupted
speech given the clean speech for a particular noise environment. As
the complexity of this approximation is independent of the complex-
ity of the actual acoustic models, there is a large degree of flexibility
in choosing the computational cost of the decoding process.
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Fig. 2. Joint distribution p(x, y).

For uncertainty decoding schemes, an important consideration
is how to partition the feature-space so that simple region-dependent
approximations can be used to model the complexity of the joint
distribution, p(xt, yt). A single dimensional version of this joint
distribution is shown in figure 2. Following [12], a model-based
joint uncertainty decoding approach is adopted in this work. In this
case JUD yields likelihood calculations of the form

p(yt|sm) = |A(r)
jnt |N

“
A

(r)
jnt yt + b

(r)
jnt ; μ(m),Σ

(m)
diag + Σ

(r)
b

”
(4)

where component sm “belongs” to base-class rr ,

A
(r)
jnt = Σ(r)

x Σ(r)-1
yx , (5)

b
(r)
jnt = μ(r)

x −A
(r)
jnt μ(r)

y (6)

Σ
(r)
b = A

(r)
jnt Σ

(r)
y A

(r)T
jnt −Σ(r)

x (7)

and for base-class rr the joint clean, xt, and corrupted, yt, speech
distribution is assumed to be Gaussian of the form»

xt

yt

–
∼ N

 »
μ(r)

x

μ(r)
y

–
,

"
Σ

(r)
x Σ

(r)
xy

Σ
(r)
yx Σ

(r)
y

#!
(8)

The form of the JUD compensation parameters is highly dependent
on the covariance matrix structure in equation 8. If a full matrix is

used then both A
(r)
jnt and Σ

(r)
b will be full. The transformation of

the features for each of the base-classes can be cached. Thus the
matrix-vector multiplication need only be performed once for each
base-class. However the full variance bias results in a full covariance
matrix for each Gaussian component. This increases the likelihood
calculation cost from O(n) to O(n2) for an n-dimensional feature
vector. In addition, even when using a diagonal transform, the vari-
ance bias must be added to each of the variances of the recognition
models. As one of the aims of uncertainty decoding is to decou-
ple the compensation cost from the complexity of the recogniser, it
would be preferable to remove this requirement.

3. PREDICTIVE LINEAR TRANSFORMS

Full JUD transforms have shown good performance compared to di-
agonal ones [6], but at a significantly increased computational load.
Two linear transform approaches will be considered to address this
computational issue. Both use the statistics obtained from a full JUD

transform in the transformed-space specified by A
(r)
jnt to estimate

transforms. For component sm in base-class rr , using equation 4,

E
n

ỹtỹ
T
t |sm

o
= Σ

(m)
diag + Σ

(r)
b + μ(m)μ(m)T

(9)

E {ỹt|sm} = μ(m)
(10)

cov(ỹt|sm) = Σ
(m)
diag + Σ

(r)
b (11)

where cov() yields the covariance matrix, and ỹt is the JUD trans-
formed observations

ỹt = A
(r)
jnt yt+b

(r)
jnt (12)

(ignoring the dependence of the transformed observation on the base-
class for clarity). In addition the “occupancy” count for each com-
ponent, γ(m), will be required. Since the transforms are meant to
model the effects of the noise on the clean speech models, this oc-
cupancy is obtained from the training data. Thus all components
will have non-zero occupancy counts. For this work the base-classes
used for the adaptation transforms and precision matrix modelling
are assumed to be the same as the JUD base-classes, though this is
not a necessary constraint.

3.1. Adaptation-Based Transforms

In the adaptation-based transforms the underlying component spe-
cific model parameters are not altered, though the parameters may
be transformed. Note predictive mean Maximum Likelihood Linear
Regression (MLLR) [13] is not considered since, from equation 10,
this will simply yield an identity transformation.
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Constrained MLLR: is a linear transformation of the feature-space.
For a component sm belonging to base-class rr , the likelihood using
a CMLLR transform [7] is (note ỹt is defined in equation 12)

p(yt|sm) = |A(r)||A(r)
jnt |N

“
A(r)ỹt + b(r); μ(m),Σ

(m)
diag

”
(13)

An interesting attribute of this form of transformation is that both
the component means and variances are unaltered. Thus the only
computational cost in applying the transform is at decoding time.
The estimation of the CMLLR transform in [7] may be expressed in
terms of the predicted statistics

G
(r)
i =

X
m∈rr

γ(m)

σ
(m)2
diagi

» E ˘ỹtỹ
T
t |sm

¯ E {ỹt|sm}
E {ỹt|sm}T 1

–
(14)

k
(r)
i =

X
m∈rr

γ(m)μ
(m)
i

σ
(m)2
diagi

» E {ỹt|sm}
1

–
(15)

Given these statistics the estimation proceeds in exactly the same
fashion as standard CMLLR transform estimation (these are not re-
produced here to save space, see [7] for details).

Full Covariance Transform: the likelihood for the MLLRCov trans-
form is given by [7]

p(yt|sm) = |A(r)||A(r)
jnt |N

“
A(r)ỹt;A

(r)μ(m),Σ
(m)
diag

”
(16)

Compared to the CMLLR transform, the mean is transformed as well
as the feature-space. As a by-product of this there is no transform
bias as, by definition, the ML-estimate of the transformed mean is
A(r)μ(m). Again the statistics for estimating the transform may be
expressed in terms of predicted statistics

G
(r)
i =

X
m∈rr

γ(m)

σ
(m)2
diagi

cov(ỹt|sm)

=
X

m∈rr

γ(m)

σ
(m)2
diagi

“
Σ

(m)
diag + Σ

(r)
b

”
(17)

The transform is then estimated in the standard style using an itera-
tive approach where

a
(r)
i = ciG

(r)-1
i

vuut Pm∈rr
γ(m)

ciG
(r)-1
i cT

i

!
(18)

where a
(r)
i is the ith row-vector of the transform A(r) and ci is the

cofactor row-vector of A(r). This MLLRCov requires that the mean
is transformed, in addition to transforming the feature-space. This
will have computational cost of O(Mn2), where M is the number
of components in the recognition system.

3.2. Structured Precision Matrix Transforms

The linear transforms in the previous section have only indirectly
modelled the correlation for each component, as the covariance ma-
trix was constrained to be the same as the original clean model. If
this restriction is loosened then structured precision matrices can
be used. Many of these may be described in a basis superposition
framework [9]. Here

Σ(m)-1 =
BX

i=1

λ
(m)
i H(i)

(19)

where H(i) is a basis matrix for modelling the precision matrices.
Semi-tied covariance matrix [8] are examined in this paper, where
B = n and H(i) is symmetric with rank 1. Here

Σ(m)-1 = A(r)TΣ̃
(m)-1
diag A(r)

(20)

and Σ̃
(m)
diag is a diagonal covariance matrix. The likelihood can be

calculated as

p(yt|sm) = |A(r)||A(r)
jnt |N

“
A(r)ỹt;A

(r)μ(m), Σ̃
(m)
diag

”
(21)

This is efficient as the transformed features can again be cached for
each base-class, and then the decoding cost is the standard diagonal
covariance matrix Gaussian calculation. The estimation of the trans-

form, A(r), and diagonal covariance matrix, Σ̃
(m)
diag , is an iterative

process [8].

1. Initialise using

A(r) = I, Σ̃
(m)
diag = diag

“
Σ

(m)
diag + Σ

(r)
b

”
(22)

2. Update transform, A(r), using equation 18 with

G
(r)
i =

X
m∈rr

γ(m)

σ̃
(m)2
diagi

“
Σ

(m)
diag + Σ

(r)
b

”
(23)

3. Update diagonal covariance matrix using

Σ̃
(m)
diag = diag

“
A(r)

“
Σ

(m)
diag + Σ

(r)
b

”
A(r)T

”
(24)

4. Goto 2 unless converged, or maximum number of iterations.

It is possible to stop the estimation at various stages. Stopping at

step (1) yields the simple diagonalisation of the variance bias, Σ
(r)
b ,

described in [6], referred to as a 0-iteration system. Stopping after
step (2) yields a form similar to a MLLRCov transform, equation 16,
but with the diagonalised bias variance added. This will be referred
to as a 1

2
-iteration semi-tied update. If step (3) is also completed

then this is a complete semi-tied update.
Compared to the adaptation-based predictive linear transforms

this is computationally more expensive. Multiple accumulations of

the statistics, G
(r)
i , are required as well as multiple transform esti-

mations. Approximations for this are discussed in section 4. In com-
mon with the MLLRCov transform the mean must be transformed,
cost O(Mn2), but the variance must also be transformed, at a cost
O(Mn2) per full iteration.

4. COMPUTATIONAL COST

An important consideration when using linear transforms for noise
robustness is the computational cost. One of the motivations for
using JUD is that it is computationally efficient. However if full
JUD transforms are used this makes decoding computationally very
expensive. The predictive linear transforms address this problem
by allowing diagonal covariance matrices to be used in the GMMs.
It is therefore important that the estimation and application of the
predictive linear transforms is as efficient as possible.

Statistic Accumulation: the adaptation predictive transform statis-
tic accumulation can be made highly efficient compared to imple-

menting equations 14 or 17. For example G
(r)
i in equation 17 can

be expressed as

G
(r)
i =

 X
m∈rr

γ(m)Σ
(m)
diag

σ
(m)2
diagi

!
+ Σ

(r)
b

 X
m∈rr

γ(m)

σ
(m)2
diagi

!
(25)
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The first term on the right-hand-side is independent of the noise con-
dition and thus can be accumulated and cached. Similarly for the
elements in brackets in the second term on the right-hand-side. Thus
the cost for accumulating statistics is simply O(n3) for all n dimen-
sions. Unfortunately this simple caching is not directly applicable to

the structured precision matrices as from equation 23, G
(r)
i is func-

tion of the variance bias which depends on the noise condition.

Cofactor calculation: for all the schemes it is necessary to compute
the cofactors of the current estimate of the transformation matrix. If
implemented directly this has a cost ofO(n3). Consider the case for
updating row i of the matrix A from ai to anew

i . Using the Sherman-
Morrison matrix inversion formula the inverse and determinant may
be expressed as

(A + ei(a
new
i − ai))

-1 = A-1 − A-1ei(a
new
i − ai)A

-1

1 + (anew
i − ai)A-1ei

|A + ei(a
new
i − ai)| =

“
1 + (anew

i − ai)A
-1ei

”
|A|

where ei is a zero column vector other than the ith element which
is set to one. These updates have computational cost O(n2). The
determinant can be simply calculated from the determinant lemma
at no additional cost. The cofactors can then be computed using the
equality

A-1 =
ˆ

cT
1 . . . cT

n

˜T
/|A| (26)

This is an exact calculation so will have no impact on recognition
performance (ignoring possible numerical accuracy issues).

Matrix inversion: For the estimation of the transform it is necessary

to invert the accumulated statistics G
(r)
i in equation 17 for example

for each dimension. A modified version of Least Squares Linear
Regression (LSLR) is used to make this more efficient. Here the
occupancy weighted average within class covariance matrix is used
for each base-class,

Σ
(r)
diag =

 X
m∈rr

γ(m)Σ
(m)
diag

!, X
m∈rr

γ(m)

!
(27)

This is used as an approximate target covariance matrix. Thus

G
(r)
i ≈ 1

σ
(r)2
diagi

 X
m∈rr

γ(m)
“
Σ

(m)
diag + Σ

(r)
b

”!
(28)

The inversion only needs to be performed once (rather than once per
dimension). This has cost O(n3) per transform. When this form
of approximation is used with the semi-tied transform, it is similar
to the class specific decorrelating transforms in [14], though now
predicted using a JUD transform. In addition to simplifying the in-

version of G
(r)
i the accumulation of the statistics for the semi-tied

transform is more efficient. Equation 23 can be re-written as

G
(r)
i ≈ 1

σ̃
(r)2
diagi

 X
m∈rr

γ(m)Σ
(m)
diag

!
+

Σ
(r)
b

σ̃
(r)2
diagi

 X
m∈rr

γ(m)

!
(29)

where

Σ̃
(r)

diag = Σ
(r)
diag + diag

“
Σ

(r)
b

”
(30)

Thus the weighted covariance matrix can be cached and used for all
noise conditions. This will be referred to as the approximate estima-
tion scheme.

Summary: a summary of the computational cost for estimating the
transform and then applying the transform to compensate the mod-
els is given. For this section: M is the number of components in
the recogniser, R is the number of base-classes, I is the number of
updates of each row of the transform, and n is the dimensionality of
the feature-vector. The cost of computing the full JUD transforms is
not included, but the cost of applying the transform is included.

System Statistics Estimation

PST J-iter O(J(Mn2 + Rn3)) O(JR(In3 + n4))
PST 1

2
-iter O(Mn2 + Rn3) O(R(In3 + n4))

PST Approx O(Rn2) O(Rn3)

PCMLLR O(Rn3) O(R(In3 + n4))
-Approx O(Rn2) O(Rn3)

PMLLRCov O(Rn3) O(R(In3 + n4))

Table 1. Predictive transform estimation cost, accumulation of
statistics and transform estimation.

Table 1 shows the computational cost of estimating each of the
predictive transforms. For the majority of situation M � R. As
expected the most expensive scheme is the J-iteration Predictive
Semi-Tied schemes (PST). Its cost can be compared to model-based
schemes such as VTS and PMC which have cost O(Mn3).

System Features Means Variances

PST J-iter/Approx O(RTn2) O(Mn2) O(Mn2)
PST 1

2
-iter O(RTn2) O(Mn2) O(Mn)

PCMLLR/Approx O(RTn2) — —

PMLLRCov O(RTn2) O(Mn2) —

Table 2. Compensation cost for predictive transform (T is the num-
ber of frames to recognise).

Table 2 shows the cost of applying each of the transforms. Again
the most expensive scheme is the PST scheme. The cheapest are the
PCMLLR and approximated PCMLLR (labelled PCMLLR/Approx)
schemes as the complexity is not a function of the number of recog-
niser components. In addition, the Gaussian component likelihoods
need to be computed. For all the predictive transform schemes, this
will be O(TMn) compared to the full JUD scheme of O(TMn2)
for T frames of data.

5. EXPERIMENTS

Preliminary experiments for predictive linear transforms were con-
ducted on two tasks. The first, AURORA 2, is used to illustrate
the issue when there are low SNRs, but a simple task. The second
database is a noise corrupted version of Resource Management. This
allows the performance to be assessed on a medium vocabulary task
with more complicated acoustic models. For these preliminary ex-
periments the joint distribution for JUD was estimated using stereo
data. This is not a requirement as these parameters may be estimated
from a small number of noisy observations [15, 16]. All linear trans-
forms, semi-tied, MLLRCov and CMLLR, were full in all experi-
ments.
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5.1. AURORA 2

AURORA 2 is a small vocabulary digit string recognition task. Ut-
terances are one to seven digits long based on the TIDIGITS database
with noise artificially added. The clean training data comprises 8440
utterances from 55 male and 55 female speakers. For matched train-
ing, 422 sentences are provided for each of 16 conditions: 4 different
SNRs ranging from 20 to 5 dB, and with the 4 different additive noise
sources N1 to N4: subway, babble, car and exhibition hall. Each of
the 16 conditions also has a test set of a 1001 sentences with 52
male and 52 female speakers. A 39 dimensional feature vector con-
sisting of 12 MFCCs appended with unnormalised log energy, delta
and delta-delta coefficients was used. The acoustic models were 16
emitting state whole word digit models, with 3 mixtures per state
and silence and inter-word pause models. For this work, HTK ver-
sion 3.4 was used, as opposed to the reference 2.2 version, resulting
in very minor differences in the baseline performance.

System
SNR(dB)

20 15 10 5

Clean 4.6 12.2 31.1 59.2
Clean ST 6.3 17.0 37.4 65.0

SPR 1.9 2.8 5.0 11.4
SPR ST 1.5 2.4 3.9 8.5
SPR CMLLR 1.7 2.4 4.5 10.9

JUD Diag 2.5 3.8 7.3 16.6
JUD Full 2.0 2.8 4.2 9.9

Table 3. Performance of clean, single-pass-retrained (SPR)
matched, semi-tied (ST) and CMLLR, and Joint Uncertainty Decod-
ing (JUD) diagonal and full performance on AURORA 2 test set A,
averaged across N1-N4, WER(%).

Table 3 shows the various baseline performance numbers on the
AURORA task. The first block of results shows the performance of
the baseline clean models using no noise compensation. As expected
the performance of the clean system is poor. The use of semi-tied co-
variance modelling (Clean ST) degrades performance for all SNRs
compared to the standard clean system, despite reducing the WER
in clean conditions from 1.06% to 0.95%. This shows the changes
in feature space correlation due to noise. The second block of re-
sults relates to matched systems built using single-pass retraining
(SPR) [17]. This was used to generate a baseline compensated sys-
tem, analogous to an ideal model-based compensation scheme in the
standard MFCC feature-space such as PMC, a semi-tied system (ST)
using 16 semi-tied transforms and finally 16 CMLLR transforms (us-
ing the same base-classes as the ST system). It is interesting to note
that using the CMLLR transforms outperforms the standard SPR
system. This SPR CMLLR system is similar to an idealised version
of schemes such as POF 2. This is an example of where a standard
model-based compensation scheme would not perform as well as a
feature compensation scheme. However if the semi-tied system is
used, then the model-based scheme outperforms the feature-based
scheme, showing the importance of covariance matrix modelling.

Table 3 also shows the JUD decoding performance, again with
16 base-classes, where stereo data is used to obtain the joint dis-
tribution. As expected with 16 transforms, the diagonal transform

2In [6] model-based CMLLR schemes are shown to outperform the equiv-
alent front-end CMLLR scheme. Thus the SPR CMLLR scheme is an opti-
mistic estimate of the performance of linear feature compensation schemes.

system performs worse than the SPR system (increasing the num-
ber of base-classes to 546, the number of components, would result
in the same performance). However using the full transform yields
better performance than both the SPR system and the SPR CMLLR
system. As discussed in the previous section, JUD is an interesting
method to consider for noise compensation as it may be used for
rapid compensation and the transforms estimated from limited data.
Hence, this full JUD system will be used to obtain the statistics for
the predictive linear transforms.

System # iter
SNR(dB)

20 15 10 5

0 31.2 50.4 79.2 89.7

PST 1
2

2.1 2.9 5.4 10.1
10 2.1 2.9 5.3 9.9

PCMLLR — 1.8 2.6 5.0 11.3
PMLLRCov — 2.0 2.9 5.7 11.9

Table 4. Predictive semi-tied (PST), CMLLR and MLLRCov perfor-
mance on AURORA 2 test set A, averaged across N1-N4, WER(%).

Three forms of predictive linear transform were examined, pre-
dictive semi-tied transforms (PST), predictive CMLLR (PCMLLR)
and predictive MLLRCov (PMLLRCov) transforms. The results for
these on the AURORA task are shown in table 4. Three versions of
PST were evaluated. As noted in previous work the 0-iteration PST
yields poor performance [6]. The 1

2
iteration scheme and the 10 iter-

ation scheme show similar performance. Other than the 10dB SNR
condition, the performance is similar to the JUD full system used
to get the statistics. Both the PCMLLR and PMLLRCov are worse
than the PST system at low SNR (5dB). This is as expected, since
at low SNRs the model parameters will need to be compensated for
best performance. Note, the PCMLLR system approximates the SPR
CMLLR system, but using only the full JUD statistics.

System Estimation
SNR(dB)

20 15 10 5

PST
Exact (10 iter) 2.1 2.9 5.3 9.9
Approx 2.1 3.0 5.3 9.9

PCMLLR
Exact 1.8 2.6 5.0 11.3
Approx 1.8 2.6 5.2 11.7

Table 5. Exact and Approximate matrix inversion for PCMLLR on
AURORA 2 test set A, averaged across N1-N4, WER(%).

One of the issues with predictive linear transforms is the com-
putational cost in estimating the transform. In particular for the PST
systems where the statistics must be accumulated, as well as the
transform applied. Table 5 shows the performance using the ma-
trix inversion approximation from section 4. For the PST system (10
iterations) the effect of the approximation is very small, similarly for
the PCMLLR system.

5.2. Resource Management

For this work, noise was artificially added to a medium vocabulary
speech recognition task, the 1000 word Resource Management (RM)
database. Operations Room noise from the NOISEX-92 database
was added at the waveform level. Though this task is artificial and
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is expected to yield better performance than would be obtained on
realistic data, it allows a comparison of the various techniques in a
highly controlled fashion. RM was used as a speaker independent
task which consists of 109 training speakers reading 3990 sentences,
3.8 hours of data. All results are quoted as an average of three of the
four available test sets, Feb89, Oct89 and Feb91, a total of 30 test
speakers and 900 utterances. State-clustered triphone models were
built using the HTK RM recipe. 16 base-classes were again used for
all transforms.

System # iter Avg

Clean — 33.2

SPR — 7.2
SPR ST 10 6.7
SPR CMLLR — 8.9

JUD Diag — 8.2
JUD Full — 7.4

1
2

7.6
PST 10 7.3

Approx 7.6

Table 6. Clean, single-pass-retrained (SPR) matched and semi-tied
(ST), and Joint Uncertainty Decoding (JUD) and predictive semi-
tied (PST) performance on 20dB SNR corrupted RM, Feb89, Oct89
an Feb91, average WER (%).

Table 6 shows both the baseline performance figures and the pre-
dictive semi-tied performance averaged over the Feb89, Oct89 and
Feb91 test sets. In contrast to the AURORA 2 task the SPR sys-
tem out-performed the SPR CMLLR system. There are a number of
reasons for this. The task is harder, so good modelling of the distri-
butions is important. The ratio number of recogniser components to
base-classes is approximately 17 times larger than for the AURORA
task. Also the SNR is higher so the impact of the transform is ex-
pected to be less. The PST system outperformed both SPR ST and
JUD diag systems. The PST approximation to the JUD full system
was again good, with no degradation observed. This illustrates that
predictive linear transforms work well even on more complex tasks.

6. CONCLUSIONS

This paper has examined correlation modelling for noise robust speech
recognition. The correlation between the elements of the feature vec-
tor vary as the signal to noise ratio is changed. As diagonal covari-
ance matrix GMMs are used to model the HMM state-output distri-
butions, correctly handling the changes in the feature vector correla-
tions should improve recognition performance. JUD with full trans-
forms is one approach that allows these correlation changes to be
modelled, but makes the decoding process expensive. To address this
problem approximations to the full JUD transforms are proposed.
Two approaches are described in this paper, both under the general
heading predictive linear transforms. These transforms may either
be in the form of adaptation transforms, such as CMLLR or MLLR-
Cov, or precision matrix models as in semi-tied covariance models.
In contrast to the normal estimation schemes used, the transforms are
estimated on statistics derived from the full JUD transforms, which
can be made computationally efficient. Two databases were used for
initially assessing the performance of these predictive linear trans-
forms, AURORA 2 and a noise corrupted version of the Resource
Management task. On both tasks the use of predictive linear trans-
forms gave good noise robustness.

The current experiments use stereo data to estimate the JUD
transform parameters. Future work will use the estimation approaches
described in [16]. In addition the approaches will be applied to data
recorded in low SNR conditions, rather than using artificially cor-
rupted clean data.
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