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ABSTRACT
This paper presents techniques for exploiting complementary in-

formation contained in multiple definitions of phonological feature
systems. Three different feature systems, differing in their structure
and in the acoustic phonetic features they represent, are considered.
A two stage process involving a mechanism for frame level phono-
logical feature detection and a mechanism for decoding phoneme
sequences from features is implemented for each phonological fea-
ture system. Two methods are investigated for integrating these
features with MFCC based ASR systems. First, phonological fea-
ture and MFCC based systems are combined in a lattice re-scoring
paradigm. Second, confusion network based system combination
(CNC) is used to combine phone networks derived from phonologi-
cal distinctive feature (PDF) and MFCC based systems. It is shown,
using both methods, that phone error rates can be reduced by as
much as 15% relative to the phone error rates obtained for any in-
dividual feature stream.

Index Terms— Speech Recognition, Acoustic Modeling, Pho-
nological Features

1. INTRODUCTION

There has been a great deal of research on the use of phonological
distinctive feature systems arising from multiple phonological the-
ories in automatic speech recognition (ASR). This is motivated in
part by well known linguistic and statistical arguments stating that
speech recognition models should benefit from some independent,
non-redundant underlying feature representation as an alternative to
relying on the phoneme as a fundamental unit [1]. The particular
issue investigated in this paper is whether complementary informa-
tion that may be represented by ASR systems defined over multiple
phonological feature systems can be exploited using system integra-
tion methodologies. The methodologies explored here include lat-
tice re-scoring based methods like those reported in [2] and system
combination methods like those described in [3, 4].

The techniques presented in this paper attempt to build on previ-
ous work in phonology, feature detection, phoneme decoding from
phonological features, and system integration. First, many phono-
logical feature systems have been defined in the linguistics commu-
nity where the feature definitions themselves are based on different
theories of speech production and acoustic phonetics [1, 5, 6]. Sec-
ond, there has been a great deal of work by speech technologists at-
tempting to extract acoustic parameters that are correlated with these
features and using discriminative probabilistic methods for asyn-
chronous detection of the occurrence of the features in the speech
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signal [7, 8]. Third, techniques have been proposed for combin-
ing information from phonological feature detectors for recognizing
phone strings in ASR [9, 2]. Finally, there has been a large amount of
work in the large vocabulary speech recognition (LVCSR) commu-
nity devoted to recognizer output voting error reduction (ROVER)
and confusion network combination (CNC) schemes for combining
the results of ASR systems whose errors are assumed to be comple-
mentary in some way [3, 4].

King and Taylor implemented frame level phonological distinc-
tive feature detectors based on feature definitions that were repre-
sentative of several different phonological theories [1]. It was shown
that reasonable frame level speaker independent phone classification
accuracy could be obtained for each of these feature representations
by using neural network (NN) based feature detectors. These detec-
tors were trained from canonical feature labels obtained from phone-
mically labeled speech utterances [10]. It is not clear, however, that
any particular linguistic theory or any particular definition of dis-
tinctive features could ever be considered “optimal” for this purpose.
The premise of this paper is that it may be possible to exploit com-
plementary aspects of different phonological feature systems for de-
coding a sequence of phone labels from speech.

Phonological feature based phone recognition was performed
in [1] using an HMM based phoneme recognizer whose distribu-
tions were defined over estimates of the posterior probabilities of
phonological distinctive features. This approach was motivated by
the well known complex and non-linear relationship that exists be-
tween phones and direct acoustic observations. It was shown in [2]
that this phonological distinctive feature based HMM system could
significantly improve phone recognition performance when used as
a mechanism for integrating phonological distinctive features with
“traditional”MFCC based ASR through a lattice re-scoring paradigm.

This paper extends the work in [1] and [2] by investigating whe-
ther multiple definitions of phonological distinctive features can be
shown to be complementary in their effect on ASR performance.
Two methods are evaluated here for investigating this issue. Both
methods rely on a two stage process involving a mechanism for
frame level feature detection and a mechanism for decoding phoneme
sequences from detected phonological features for each feature stream.
The components of this process are described in Section 3. The first
method, described in Section 4, involves integrating phone strings
derived from phonological distinctive features with the solution space
of a conventional mel frequency cepstrum coefficient (MFCC) based
HMM speech recognizer. The second method, described in Sec-
tion 5, attempts to exploit the potential diversity among the phone
strings that are derived from the separate feature streams. If the pho-
netic networks generated by the different feature representations pro-
duce similar phone recognition accuracy and the errors generated by
the different features are in some way complementary, then integrat-
ing the solution space of these networks through ROVER or CNC
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based system combination can result in significant improvement in
phone accuracy.

An experimental study is described in Section 6 that evaluates
the effects of the above techniques on phone recognition accuracy
(PAC). Performance obtained using different strategies for combin-
ing the outputs of the different phonological feature based andMFCC
based systems is measured on the TIMIT speech corpus [10].

2. PHONOLOGICAL FEATURE SYSTEMS

Three different definitions of PDFs are investigated here and corre-
spond to feature sets used in a previous study of frame level feature
detection [1]. These feature sets are briefly introduced in this section
in order to contrast the differing motivations that lead to their devel-
opment, the differences in structure, and the differences in the level
of articulatory and acoustic information that is characterized by each
one.

Two of the phonological feature systems are based on proper-
ties of speech production. The first system was motivated by the
distinctive features originally defined in Chomsky and Halle’s, The
sound pattern of English (SPE) [5]. The first feature set, referred to
as SPE, consists of a set of thirteen binary features. These include
binary values for the classes strident, nasal, continuant, voice, tense,
round, coronal, anterior, low, back, high, consonantal, and vocalic.
The second feature set consists of only eight features where each fea-
ture can assume anywhere from two to ten values. This is referred
to as the multi-valued (MV) system. It defines phones in terms of
well known linguistic terminology, such as manner and place, ar-
ranged into a hierarchy. The features include centrality, continuant,
front-back, manner, phonation, place, roundness, and tenseness.

The third phonological feature system is based on multiple prop-
erties of the speech spectrum referred to as “primes” and is motivated
by the theory Government Phonology (GP) [6]. This will be referred
to as the GP phonological feature system. The GP feature system dif-
fers from SPE and MV feature systems primarily in that it is defined
with respect to acoustic classes rather than the speech production
classes of the SPE and MV. King and Taylor encoded the structure
of this system into a set of modified features that could be detected
from speech with reasonable accuracy [1].

The three feature sets, SPE, MV, and GP, differ both in the level
of hierarchy that are embedded in the representations and also in the
balance between acoustic and phonological features that are repre-
sented. It is natural to expect that using these different feature sys-
tems in phone recognition could potentially result in decoded phone
strings whose errors are complementary. It will be shown in Sec-
tion 6 how these differences result in a level of diversity that can be
exploited in system combination.

3. PHONOLOGICAL DISTINCTIVE FEATURE BASED
PHONE RECOGNITION

This section extends the work described in [2] where phonologi-
cal distinctive feature (PDF) based phoneme recognition systems
were developed as part of a larger formalism for integrating PDFs
with MFCC based ASR. There are three components to these fea-
ture based phoneme recognition systems that will be described here
and applied to all three of the feature sets described in Section 2.
First, a set of neural network based classifiers that are used to extract
the values for phonological distinctive features are presented. Sec-
ond, the de-correlating and amplitude compression transformations
applied to the neural network outputs are described. These transfor-

mations are necessary for providing a better match between the di-
agonal covariance Gaussian observation distributions in the HMMs
and phonological feature vectors. Finally, separate HMM models
defined over spectral energy (MFCC) based observations and multi-
ple phonological feature based observations are trained and used for
decoding phone sequences and generating phone lattices.

3.1. Neural Network Based Feature Detection

Following the work in [1], time delay neural networks (TDNNs)
were used for phonological feature detection. For GP and SPE fea-
ture systems, all features were extracted simultaneously using a sin-
gle network. For the multi-valued (MV) feature system, a separate
TDNN was used for each of the eight features [1]. All the networks
have a single hidden layer with varying number of hidden units. The
input to each network is a vector of twelve MFCCs along with their
first and second differences. The NICO toolkit was used for the back
propagation training of all network parameters [11].

For the MV feature set, the output activations for each of the
eight feature based TDNNs, 28 values in all, correspond to the bi-
nary values defined in the MV set. The frame classification accuracy
of these TDNNs ranges between 73% for the 10 element “place”
feature and 92% for the 2 element “phonation” feature. The frame
accuracy for individual features for SPE set was between 88% and
98%. The frame accuracy was between 87% and 98% for the GP
feature set.

3.2. Phonological Feature Transformations

The estimates of posterior probabilities generated at the output of the
TDNN feature classifiers for the three different feature systems are
transformed and applied as input to the phonological feature based
phoneme recognizers described in Section 3.3. However, these fea-
ture based observation vectors suffer from both high dynamic range
and from highly correlated vector components, as is the case for fil-
terbank energies in MFCC analysis. To compensate for these issues,
logarthmic amplitude compression and feature space rotation is ap-
plied to these vectors.

To reduce the dynamic range of the phonological feature values,
a logarithmic compression was applied to the posterior values at the
output of TDNNs. For this to be effective, it was important to limit
the minimum value for the non-linear compression to a value of ap-
proximately -10. One more important problem associated with all
three sets of phonological feature vectors is the potential high corre-
lation among individual outputs from the neural networks. Principal
components analysis (PCA) was applied to estimating linear trans-
formations that result in a transformed feature space where feature
vectors are approximately uncorrelated. PCA was also used for di-
mensionality reduction for the multi-valued feature system. Since
there are 28 total components corresponding to the output values for
the MV feature set, the overall observation vector dimensionality
would be 84 when these 28 components are concatenated with first
and second order difference vectors.

The observation vectors associated with the SPE and GP feature
systems have dimension 14 and 11 respectively. The outputs of the
eight phonological feature TDNNs for the MV based feature system
are concatenated to form a 28 dimensional vector. Only the first 13
principle components were retained after PCA analysis for this fea-
ture system. No dimensionality reduction was performed for the SPE
or GP based observation vectors. Each of the resulting transformed
vectors was then concatenated with first and second difference vec-
tors to obtain 42, 33, and 39 components observation vectors for
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SPE, GP and MV, respectively. These observation vectors are input
to the HMM-based feature-to-phone mapping in Section 3.3.

3.3. HMM Based Feature-to-Phone Mapping

Continuous diagonal mixture Gaussian observation density HMM
models were used to map from frame level phonological feature
based observations derived from the discriminative networks
described in Section 3.1 to phone sequences. This approach to defin-
ing HMM based acoustic models over observation vectors obtained
from discriminative networks is very similar to the approach used
in [12]. The three phonological feature based ASR systems were
trained using the estimates of the posterior probabilities obtained
from the feature based TDNNs described in Section 3.1 transformed
as described in Section 3.2. The phone accuracy obtained for feature
based and MFCC based systems is summarized in Section 6.

4. LATTICE RE-SCORING BASED FEATURE
INTEGRATION

This section describes a lattice re-scoring method for integrating
MFCC and phonological feature based models in a phone recog-
nition task. It is made up of two parts. First, the lattice re-scoring
strategy, as originally introduced in [2], is described as a general
method for integration of multiple independent features with tradi-
tional MFCC based ASR. Second, a discriminative model combi-
nation algorithm is applied to estimating the relative weighting of
multiple knowledge sources in the lattice re-scoring approach [13].
This method is used as an alternative to empirical estimation of these
weights as was previously done in [2].

4.1. Feature Integration

In previous work, a strategy for integrating phonological feature based
models with traditional MFCC based ASR was investigated. A sim-
ple model for decoding an optimum phone string from multiple in-
dependent phonological feature vectors was presented in [2]. The
problem of decoding the optimum phone sequence, F̂m, for themth
utterance corresponds to optimizing

F̂m = arg max
Fm

n
p
“
Fm|X0

m, . . . , XN
m , Sm

”o
. (1)

In Equation 1, Fm is assumed to be a phone string generating a con-
tinually varying sequence of articulatory states which gives rise toN
phonological feature streams, Xi

m, i = 1, . . . , N , where Xi
m corre-

sponds to feature vectors generated for the mth utterance and the
ith distinctive feature system. Each feature stream consists of a se-
quence of T vectors, Xi
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m (T )}. X0
m is also

defined to represent spectral energy based MFCC features and Sm is
the surface acoustic waveform.

It was also shown that optimizing Equation 1 leads to finding the
phone string that optimizes the following log linear combination
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Equation 2 is the log-linear combination of probabilities associated
with multiple feature streams and the language model probability
p (Fm). Xm = {X0

m, X1
m, . . . , XN

m} represents the set of N + 1
feature streams for utterance m. Although the weight values Λ =

{λ0, λ1, . . . , λN+1} can be estimated empirically, a discriminative
model combination approach is used here to estimate these weights
automatically.

4.2. Discriminative Model Combination

One approach pursued in automatic speech recognition for optimum
integration of multiple acoustic and language models is discrimi-
native model combination (DMC). This approach has been applied
in situations where the cost or likelihood of a system incorporating
multiple models can be represented as one general log-linear poste-
rior probability distribution [13].

In discriminative model combination, the coefficientsΛ are opti-
mized based on the decision error rate of the following discriminant
function:

g
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”
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(3)

Let f (L (kmr, km0)) represent an “ideal” discriminant function,
where L (kmr, km0) is the Levenshtein-distance between the cor-
rect observation string km0 and the competing strings kmr, r =
1, . . . , K, and f () is a sigmoid function. The objective of the dis-
criminative method is to minimize the mean distance between the
discriminant function of the log-linear posterior probability distri-
bution in Equation 3 and the ideal discriminant function [13]. This
criterion can be optimized with respect to the log linear model co-
efficients, Λ, using training samples. This mean squared distance is
given as

D (Λ) =
1

KM

MX
m=1

KX
r=1„

log
p{Λ} (km0|Xm)

p{Λ} (kmr|Xm)
− f (L (kmr, km0))

«2

,

(4)

where p{Λ} (kmr|Xm) ∝ p{Λ} (Xm |kmr) p (kmr) and p{Λ} cor-
responds to the probability given in Equation 2. The first summa-
tion in the above equation is over all M utterances in the training
set. The second summation is over theK most likely phone ystrings
produced by the MFCC based ASR system.

In this paper, the discriminative model combination paradigm
has been used for combining each of the HMMs defined over phono-
logical feature based observations with the HMM model defined
over MFCC observations. A set ofK-best strings forK = 10 were
generated fromMFCC-based HMMs and used afterward in Equation
4 to compute the weight values Λ for each model combination.

In Section 6, the performance of these combined models are
summarized and compared to the first-level HMMs defined in Sec-
tion 3.3. The optimum phone sequences and lattices decoded by
these new combined models are also used as another set of inputs to
the system combination paradigm described in Section 5.

5. SYSTEM COMBINATION

System combination techniques have been widely used in LVCSR
for combining output word strings or word lattices obtained from
multiple ASR systems [4]. Significant reduction in composite word
error rate (WER) is generally obtained relative to the individual ASR
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systemWERwhen the average individual system error rates are sim-
ilar but the nature of the errors from the individual systems are differ-
ent. The experimental study in Section 6 investigates the effect of ap-
plying this same class of system combination techniques as a means
for integrating the multiple phonological feature based phone recog-
nition systems described in Section 3. Two such techniques which
are used for phoneme level system combination are ROVER [3] and
confusion network combination (CNC) [4].

ROVER, as originally introduced by Fiscus [3], is performed in
two stages. In the first stage, the decoded output strings produced by
the individual speech recognition systems are aligned using dynamic
programming. This is a sequential procedure that is initiated by first
picking a reference string. Each remaining string is then aligned
to this reference string, one at a time, until a single word transition
network (WTN) is obtained. All arcs leaving a node, or alignment
point, in this WTN have the same destination node. There is no opti-
mum ordering of strings in this alignment process that is guaranteed
to give the best results. The second stage consists of selecting the
best scoring label at each alignment point through a voting process.
While this voting process can be wighted by assigning confidence
scores to each arc on the WTN, this was not done in the experiments
described in Section 6.

CNC is an extension of ROVER where, instead of aligning the
strings produced by the individual ASR systems in the first stage,
confusion networks are aligned [4]. Confusion networks are a com-
pact representation of lattices which are in turn graph representations
of the search space of the recognizer containing the most likely word
hypotheses. They maintain the ordering of the original contents
of the lattices but have the structure of the WTN described above.
CNC involves three steps. First, the lattices generated by the indi-
vidual ASR systems are converted to confusion networks. Second,
these networks are aligned in sequential order, using the confusion
network of one of ASR systems as a reference. This results in a
WTN corresponding to the combination of all confusion networks
produced by the individual systems. Finally, this combined network
is used for obtaining the highest scoring string using a modified vot-
ing procedure. This involves adding the posterior probabilities or, if
available, confidence scores on the labels at each alignment point.

6. EXPERIMENTAL STUDY

An experimental study is presented which evaluates the performance
of the two different strategies described in Sections 4 and 5 for inte-
grating phonological feature based representations withMFCC based
ASR. First, Section 6.1 begins by introducing the phoneme recog-
nition task domain used for the experiments along with the phone
recognition accuracies associated with the phonological distinctive
feature based phone recognizers described in Section 3. Second,
Section 6.2 presents the performance obtained by combining these
feature based phone recognizers with a “traditional” MFCC based
phone recognizer using the system combination techniques from Sec-
tion 5. Finally, the performance of the lattice re-scoring approach is
described in Section 6.3 where discriminative model combination
(DMC) is used to estimate the weights of the log linear model for
feature integration described in Section 4.

6.1. Feature Based Phoneme Recognition

The experiments described in this section were performed using the
TIMIT speech corpus [10]. HMM acoustic models and TDNN based
phonological feature detectors were trained from 3572 utterances

taken from the TIMIT training set with a small 124 utterance de-
velopment set held out for empirical estimation of the log linear
weights, Λ, given in Section 4.1. All results is this section are re-
ported as phone recognition accuracy (PAC) evaluated on the 1344
utterance TIMIT test corpus using the reduced phone set described
in [14].

The phonological distinctive feature (PDF) based phone recog-
nizers described in Section 3 consist of TDNN based feature detec-
tors, log/PCA based transformation of feature detector outputs, and
HMM based feature-to-phone mapping. Table 1 displays the phone
accuracies obtained for the MV, GP, and SPE features. The HMM
based component of all three systems includes context dependent
tri-phone three state HMM phone models with continuous diagonal
covariance Gaussian mixture observation densities containing 5 mix-
tures per state. HMMmodels in all three systems were trained using
a maximum likelihood (ML) criterion. All of the PACs displayed in
Table 1 can be compared to a PAC of 69.1% obtained for a similarly
configured MFCC based HMM phone recognizer. The two rows in
the table correspond to the case where PCA transformation alone is
applied to the feature detector outputs and both log and PCA based
transformations are used.

There are several observations that can be made from Table 1.
First, the nonlinear amplitude compression performed by the log
transformation results in significant improvement in phone accuracy
when compared with systems implemented with the PCA transfor-
mation alone. This improvement only occurs when the log is per-
formed with amplitude compression implemented to constrain the
allowable range of feature detector output values to 10 dB. Second,
while the GP based system obtains the best PAC at 68.1%, all three
of the feature based phone recognizers obtain relatively similar per-
formance. Third, the difference in phone accuracy between the best
performing feature based system and the MFCC based system was
only 1% absolute. This similarity in performance for the MV, GP,
SPE, and MFCC based systems is important when combining these
systems using the techniques described in Section 6.2.

Feature Based Phone Recognition Accuracy
Feature Trans. MV GP SPE
PCA 64.1% 66.1% 64.2%
log+PCA 66.9% 68.1% 66.5%

Table 1. PAC measured for HMM based phone recognition us-
ing three different feature sets with PCA based and PCA+log based
transformations applied to feature detector outputs.

6.2. System Combination Performance

Given the similarity of the phone accuracies obtained from theMFCC
and feature based phone recognizers shown in Table 1, it is likely that
performance could be further improved through some combination
of these systems. This is true, of course, only if the errors produced
by these different systems are complementary in some way. By ob-
serving the level of improvements obtained using the ROVER and
CNC based system combination techniques described in Section 5,
it is possible to get an indication of the degree to which the different
feature representations convey complementary information.

Table 2 shows the phone accuracies obtained for ROVER and
CNC based system combination of the MFCC based ASR system
with the GP, MV, and SPE based systems. For the ROVER based
system combination, a single phone string was produced by each
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system and the phone strings were successively aligned in the or-
der shown in the table with the phone string produced by the MFCC
system used as the reference string in the alignment process. The
best phone label at each alignment point was chosen by a weighted
voting procedure. For the CNC based system combination, a phone
lattice was produced by each system, confusion networks were cre-
ated from each lattice, and the confusion networks were successively
aligned in the order shown in the table with the confusion network
produced by the MFCC system used as the reference in the align-
ment process. The best phone label at each alignment point was
chosen by summing the posterior probabilities for arcs containing a
given phone label.

The ROVER performance in the first row of Table 2 displays the
baseline MFCC PAC. The performance displayed for CNC in the
first row of the table represents the PAC obtained using a modified
word error rate optimization criterion [4]. It is clear from rows two
through four of Table 2 that combining all three feature based sys-
tems with the MFCC based phone recognizer using ROVER results
in a small but significant improvement in PAC. However, combining
a single feature based system with the MFCC system using CNC re-
sults in a far greater improvement, with the MFCC+GP combination
resulting in a 3.9% absolute improvement. Finally, the last two rows
of Table 2 show that significant additional improvements in PAC are
obtained as the additional feature based systems are combined using
both ROVER and CNC.

Combination of Feature and MFCC Based Systems

Combined Systems PAC
ROVER CNC

MFCC 69.1% 69.6%
MFCC + GP 70.0% 73.0%
MFCC + MV 69.9% 72.4%
MFCC + SPE 69.8% 72.2%
MFCC + GP + MV 72.9% 73.9%
MFCC + GP + MV + SPE 73.6% 74.3%

Table 2. Phone accuracies obtained for combination of three feature
based phone recognition systems with theMFCC based system using
both ROVER and CNC based techniques. Systems are combined in
the order shown.

6.3. System Integration using Lattice Re-scoring

Table 3 displays the phone accuracy for systems implemented using
the lattice re-scoring scenario originally introduced in [2] to optimize
the weighted log-linear combination criterion given in Equation 2.
Rows two through four in Table 3 display the phone accuracies ob-
tained by integrating the MFCC based phone recognizer with each
of the three phonological distinctive feature based systems. The in-
terpolation weights in Equation 2 are estimated using discriminative
model combination. Rows five and six in Table 3 display the phone
accuracies obtained by combining multiple MFCC and feature based
systems by sequential lattice re-scoring. At each stage of this se-
quential process, a phone lattice is produced and this phone lattice
is then re-scored by the following feature based HMM system. The
relative weights that are applied to the log likelihoods of each these
multiple systems are also estimated using DMC.

There are several observations that can be made from Table 3
and from comparing the performance of the systems shown in Ta-
bles 2 and 3. It is clear from rows two through four of Table 3 that

feature integration of a single PDF with MFCC based ASR results
in substantial improvement in PAC with respect to the MFCC base-
line system. Comparison with rows two through four of Table 2
shows that these improvements are similar to those obtained using
CNC based system combination. It is also clear from rows five and
six in Table 3 that feature combination performed through succes-
sive lattice re-scoring results in performance improvements that are
similar to those obtained through CNC based system combination.
All of these results suggest that these feature based systems convey
complementary information which can significantly reduce that am-
biguity associated with MFCC based ASR.

Lattice Re-scoring / DMC Feature and MFCC Integration
Combined Systems PAC
MFCC (Baseline) 69.1%
MFCC + GP (DMC) 72.9%
MFCC + MV (DMC) 72.7%
MFCC + SPE (DMC) 72.6%
MFCC + MV + GP (DMC) 73.3%
MFCC + MV + GP + SPE (DMC) 73.8%

Table 3. Comparison of PACs measured for different feature repre-
sentations re-scoring MFCC lattices using DMC

The use of discriminative model combination was extremely im-
portant for estimation of the log linear weights, Λ, given in Sec-
tion 4.1. Without DMC, it would be nearly impossible to obtain em-
pirical estimates of these weights by exhaustively tuning them on a
development set for each different experimental scenario. In order to
demonstrate that there is no significant performance degradation as-
sociated with using DMC in estimating Λ, the performance of PDF
feature integration for both DMC and empirical estimation of Λ is
shown in Table 4. The second and third rows in Table 4 display
the the PACs obtained for MV based feature integration with MFCC
based ASR where only PCA based transformation was applied to the
feature detector outputs [2]. In the second row, the parameters were
empirically estimated from the development set and in the third row,
the parameters were estimated using DMC. It is clear from the ta-
ble that the phone accuracy obtained using DMC based estimation
of the log linear weights is not significantly different from the phone
accuracy obtained by empirical estimation of these weights.

PAC for Lattice Re-scoring
System PAC

MFCC (Baseline) 69.1%
MFCC + MV - PCA (Empirical) 72.3%
MFCC + MV - PCA (DMC) 72.4%

Table 4. PACs measured for systems integrating MFCC based and
MV phonological feature based with empirical and DMC estimation
of log-linear weights (No logarithmic amplitude compression was
applied to MV feature values)

7. SUMMARY AND CONCLUSION

Two methods for integrating multiple phonological feature based
phone recognizers with more “traditional”MFCC based phone recog-
nition have been investigated. First, systems defined over separate
feature representations were integrated with an MFCC based ASR
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decoder through a lattice re-scoring approach. The system inte-
gration was based on weighted log linear combination of feature
based and MFCC based likelihoods where the weights were esti-
mated automatically using a discriminative model combination ap-
proach. Each of the three feature based systems provided similar
improvements in phone accuracy of approximately 3.5% absolute
when individually combined with MFCC based ASR through lattice
re-scoring. When all three feature based systems were sequentially
applied in a sequential lattice re-scoring scenario, a 4.7% increase
in PAC was obtained. The second method proposed for integrat-
ing multiple phonological feature based systems with MFCC based
phone recognition was based on a ROVER and CNC system combi-
nation paradigms. Integrating all feature sets simultaneously through
CNC system combination resulted in an absolute increase of 5.2% in
phone accuracy.

The performance improvements achieved by these two methods
are significant for two reasons. First, it suggests that the phonologi-
cal feature systems used here are not simply functionally equivalent
representations leading to the same decoded phone sequences. In
fact, based on the performance improvements obtained here, they in-
deed appear to be complementary in the information that they repre-
sent. Second, for both approaches, feature integration itself was per-
formed without having to apply any domain knowledge or any struc-
tural considerations. Both the weight estimation in lattice re-scoring
and confusion network construction and combination in CNC are
entirely data driven.
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