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ABSTRACT
In this paper, we propose a novel model for incorporating the voicing
information in a speech recognition system. The voicing informa-
tion employed is estimated by a novel method that can provide this
information for each filter-bank channel, without requiring any in-
formation about the fundamental frequency. A Viterbi-style training
procedure is employed to estimate the voicing-probability of each
mixture at each HMM state. Experiments are performed on noisy
speech data from the Aurora 2 database. Significant performance
improvements are achieved at low SNRs when the voicing informa-
tion is incorporated within the standard model and two models that
had already compensated for the effect of the noise.

Index Terms— Source-filter model, voicing estimation, speech
recognition, HMM, acoustic modeling, voicing probability, noise
robustness, missing-feature model, multi-conditional training, Au-
rora 2 database

1. INTRODUCTION

Much effort has been devoted to finding an effective represen-
tation of speech signals for automatic speech recognition. Cur-
rent frame-based speech representations, with the mel-frequency
cepstral coefficients (MFCCs) [1] and frequency-filtered logarithm
filter-bank energies [2] being among the most successful, typically
aim at describing the envelope of a short-time spectra, which corre-
sponds to the characteristic of the vocal-tract filter. However, speech
sounds are produced by passing a source-signal through a vocal-
tract filter, i.e., different speech sounds may be produced when a
given vocal-tract filter is excited by different source-signals. Thus,
a more appropriate representation and modeling of speech signals
should include both the information about the vocal-tract filter and
the source-signal. The information about the source-signal may be
characterized by a voicing character of a speech frame or individual
frequency bands and the value of the fundamental frequency (F0).
Our study in this paper is concerned with the incorporation of the
voicing information.

There has been several works investigating the incorporation of
the source-signal information into speech recognition. The authors
in [3] [4] [5] [6] [7] investigated the use of various measures for
estimating the voicing-level of a speech frame and appended these
voicing features into the feature representation. In addition to voic-
ing features, the information on F0 was employed in [4] [5]. In [3]
the effect of including the voicing features under various training
procedures was also studied. Experiments in the above papers were
performed only on speech signal not corrupted by an additional noise
and modest improvements have been reported. In [8], the voicing in-
formation was included by decomposing speech signal into simulta-
neous periodic and aperiodic streams and weighting the contribution

of each stream during the recognition. This method requires infor-
mation about the fundamental frequency. Significant improvements
on noisy speech recognition on Aurora 2 connected-digit database
have been demonstrated, however, these results were achieved by
using the F0 estimated from the clean speech. The authors in [9] di-
vided phoneme-based models of speech into a subset of voiced and
unvoiced models and used this division to restrict the Viterbi search
during the recognition. The effect of such division of models itself
was not presented. In [10] an HMM model was estimated based only
on high-energy frames, which effectively corresponds to the voiced
speech. This was observed to improve the performance in noisy con-
ditions.

In this paper, we propose a novel model for incorporating the
voicing information in an automatic speech recognition (ASR) sys-
tem. Our model differs from the above works in the following: i)
the voicing information employed is estimated by a novel method
that can provide this information for each filter-bank channel, while
requiring no information about the F0; ii) the voicing-information
is incorporated within an HMM-based statistical framework in the
back-end of the ASR system; iii) the evaluation is performed on
noisy speech recognition. Note that the method for estimation of
the voicing information was introduced in [11] and further analy-
sis and evaluations of the method were presented in [12]. While
in [11] [12] the voicing information was employed as a mask in a
missing-feature ASR system that modeled only the characteristics of
the vocal-tract filter, in this paper we present modeling of the voic-
ing information within an HMM-based ASR system. In the proposed
model, having the trained HMMs, each mixture at each HMM state
is associated with a voicing-probability, which is estimated by a sep-
arate Viterbi-style training procedure (without altering the trained
HMMs). The incorporation of the voicing-probability serves as a
penalty during recognition for those mixtures/states whose voicing
information does not correspond to the voicing information of the
signal. The effect of employing the voicing-probability about an en-
tire frame and about each filter-bank channel is also explored. The
incorporation of the voicing information is evaluated in a standard
model and in two models that had compensated for the effect of
the noise, missing-feature (e.g., [13]) and multi-conditional training.
Experiments are performed on the Aurora 2 database. Experimental
results show significant improvements in recognition performance
in strong noisy conditions achieved by the models incorporating the
voicing information.

2. ESTIMATING THE VOICING INFORMATION OF
FILTER-BANK CHANNELS

The estimation of the voicing information of speech signal for
each filter-bank channel is performed by algorithm we introduced in
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[11] and presented with further analyses in [12]. It exploits the quasi-
periodicity of voiced speech signals and the effect of short-time pro-
cessing – due to these, the shape of short-time magnitude spectra of
voiced speech around each harmonic frequency should follow ap-
proximately the shape of the magnitude spectra of the frame analy-
sis window. Note that it does not require any information about the
fundamental frequency. It has been demonstrated that the voicing
information of filter-bank channels can be detected with 5% false-
acceptance and false-rejection accuracy at 10dB local SNR [12]. Be-
low are the steps of the method:

1) Short-time magnitude-spectra calculation: A frame of a time-
domain signal is weighted by a frame-analysis window function,
expanded by zeros and the FFT is applied to provide a short-time
magnitude-spectra.

2) Voicing-distance calculation: For each peak of the signal short-
time magnitude-spectra, a distance, referred to as voicing-distance
vd(k), between the spectra around the peak and magnitude-spectra
of the frame window is computed, i.e.,

vd(kp) =

[
1

2M + 1

M∑
m=−M

(
|S(kp + m)| − |W (m)|

)2
]1/2

(1)

where kp is frequency-index of a spectral peak and M determines
the number of components of the spectra at each side around the
peak to be compared. The spectra of the signal, S(k), and frame-
window, W (k), are normalized to have magnitude value equal to 1
at the peak prior to their use in Eq. 1.

3) Voicing-distance calculation for filter-bank channels: The
voicing-distance for each filter-bank channel is calculated as a
weighted average of the voicing-distances within the channel, re-
flecting the calculation of filter-bank energies that are used to derive
features for recognition, i.e.,

vdfb(b) =
1

X(b)
·

kb+Nb−1∑
k=kb

vd(k) · Gb(k) · |S(k)|2 (2)

where Gb(k) is the frequency-response of the filter-bank channel b,
and kb and Nb are the lowest frequency-component and number of
components of the frequency response, respectively. The X(b) =∑kb+Nb−1

k=kb
Gb(k)|S(k)|2, i.e., the overall filter-bank energy value.

4) Postprocessing of the voicing-distances: The voicing-distance
obtained from Eq. 1 and Eq. 2 were filtered by 2D median filters in
order to eliminate accidental errors.

The voicing information of a filter-bank channel could be di-
rectly expressed by the voicing-distance value. However, for sim-
plicity of its incorporation, in this paper, a binary valued voicing in-
formation was used. A filter-bank channel b is considered as voiced,
i.e., v(b) = 1, if the corresponding voicing-distance vdfb(b) is be-
low a given threshold (based on [12] the value 0.21 was used) and
unvoiced, i.e., v(b) = 0, otherwise. Note that in experimental eval-
uation presented in Section 4, we also used the voicing-information
about an entire frame; a frame is assigned as voiced if there are at
least three filter-bank channels detected as voiced.

3. INCORPORATING THE VOICING INFORMATION
INTO AN HMM-BASED ASR SYSTEM

This section presents the proposed incorporation of the voicing
information, estimated in Section 2, in the back-end of speech recog-
nition system. The voicing-probability is estimated by a separate

Viterbi-style training procedure that is performed after the HMMs
have been trained (i.e., the trained HMMs are not altered). The fol-
lowing sections give detailed description of the proposed method and
discuss the effect of incorporation of the voicing-probability during
the state-time recognition search.

3.1. Incorporating the voicing information during recognition

During the recognition, the standard HMM state emission prob-
ability of a spectral feature-vector yt at frame-time t in state s, i.e.,
P (yt|s), is replaced by calculating the joint probability of the spec-
tral feature vector and the voicing vector vt, i.e., P (yt,vt|s). Con-
sidering that all spectral features and voicing features are indepen-
dent of one another, using L mixture densities the P (yt,vt|s) is
calculated in the proposed model as

P (yt,vt|s) =

L∑
l=1

P (l|s)
∏

b

P (yt(b)|l, s)P (vt(b)|l, s) (3)

where P (l|s) is the weight of the lth mixture component, and
P (yt(b)|l, s) and P (vt(b)|l, s) are the probability of the bth spectral
feature and voicing feature, respectively, given state s and mixture
l. Note that instead of using the voicing information of each filter-
bank channel as considered above, one may use only information
about frame voicing. Experiments were performed with both levels
of the voicing information.

3.2. Estimating the voicing-probability for HMM states

The estimation of the voicing-probability P (v|l, s) at each
HMM state and mixture was performed by a Viterbi-style training
procedure using the training data-set.

Given a speech utterance, for each frame t we have the spectral-
feature vector yt and voicing vector vt, resulting a sequence of
{(y1,v1), . . . , (yT ,vT )}. The Viterbi algorithm is then used to
obtain the state-time alignment of the sequence of feature vectors
{y1, . . . ,yT } on the HMMs corresponding to the speech utterance.
This provides an association of each feature vector yt to some HMM
state s. The posterior probability that the mixture-component l (at
the state s) have generated the feature vector yt is then calculated as

P (l|yt, s) =
P (yt|l, s)P (l|s)∑
l′ P (yt|l′, s)P (l′|s) (4)

where the mixture-weight P (l|s) and the probability density func-
tion of the spectral features used to calculate the P (yt|l, s), are ob-
tained as an outcome of the HMM training.

For each mixture l and HMM state s, we collect (over the entire
training data-set) the posterior probabilities P (l|yt, s) for all yt’s
associated with the state s together with the corresponding voicing
vectors vt’s. The voicing-probability of the bth feature can then be
obtained as

P (v(b) = a|l, s) =

∑
t:yt∈s P (l|yt, s) · δ(vt(b), a)∑

t:yt∈s P (l|yt, s)
(5)

where a ∈ {0, 1} is the value of voicing and δ(vt(b), a)=1 when
vt(b)=a, otherwise zero.

3.3. Transformation of the voicing-probability

In the overall probability calculation by Eq. 3, the value of the
voicing-probability may need to be scaled, since it is real probability
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while the first term in the product in Eq. 3 is a likelihood (i.e., they
have a different range of values). This can be performed by employ-
ing a sigmoid function to transform the P (v(b)|l, s) for each b to a
new value, i.e.,

P (v(b)|l, s) =
1

1 + e−α(P (v(b)|l,s)−0.5)
(6)

where α is a constant defining the slope of the function and the value
0.5 gives shift of the function. An example of voicing-probability
transformation with various values for α and no transformation case
are depicted on Figure 1(a). The bigger the value of α is the greater
the effect of the voicing-probability on the overall probability. An
appropriate value for α can be decided based on a small set of ex-
periments on a development data. In our experiments, values of α
within the range <1, 3> yielded the best recognition results. The α
is set to 1.5 for feature-level (6 for frame-level) voicing for all the
experiments presented in the paper.
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Fig. 1. Voicing-probability transformation by using a sigmoid func-
tion with various slope parameter α and by using no transformation
(a). An example of the estimated voicing-probability for a 16 state
HMM model of word ‘five’ (b).

An example of the estimated voicing-probability for an HMM
model of word ‘five’ is depicted on Figure 1(b). It can be seen
that, for instance, the first four states have a low probability of being
voiced over the entire frequency range, which may correspond to the
unvoiced phoneme \f\.

3.4. The effect of the voicing-probability during the recognition

This section demonstrates the effect of incorporating the
voicing-probability on the recognition process. A frame-level voic-
ing information was considered for simplicity of presentation of the
results. An experiment was performed to identify the amount of dis-
agreement between the voicing information of models and the sig-
nal. For each voiced frame of the signal, the voicing-probability of
the state the frame is associated to according to the best path through
the state-time trellis found by the Viterbi algorithm is obtained. The
histograms of these voicing-probabilities collected over noisy test
speech utterances (white noise at 0dB) are depicted on Figure 2(a).
It can be seen that when the voicing information is not incorporated
(blue) there is a large amount of voiced frames being assigned to
states with low voicing-probability. This situation is significantly
improved when the voicing information is incorporated since this
acts as a penalty during the recognition for those states whose voic-
ing is not in agreement with the voicing of the signal. Figure 2(b)
shows an example of the Viterbi-found path for a speech utterance
“two” without and with using the voicing-probability, resulting in
being recognized as “six” and “two”, respectively, together with the
estimated voicing information for each frame of the utterance. A

significant disagreement between the voicing of the model and sig-
nal can be seen when the voicing is not incorporated, e.g., voiced
frames after frame-index 43 are assigned to the silence model.
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Fig. 2. Histogram of state voicing-probabilities associated with
voiced frames without (blue) and with (black) using the voicing in-
formation (a). Recognition of a speech utterance “two”, and state-
time path, without (blue) and with (black) using voicing-probability.
Below: frame-level voicing of the utterance. Right: voicing-
probability of each state for HMM of digit “six” and “two” (b).

4. EXPERIMENTAL RESULTS

The experiments were carried out on the Aurora 2.0 English lan-
guage connected-digit database [14]. The frequency-filtered (FF)
logarithm filter-bank energies [2] were used as speech feature rep-
resentation, due to their suitability for missing-feature based recog-
nition. Note that the FF-features achieved similar performance (in
average) as standard MFCCs. The FF-features were obtained with
the following parameter set-up: frames of 32 ms length with an
overlap of 10 ms between frames were used; both preemphasis and
Hamming window were applied to each frame; the short-time mag-
nitude spectra, obtained by applying the FFT, was passed to Mel-
spaced filter-bank analysis with 20 channels; the obtained logarithm
filter-bank energies were filtered by using the filter H(z)=z-z−1 [2].
A feature vector consisting of 18 elements was obtained (the edge
values were excluded). An FF-feature was assigned as voiced (i.e.,
v(b)=1) only if both of the filter-bank channels involved in the cal-
culation of the FF-feature were voiced, and unvoiced otherwise. In
order to include dynamic spectral information, the first-order delta
parameters were added to the static FF-feature vector. A continuous-
observation left-to-right HMM with 16 states (no skip allowed) was
used to model each digit; the pdf at each state was modeled with
three and ten Gaussian mixtures when using clean training and multi-
conditional training, respectively, and diagonal covariance matrices.
The training of HMMs was performed on utterances from the train-
ing set. The noisy speech data from the Set A in Aurora 2.0 were
used for recognition experiments. The results for clean speech were
omitted from all figures as marginal differences were observed by
incorporating the voicing-probability (similar observations were re-
ported also in [5]).

The evaluation of the proposed model for voicing incorporation
is first performed using a standard model trained on clean data. Re-
sults, presented in Figure 3, show that incorporation of the voicing-
probability provides significant improvement of the recognition ac-
curacy at low SNRs in all noisy conditions. It was observed that the
voicing-probability incorporation caused an increase of insertions in
the case of Babble noise, which is due to this noise being a back-
ground speech. This could be improved by modifying the word
insertion penalty or employing a speech-of-interest detection. The
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Fig. 3. Recognition accuracy results obtained by the standard model
without and with incorporated voicing probability.

former was used here – this resulted in slight decrease of the perfor-
mance at high SNRs, however, provided significant improvements
at low SNRs. Figure 3 shows that the incorporation of the voicing-
probability on the feature-level gives in all noisy conditions slightly
better results than using the frame-level voicing (standard+VPfrm),
which is a consequence of a more detailed voicing information mod-
eling. Note that the use of a frame-level voicing may be more de-
ficient (against feature-level) in a more difficult task, i.e., larger vo-
cabulary system, which is currently under our investigation.

Next, evaluations were performed on two types of models that
had compensated for the effect of noise – this was conducted in or-
der to determine whether the incorporation of the voicing informa-
tion can still provide improvements (as employment of a noise com-
pensation would effectively decrease the amount of misalignment
of voicing). The first noise-compensated model was based on the
missing-feature theory (MFT). We used the marginalization-based
MFT model. In order to obtain the best (idealized) noise compen-
sation, this model employs the oracle mask, obtained based on the
full a-priori knowledge of the noise. Specifically, the static fea-
tures whose local SNR is below 0dB were marginalized. Experi-
mental results are presented in Figure 4. The second type of noise-
compensated model was obtained by using the multi-conditional
training. Experimental results are presented in Figure 5. It can be
seen from Figure 4 and Figure 5 that the incorporation of the voicing-
probability did not improve the performance at high SNRs, which
may be due to the effectiveness of the noise-compensation. The de-
crease at high SNRs in the case of Babble noise (and Exhibition
noise in Figure 4) is, similarly as in the standard model discussed
earlier, due to the increased insertions. However, it can be seen that
at low SNRs, even the noise effect had already been compensated,
the incorporation of the voicing-probability within each type of the
noise-compensated models provides significant improvements in the
recognition accuracy.

5. CONCLUSION

In this paper, we presented a novel model for speech recog-
nition that incorporates the voicing information of speech signal.
A Viterbi-style training procedure for estimation of the voicing-
probability for each mixture at each HMM state was presented.
The effectiveness of the method was demonstrated within a stan-
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Fig. 4. Recognition accuracy results obtained by the MFT-model
using the oracle mask without and with incorporating the voicing
probability.
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Fig. 5. Recognition accuracy results obtained by the multi-
conditional trained model without and with incorporating the voic-
ing probability.

dard model and two types of noise-compensated models, missing-
feature and multi-conditional training. Experimental evaluation was
performed on noisy speech data from the Aurora 2 database. Sig-
nificant performance improvements were observed at strong noisy
conditions when the voicing information is incorporated in the stan-
dard model, and also in both models which had already compensated
for the effect of noise.
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