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ABSTRACT

In recent years, the features derived from posteriors of a
multilayer perceptron (MLP), known as tandem features, have
proven to be very effective for automatic speech recognition.
Most tandem features to date have relied on MLPs trained
for phone classification. We recently showed on a relatively
small data set that MLPs trained for articulatory feature clas-
sification can be equally effective. In this paper, we provide a
similar comparison using MLPs trained on a much larger data
set—2000 hours of English conversational telephone speech.
We also explore how portable phone- and articulatory feature-
based tandem features are in an entirely different language—
Mandarin—without any retraining. We find that while the
phone-based features perform slightly better than AF-based
features in the matched-language condition, they perform sig-
nificantly better in the cross-language condition. However, in
the cross-language condition, neither approach is as effective
as the tandem features extracted from anMLP trained on a rel-
atively small amount of in-domain data. Beyond feature con-
catenation, we also explore novel factored observation mod-
eling schemes that allow for greater flexibility in combining
the tandem and standard features.

Index Terms— Speech recognition, feedforward neural
networks, hidden Markov models.

1. INTRODUCTION

The so-called tandem acoustic modeling approach refers to a
data-driven feature extraction method using MLPs [1, 2, 3].
In tandem modeling, the transformed posterior probabilities
of an MLP are used as observations in HMMs, usually in
combination with some standard feature vector such as mel-
frequency cepstral coefficients (MFCCs), or perceptual lin-
ear prediction (PLP) coefficients. The tandem processing is
simple, and integrable into an existing recognizer with vir-

tually no change in the statistical back-end. This simplic-
ity and modularity make tandem features attractive for large-
vocabulary continuous speech recognition (LVCSR). In re-
cent years, tandem features have produced impressive word
error rate (WER) reductions in state-of-the-art systems in
multiple languages, e.g., English, Mandarin, and Arabic, and
in different domains, e.g., conversational telephone speech
(CTS), broadcast news (BN), and multiparty meetings, and
in tasks that are small and large [4, 5, 6, 7, 8, 9].
Most tandem approaches to date have used phone pos-

teriors for deriving features. While it can be argued that
features optimized for phone discrimination will better cou-
ple with phonetic modeling units used in HMMs, there is
nothing inherent in tandem processing that will prevent an
alternative partitioning of the acoustic space, and the pos-
teriors from that space, being the basis of tandem process-
ing. Articulatory features (AFs) can provide one such al-
ternative. AFs have a long history in ASR proposals; see,
e.g., [10, 11, 2, 12, 13]. Among the arguments for the use
of AFs in ASR are (1) they can better account for pronuncia-
tion and acoustic variability than phones, (2) AF classification
is simpler, involving multiple small classification problems,
and (3) AFs are more language-universal than phones, and
therefore they should better generalize and adapt to new lan-
guages. In recent work [14], we showed that AF-based tan-
dem features indeed can be as effective as phone-based tan-
dem features on a subset of the Switchboard database, where
the amount of MLP training used in comparisons was limited
(five hours).
In this paper, we report comparisons between AF- and

phone-based tandem features, derived from MLPs trained on
a large amount of data (2000 hours of English CTS), on a
number of tasks. First, the AF- and phone- based approaches
are compared for English CTS using a subset of Switchboard.
Second, the language portability of AF- and phone-based tan-
dem features is addressed. Similarly to an acoustic model,
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Feature Values
Place labial, labio-dental, dental,

alveolar, post-alveolar, velar,
glottal, rhotic, lateral, none, silence

Degree/manner vowel, approximant,
flap, fricative, closure, silence

Nasality +, -, silence
Glottal state voiced, voiceless, aspirated, silence
Rounding +, -, silence
Vowel aa, ae, ah, ao, aw1, aw2, ax, ay1, ay2,

eh, er, ey1, ey2, ih, iy, ow1, ow2,
oy1, oy2, uh, uw, not-a-vowel, silence

Height very high, high, mid-high, mid,
mid-low, low, nil, silence

Frontness back, mid-back, mid, mid-front,
front, silence

Table 1. The articulatory feature set.

the tandem features are language-dependent, because the un-
derlying MLP is tuned to a particular language and task. The
AF- and phone-based features from English-trainedMLPs are
compared for Mandarin LVCSR, which in turn are compared
to a set of features extracted from an MLP trained on in-
domain data.
Parallel to the AF vs. phone comparison, we also explore

new observation models for systems using tandem features,
continuing our initial work in this area [14]. As mentioned
earlier, the usual method of incorporating tandem features
in ASR systems is to concatenate them with some standard
feature vector, and then tie the hidden mixtures and context-
dependent state clusters for the tandem and standard features
together. This restriction could be inefficient, because the
standard and tandem acoustic features are likely to have dif-
ferent statistical properties, being derived from two oppo-
site paradigms, knowledge-based signal processing vs. data-
driven statistical learning [7]. Instead, a factored approach is
explored here, where each feature vector is allowed to have its
own mixture and tying structure. For AF-based tandem fea-
tures, a fully factored approach is also explored, where there
are multiple tandem vectors corresponding to each AF cate-
gory.

2. RECOGNITION SYSTEMS

In this section, we describe the English CTS and Mandarin
BN speech recognition systems used in our experiments.

2.1. English CTS

SVitchboard, a set of reduced-vocabulary tasks derived from
Switchboard 1 [15], is used for English CTS experiments. In
particular, we use one of the SVitchboard 500-word tasks,
which includes a total of 6.4 hours of speech, and which has

been partitioned into training (A, B, and C), development (D),
and testing (E) sets.
All recognition systems including triphone systems are

trained and tested using the Graphical Models Toolkit
(GMTK) [16]. 13 PLP coefficients and their first- and second-
order derivatives are used as standard acoustic features. Mean
subtraction and variance normalization are performed on a
per-speaker basis. Decoding is first-pass using a bigram LM
estimated from the training transcripts. The vocabulary is
closed to 500 words without any out-of-vocabulary words;
the dictionary allows up to three pronunciations per word.
The LM scales and penalties as well as the number of mix-
ture components in the observation models are optimized on
the development set to minimize WER.

2.2. Mandarin BN

About 97 hours of LDC Mandarin Hub4 and TDT4 data, re-
leased as part of the DARPA GALE program, are used for
acoustic model training. The TDT4 closed captions were fil-
tered with flexible alignment [17]. The 2004 GALEMandarin
Rich Transcription development (RT04-dev) and evaluation
(RT04-eval) sets are used for system development and final
testing, respectively. RT04-dev and RT04-eval include about
half an hour and one hour, respectively, of BN speech. The
Mandarin BN speech has a bandwidth of 8 kHz, whereas the
English CTS data on which the AF MLPs and English phone
MLP are trained has a bandwidth of 4 kHz. Therefore, the
Mandarin BN data was downsampled from 16 kHz to 8 kHz
for consistent evaluation of Mandarin systems in all experi-
ments.
SRI’s Decipher LVCSR system is used for Mandarin BN

experiments. 13 MFCCs plus pitch, and their first- and
second-order derivatives, are used as standard features. Vo-
cal tract length normalization, mean subtraction and variance
normalization are performed on a per-cluster basis (the clus-
ters are automatically deduced). Decoding is first pass us-
ing a trigram LM, with a lexicon consisting of about 49000
words. Decipher includes a mechanism to smooth Gaussian
probabilities using an exponential weight, which was found
to be particularly helpful in tandem systems that use large-
dimensional feature vectors. The Gaussian weights as well as
the LM scales and penalties are optimized on RT04-dev, and
the final results are reported on RT04-eval. See [8] for more
details about the Mandarin system.

3. MLP CLASSIFIERS

We have trained a number of MLPs for AF and phone classi-
fication using about 2000 hours of speech from the Fisher and
Switchboard 2 corpora. (Note that while the domain is simi-
lar, these MLP training data have no overlap with the SVitch-
board data, cf. Section 2.1.) The AF set used in our exper-
iments is given in Table 1. A separate gender-independent
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MLP Classifier # of units Accuracy
English AF
Place 1900 / 10 76.2
Degree 1600 / 6 77.8
Nasality 1200 / 3 90.5
Glottal state 1400 / 4 87.1
Rounding 1200 / 3 87.7
Vowel 2400 / 23 73.3
Height 1800 / 8 75.4
Frontness 1700 / 7 75.8
English phone 4800 / 46 61.4
Mandarin phone 2000 / 65 73.1

Table 2. The number of hidden units / output units, and CV
accuracy (%) for various phone and AF MLPs trained on En-
glish and Mandarin.

MLP for each AF feature is trained. The MLPs are standard
feedforward networks, with input, hidden, and output layers.
The inputs to the MLP are the PLP coefficients from the cur-
rent frame as well as those from the four frames to the left and
right, a total of 351 values. The number of hidden units are
set to have an approximate 1000 :1 ratio between the number
of training frames and parameters. The AF targets for MLP
training are obtained from a deterministic phone-to-AF map-
ping of forced phonetic alignments from an SRI CTS system.
See [18] for more details about the AF MLPs. An MLP for
phone classification, using a 46 dimensional phone set, has
been trained on the same data set as well.
To gauge the effectiveness of the English-trained MLPs

on Mandarin, we also trained an MLP for phone classifica-
tion using the Mandarin BN training data, cf. Section 2.2.
This MLP is similar to the English phone MLP except that
it uses 65 Chinese phones, which also encode lexical tone.
This Mandarin MLP was originally developed as part of the
2006 GALE Mandarin evaluations [8].
The number of MLP hidden units and the frame-level

classification rates for the various MLPs are reported in Ta-
ble 2. The cross-validation (CV) accuracy is measured against
the forced-aligned labels, on a 10% subset of the data that
were set aside during MLP training. While Mandarin has a
significantly larger phone set, it is recognized more accurately
than the English phone set, possibly due to the generally lower
error rates for BN than for CTS.

4. ENGLISH CTS EXPERIMENTS

We have performed a number of experiments comparing the
AF-based tandem features to the phone-based ones, and the
factored observation models to the popular feature concate-
nation approach, for English CTS.

4.1. Tandem Processing

Extraction of the tandem features from the AF MLPs is simi-
lar to the standard tandem processing [1, 3, 4]. For each time
frame, the posterior outputs from all AF MLPs are joined to-
gether to form a 64-dimensional vector. Their logarithm is
taken,1 and principal component analysis (PCA) is applied.
The logarithm and PCA expand the dynamic range of the pos-
teriors, and makes them more amenable to Gaussian model-
ing. The PCA transform is estimated on the MLP CV set,
cf. Section 3; the number of principal components was 26,
which was found to account for the 95% of the total variance.
The resulting 26-dimensional vectors after mean subtraction
and variance normalization are used as acoustic observation
vectors in the HMMs.
Extraction of the tandem features from the phone MLP is

similar, except that instead of the concatenated outputs from
multiple AF MLPs, the outputs of the phone MLP are used.
The first 24 principal components were sufficient to account
for 95% of the total variance.
Finally, a third set of tandem features were extracted from

the concatenated outputs of all AF MLPs and the phone MLP
to evaluate howmuch complementary information is provided
by the phone MLP and the AF MLPs. The number of prin-
cipal components were set to 37 using the aforementioned
variance criterion.

4.2. Observation Modeling

In most previous work using tandem features, the tandem fea-
tures are concatenated with some standard acoustic features,
for example, PLP coefficients, which are then fed into HMMs.
These HMM outputs with mixture of diagonal-covariance
Gaussian distributions can be expressed as

p(x, y|q) =
∑

t

p(t|q) p(x|t, q) p(y|t, q) (1)

where x and y denote PLP and tandem vectors, respectively,
q denotes the HMM state, and t denotes the mixture compo-
nent. (Note that the tandem and PLP vectors appear in two
separate factors inside the summation because of the diagonal
covariance modeling.) The tandem features are constrained
to have the same mixture and tying structures as PLP coeffi-
cients, and vice versa.
While feature concatenation is convenient from a system

design perspective, it could be inefficient for statistical mod-
eling. A transformed posterior probability and a PLP coeffi-
cient are likely to have different statistical properties, and they
could be better modeled if they are allowed to have separate
mixture and tying structures [14]:

p(x, y|q) =
∑

z

p(z|q) p(x|z, q)
∑

w

p(w|q) p(y|w, q). (2)

1It is also possible to use the MLP outputs before the final nonlinearity
instead of taking the logarithm; this method gives similar results.
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Feature WER
1 PLP 67.7
2 Phone tandem 61.4
3 PLP + Phone tandem (Concatenated) 58.2
4 AF tandem 61.1
5 PLP + AF tandem (Concatenated) 59.7
6 PLP × AF tandem (Factored) 59.1
7 PLP × AF tandem (Fully factored) 63.8
8 PLP + Phone-AF tandem (Concatenated) 59.8

Table 3. WERs (%) for various monophone systems using
PLP coefficients, and phone- and AF-based tandem features,
on the SVitchboard 500-word E set. We use + to denote fea-
ture concatenation, and × to denote observation factoring.

As compared to Equation 1, the tandem and PLP vectors in
Equation 2 appear in two separate factors without a joint sum-
mation: the two vectors are assumed to be conditionally in-
dependent. The factored model can better model each of the
PLP and tandem vectors. On the other hand, if the two vectors
are highly dependent even when conditioned on the HMM
state, the factored approach could suffer.
Within AF-based tandem processing, one can extend the

factored model so that each AF category has its own factor,
which we refer to as the fully factored model. In this model, a
separate tandem vector is extracted from each AF MLP, using
the procedure described in Section 4.1. After applying sepa-
rate PCAs to keep 95% of the total variance within each AF
category, the number of tandem features was 4 for place, 4 for
degree, 2 for nasality, 2 for glottal state, 2 for rounding, 13 for
vowel, 5 for height, and 5 for frontness. Note that the total di-
mensionality (37) is larger than the dimensionality (26) from
the jointly concatenated approach, cf. Section 4.1. This is
expected given that AF categories are overlapping and redun-
dant in the acoustic space. In addition, we note that because
the fully factored model loses the benefit of joint optimiza-
tion, it is expected to suffer when used with the AF-tandem
features.

4.3. Results

To compare the performances of AF- and phone-based tan-
dem features, and of factored modeling and feature con-
catenation, we have conducted a number of experiments on
SVitchboard using monophone and triphone models. In Ta-
ble 3, we report the WERs for monophone systems using
PLP coefficients, phone and AF tandem features both alone
and in combination with PLP coefficients, and factored and
fully factored models using various AF tandem features. In
Table 4, the key comparisons are repeated using triphone sys-
tems. In order to separate the benefits of factoring and of the
factor-specified state tying, an experiment is devised, where
the tandem and PLP features are still factored, but they are
forced to share the state-tying structure from the concatenated

Feature # of states WER
1 PLP 675 61.7
2 PLP + Phone tandem 441 54.9

(Concatenated)
3 PLP + AF tandem 426 55.4

(Concatenated)
4 PLP × AF tandem 689 / 302 54.4

(Factored)
5 PLP × AF tandem 426 / 426 54.9

(Factored & Tied)
6 PLP + Phone-AF tandem 376 55.3

(Concatenated)

Table 4. WERs (%) for the various triphone systems on the
SVitchboard 500-word E set. The number of states refers to
the number of decision-tree clustered triphone states; the pair
for the observation factored models is the number of states
for the PLP and tandem factors, respectively. See the Table 3
caption for the notation.

model. Line 8 in Table 3 and line 6 in Table 4 correspond to
the tandem features extracted using the outputs of both the AF
MLPs and the phone MLP, cf. Section 4.1. (Some of the AF
tandem results reported in Table 3—lines 1, 5, and 6—first ap-
peared in [14], and are reproduced here for the sake of com-
parison. Also, the triphone experiments in this paper use a
relative likelihood improvement criterion for state clustering,
which is found to better scale across systems using varying
numbers of features than an absolute likelihood improvement
criterion as used in [14]. No triphone AF- vs. phone-based
tandem features, or factored vs. factored-and-tied modeling
comparisons, appeared in [14].)
A few observations about Tables 3 and 4 are in order.

First, in Table 3, either the phone-based tandem features or the
AF-based ones alone significantly improve over the baseline
PLP features (lines 2 and 4 in Table 3), and they perform com-
parably to each other. Second, after concatenation with the
PLP coefficients, the phone-based tandem features perform
better than the AF-based tandem features in both monophone
and triphone systems (lines 3 and 5 in Table 3, and lines 2
and 3 in Table 4). Third, the tandem features extracted using
all the MLPs fail to provide any improvement over the tan-
dem features extracted using either set of MLPs (lines 3 and 5
vs. 8 in Table 3, and lines 2 and 3 vs. 6 in Table 4). There-
fore, the phone MLP and the AF MLPs seem to provide no
complementary information to each other, as utilized by the
feature concatenation framework. Fourth, there is a consis-
tent gain from factored modeling over feature concatenation
(lines 5 and 6 in Table 3, and lines 3 and 4 in Table 4). The
fully-factored approach is significantly inferior (line 7 in Ta-
ble 3), which is expected given that the AF set used here is not
orthogonal. Finally, we observe that the context-dependent
clusterings for the two factors are significantly different in
both size and structure (lines 3 and 4 in Table 4). The tandem
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Feature WER
1 MFCC 21.5
2 MFCC + Phone tandem (Mandarin) 19.5
3 MFCC + Phone tandem (English) 21.2
4 MFCC + AF tandem (English) 21.9

Table 5. WERs (%) for the various systems using MFCCs,
and various tandem features on Mandarin RT04-eval set. The
language on which the MLP is trained is given in parentheses.
All tandem systems employ feature concatenation.

features require less than half of the tied states required for
the PLP coefficients (lines 4 in Table 4). Constraining them
to use the same clustering degrades performance (lines 4 and
5 in Table 4). The factored model seems to equally benefit
from the use of separate mixture and tying structures.

5. MANDARIN BN EXPERIMENTS

As opposed to PLP coefficients or MFCCs, which contain a
handful of adjustable parameters, the tandem features in ef-
fect contain millions of parameters, by way of the MLPs from
which these features are derived. These free parameters allow
the optimization of the front-end signal processing to a par-
ticular task, and more generally, to a particular language, as
shown by significant WER improvements in Section 4. How-
ever, at the same time, such a high degree of adaptability
could easily become a burden, if the tandem features do not
generalize well, especially for tasks and languages where the
amount of training data is small. While languages can have
radically different phone sets, for example, 46 English phones
vs. 65 Mandarin phones with tone, AFs are more likely to be
shared across languages. Therefore, one would expect that the
AF distinctions learned in one language would better gener-
alize to another language, and that the AF-based tandem fea-
tures would be more language-portable than the phone-based
tandem features [12, 7]. In previous work, it was shown that
the phone-based tandem features exhibit significant cross-task
and -language portability [7].
To test the hypothesis that the AF-based features would

generalize better than the phone-based features, we used the
English-trained MLPs for tandem feature extraction for Man-
darin. The tandem processing is identical to the procedure de-
scribed in Section 4.1 except that new PCA transforms are es-
timated on the Mandarin training data, reducing dimensional-
ity to 29 and 25 for the AF- and phone-based tandem features,
respectively (again using the 95% total variance criterion). A
third set of 32-dimensional tandem features is extracted using
aMandarin phoneMLP trained on theMandarin training data,
cf. Section 3. The WERs for the system using MFCCs, and
the systems using various sets of tandem features, are given in
Table 5. All tandem systems concatenate the tandem features
with the MFCCs.
Table 5 contains a number of interesting results. First, we

find that the Mandarin-trained phone tandem features bring
gains as impressive as the gains from English tandem features
in Section 4.3 (the relative WER improvements are around
10%). Second, while the English-trained phone tandem fea-
tures bring a small WER reduction, the English-trained AF
features actually degrade performance. Third, overall it is
more advantageous to use a relatively small amount of in-
domain data to tune tandem features to a particular language,
rather than transporting them across languages.
Contrary to the hypothesis that the learned AF distinctions

would generalize better, the English-trained AF features actu-
ally degraded the performance for Mandarin BN, which could
be due to a number of factors. First, the AF learning in our
setup was restricted by the lack of ground truth AF labels. We
used deterministic phone-to-articulatory mappings for creat-
ing AF training targets, which could be inaccurate. Embedded
training can improve results [19]. Second, all of the AFMLPs
in this study were trained with the same standard acoustic
features (39 PLP coefficients). For AF tandem features to
generalize across different languages, it may be important to
also use acoustic features that are specific to the AF set, in
addition to standard acoustic features. For instance, specific
acoustic-phonetic features like fundamental frequency, voice-
onset time, glottalization, burst related impulses, and intensity
can be helpful [20]. Third, in addition to the language mis-
match, the domain mismatch (CTS vs. BN) probably tampers
with generalization as well.

6. CONCLUSIONS AND FUTUREWORK

In this paper, we compared AF-based tandem features to
phone-based ones, and factored observation modeling to fea-
ture concatenation, on a number of monolingual and crosslin-
gual tasks using MLPs trained on 2000 hours of English data.
We found that while the AF-based tandem features are com-
parable to the phone-based ones when the MLPs are trained
and tested on the same language, the phone-based approach
is significantly better on a new language, without retraining.
In crosslingual studies, we found that the tandem features
from an MLP trained on a small amount of in-domain data
performed the best. Furthermore, in the AF tandem studies,
we found that there is consistent benefit from a limited form
of factoring in AF-based tandem observation models, but not
from fully factoring.
Our results suggest a number of interesting future research

directions. Iterative, embedded training of AF MLPs that
can provide more accurate AF targets, which could be ini-
tialized by deterministic phone-to-articulatory mappings as
in the present work, could be necessary to fully exploit the
power of AF representations. Methods of transfer learning
between languages, e.g., MLP retraining and adaptation [21],
is a largely unexplored area. It is also necessary to repeat
these cross-language studies for other pairs of languages with
varying degrees of acoustic-phonetic similarity. The nega-
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tive results with the fully factored observation models suggest
that relaxing the conditional independence assumption in the
factored model by cross-factor dependencies could be benefi-
cial [22].
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