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ABSTRACT 
This paper presents a new streamed hidden Markov model 
(HMM) framework for speech recognition. The factor 
analysis (FA) is performed to discover the common factors 
of acoustic features. The streaming regularities are governed 
by the correlation between features, which is inherent in 
common factors. Those features corresponding to the same 
factor are generated by identical HMM state. Accordingly, 
we use multiple Markov chains to represent the variation 
trends in cepstral features. We develop a FA streamed 
HMM (FASHMM) and go beyond the conventional HMM 
assuming that all features at a speech frame conduct the 
same state emission. This streamed HMM is more delicate 
than the factorial HMM where the streaming was 
empirically determined. We also exploit a new decoding 
algorithm for FASHMM speech recognition. In this manner, 
we fulfill the flexible Markov chains for an input sequence 
of multivariate Gaussian mixture observations. In the 
experiments, the proposed method can reduce word error 
rate by 36% at most. 

Index Terms— factor analysis, Markov chain, 
streamed HMM, speech recognition
 

1. INTRODUCTION 
Hidden Markov models (HMMs) [8] have been becoming 
the main stream approach for speech recognition for the past 
decades. Due to the powerfulness of HMMs in stochastic 
modeling, many approaches have been presented to deal 
with different limitations in HMM. In [5][6], the factorial 
hidden Markov model (FHMM) was proposed to model the 
loosely coupled random processes. Using FHMM, different 
processes were represented by individual HMM topologies 
through streams of Markov chains instead of simply 
adopting one stream for conventional HMM. This approach 
has achieved desirable performance in real-world 
applications [1][3]. In [3], the FHMM combining two HMM 
processes was employed for simultaneous recognition of 
utterances from multiple speakers. Similar structure was 
used in noisy speech recognition. FHMM with two streams 
of processes was adopted to capture the statistics of speech 
as well as noise [1][12]. The log-max approximation was 
performed to determine the stream of an observation 
[1][3][7]. 

Even though HMM and FHMM are successful for 
speech recognition, these methods are limited due to the 
assumptions that all features in a speech frame come from 
the same Markov chain, namely the state transition of 
different cepstral features happens at the same moment. 
This assumption shall result in the limitation that the 
dynamics of individual features cannot be properly 
characterized. For this reason, the streamed FHMM [6] was 
proposed to represent acoustic features separately by 
different streams or Markov chains for sub-vectors. For 
example, a full acoustic feature vector could be separated 
into three sub-vectors of cepstral features, energy features 
and delta features. Using the streamed FHMM, the input 
features between sub-vectors were distinct. The features 
within the sub-vector were significantly correlated. The 
streaming was determined artificially. However, in 
conventional HMM, if we only used a full covariance 
matrix to model the correlations among features. The 
dynamics such as state transition were not explicitly 
expressed. 

In this work, we go beyond the streamed FHMM by 
modeling the correlation among features according to factor 
analysis (FA) principle. We perform FA projection of 
acoustic features and group the correlated features to form 
inputs for streams. In an extreme case, we can model 
individual feature via its own Markov chain. However, this 
case is impractical and computationally inefficient. Here, we 
balance the tradeoff between coarse and precise streams 
through the control of common factors. The dynamics or the 
moments of state transition are flexibly determined. We find 
the features with high correlation and use a separate Markov 
chain to modeling its statistics. In what follows, we first 
describe how FA is able to perform correlation analysis of 
cepstral features. In section 3, we present the topology of 
FA streamed HMM (FASHMM) and its solution to 
parameter estimation. In section 4, we report the 
experiments on recognizing TIDIGIT utterances and 
investigating different realizations of FASHMM. A 
decoding algorithm is described. In section 5, we draw the 
conclusions from this study. 

2. CEPSTRAL FACTOR ANALYSIS 
In speech recognition procedure, we usually extract the 
Mel-frequency cepstral coefficients (MFCCs) as features 

30978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



and use them to characterize state emission for speech 
frames in HMM framework. When representing speech 
process by Markov chains, it is important to conduct the 
correlation analysis of cepstral features and discover the 
regularities of individual features. One single Markov chain 
shall not be sufficient to reflect the dynamics of acoustic 
features observed in a phone segment.  Figure 1 shows an 
example of different cepstral coefficients of digit “4” 
sampled from a TIDIGIT database. We find that the cepstral 
coefficients make considerable changes at different time 
moments. The 1st MFCC and log-energy have similar 
transition time, but the movement of 4th MFCC is different 
from that of 1st MFCC and log-energy. The transitions in 
Markov chains or the boundaries of HMM states should be 
represented by the streamed HMM where the features in the 
same stream are similarly behaved and modeled by the 
shared Markov chain. In this study, we are presenting a 
factor analysis approach to capture the correlations among 
features and the regularities for state transitions. 
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Figure 1: Dynamics of different cepstral features of 
TIDIGIT “4”. 

2.1. Factor Analysis
Statistical factor analysis (FA) is a machine learning 
approach to discovering the correlations inherent in 
observation data. FA was applied for front-end 
preprocessing of noisy speech signal [2]. It was also used to 
construct the HMM covariance matrix for speech 
recognition [9][10]. Different from the processing in signal 
domain [2] and model domain [9][10], we are applying FA 
approach both in feature domain and in model domain. We 
are detecting the correlations among features via FA method 
and merging these correlations in HMM modeling. 

FA conducts data analysis of the multivariate 
observations using the common factors and the specific 
factors. For a D  dimensional feature vector 

T
Dyy ],[ 1y , the general form of FA model is given by 

fWy f ,                                               (1) 

where f  and  denotes 1M  common factor and 1D
specific factor and are independently Gaussian distributed 
by densities ),0( IN  and ),0(N , respectively. The MD
matrix fW  is called the factor loading matrix with each 
entry recording the correlation between feature dy  and 
common factor mf . We should estimate FA parameters 

}{ f fW ,, . Using the maximum likelihood estimation [11], 
we can find a DD  transformation matrix W  by FA 
procedure. By dividing W  into two complementary sub-
matrices ][ rf WWW , we rewrite (1) by rf yyy

rWfW rf  and accordingly estimate f  and  by 

ff yWf T  and rWy rr , respectively. Here, we are 
motivated to interpret different dynamics in acoustic 
features by common factors and specific factors. The 
features with high correlation should contribute the specific 
factor loading weights. We use separate Markov chains to 
model the dynamics caused by the common factor and the 
residual factor. We construct a new graphical model to 
delicately express complex dynamics in a sequence of 
feature vectors. The conventional state transition probability 
tied by all features in a speech frame is improved by using 
multiple transition probabilities activated by the common 
factors and the residual factors. 
2.2. Rotation of Loading Matrix
Common factor is inherent to represent the tying of acoustic 
features with high correlations. There exists the 
phenomenon that one feature is correlated to several 
common factors. The estimated common factors shall be 
confusing. To determine common factors with good 
discriminability, we perform a rotation process for finding 
factor loading matrix. There are two rotation approaches for 
FA. One is orthogonal rotation and the other is oblique 
rotation. Orthogonal rotation claims that the resulting 
factors are uncorrelated after transformation while oblique 
rotation does not guarantee this orthogonal property. 
Basically, the orthogonal rotation is desirable to attain 
discrimination of common factors. Hence, we apply the 
Varimax rotation [11]. Using this approach, we yield the 
rotated factor loading matrix by 

WH ,                                    (2) 
where  is a DD  orthogonal matrix and D

T I .
}{ ijhH  represents the rotated loading matrix. Varimax 

rotation assures that the variance in each row vector of 
rotated loading matrix is maximized. Let  
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In Table 1, we display the elements of factor loading matrix 
before and after the orthogonal rotation. Here, we use the 
same data as that used in Figure 1. Before rotation, the first 
common factor captures high correlation in the 1st MFCC 
and log-energy. This is matching the result shown in Figure 
1. After rotation, the discriminability between two factors is 
increased. For example, the correlations between 4th MFCC 
and 1st factor and 2nd factor are -0.312 and -0.724, 
respectively. After rotation, we increase the difference of 
correlations. The correlations become 0.266 and 0.791. 

Table 1: Comparison of some elements of  W  and H .
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Figure 2: Topology of FASHMM. 
3. FA STREAMED HMM 

Using FA, the processes of observed features and hidden 
states are represented by common factors and residual 
factors. We intend to use separate Markov chain to model 
the movements of acoustic features corresponding to 
different factors. Figure 2 shows new topology based on the 
proposed FA streamed HMM (FASHMM). Markov chains 
are driven by common factors },,{ 1 Mff  and residual 
factor r . At each frame t , we use several states to generate 
the feature vector ty . This is similar to the topology of 
FHMM [5]. FHMM was seen as a Bayesian belief network 
which was composed of more than one stream. Markov 
chain at each stream was used to characterize the dynamics 
of feature vector. Nevertheless, the streams in FHMM had 
the inputs of observed features instead of those of common 
factors and residual factors used in FASHMM. 
3.1. Survey of Different HMMs

In standard HMM, the joint probability of observation 
sequence },,,{ 21 TY yyy  and state sequence 

},,,{ 21 TsssS   was represented by 

T

t
tttt spsspspspYSp

2
1111 )|()|()|()(),( yy ,     (5) 

where ty  was a 1D  feature vector. Using FHMM, the 
state at time t  was extended to M  states, i.e. 

)()()1( ,,,, M
t

m
ttt ssss . FHMM was also related to the 

multi-stream HMM [4]. In multi-stream HMM, the 
likelihoods at different streams were combined at subword 
level. This was different from FHMM where the 
combination was done at frame level. Using FHMM, the 
state transition of one stream was constrained to be 
independent to that of other streams. The state transition 
probability was given by 

M
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Also, the calculation of likelihood function )|( tt sp y
involved M  states. The likelihood function was defined by 
a Gaussian density with a common covariance matrix and a 
mean vector which was a linear combination of means for a 
HMM state [5] 

,)()(
2
1exp

||)2()|(

1

1

1

2/12/

M

m
mt

T
M

m
mt

D
tt sp

yy

y
           (7) 

where m  was the mean of state )(m
ts  and  was a shared 

covariance matrix. According to (5)-(7), EM algorithm was 
carried out for maximum likelihood estimation. In [5], an 
efficient approximation algorithm was proposed for 
parameter estimation for FHMM. 

Although FHMM considered different dynamics, all 
features were “tied” together to model the dynamics in each 
stream. Namely, all features were generated by the same 
Markov chain. The state transition of these features 
occurred at the same time. Gaussian process could not be 
properly modeled. For this reason, the streamed FHMM 
(SFHMM) [6] was proposed through partitioning the 
observed feature vector into several streams of sub-vectors. 
For example, the acoustic feature vector could be divided 
into three subvectors of cepstral coefficients and their first 
and second delta coefficients. These subvectors were 
grouped into different streams. Using SFHMM, the 
grouping was artificially determined. In this study, we 
present FASHMM framework where the streaming of 
acoustic features is driven by the factor analysis principle. 
3.2. FASHMM

According to FA method, the common factor mf  is 
associated with some features, which are highly correlated. 
This factor mf  is viewed as the input of FASHMM in 
stream m . In this case, we don’t need to put original 
features as the inputs as performed in FHMM [5]. 
Correlated features are grouped together to form a 
univariate common factor mf  for a stream and shared by 
the same FA parameters. Since the input of each stream is a 
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univariate variable, the model size of FASHMM is smaller 
than that of FHMM. In addition to streams of common 
factors, we also create one stream for residual vector r  so 
as to fulfill FA spirit. Here, we extend (1) and represent D
dimensional feature vector by 

,]][[ 21rfff
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T
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M
rWwww
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(8) 

where 
mfw  is the mth column vector of factor loading 

matrix fW , rW  is a )( MDD  sub-matrix of 
transformation matrix and r  is a 1)( MD  residual 
vector. In FASHMM, the state transition probability is 
expressed by 
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Different streams are assumed to be independent. The 
probability of observation vector ty  at state ts  is yielded 
by 
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where ),(
2m

k
m
k  and ),( rr

kk  are the kth Gaussian 
parameters for common factor mf  and residual vector r ,
respectively. Given the initial state probability 

})({ 1 iisp  and the state transition probability 
})|({ 1 ijtt aisjsp , we calculate the joint likelihood 
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are constructed. In model training procedure, we perform 
the maximum likelihood (ML) estimation of FASHMM 
parameters  through the expectation-maximization 
algorithm. The expectation function of new estimate 
given current estimate  is determined by 
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By maximizing )|(Q  with respect to , we can find 
the closed-form solutions given below 
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where ),( kimf
t  and ),( kit

r  are the occupation 
probabilities for state ist  and mixture k  at different 
stream m  and time t .

At each time moment, we accumulate log-likelihood 
score for each stream. A simple approach is to set 
equivalent stream weight. But, in FA model, one common 
factor shall represent more than one feature component. The 
stream weight should be adaptive. In this work, we calculate 
the stream weights from the columns of the rotated factor 
loading matrix }{ ijhH . The weight function j  in stream 
j  is empirically determined by taking absolute values of 

entries }{ ijh  and computing the ratio of those values in 
column j  over all columns.  

3.3. Implementation Procedure
Typically, using the proposed FASHMM, we are able to 
incorporate multiple Markov chains to model a multivariate 
input sequence of features for speech recognition. We are 
not only extracting the salient common factors but also 
modeling the dynamics of common factors containing 
highly correlated features. In training procedure, similar to 
standard HMM, we first collect acoustic feature vectors 
corresponding to different words through Viterbi decoding 
algorithm and then estimate the word dependent factor 
loading matrix W . After finding W , the common factors 

}{ mf  and residual vector r  are estimated and viewed as the 
inputs for estimation of HMM parameters at each stream. 
Because more than one stream is involved, the 
computational complexity of FASHMM is higher than that 
of standard HMM. This process is engaged in training phase 
as well as test phase. In test phase, a new decoding 
algorithm is developed for fulfilling FASHMM and shown 
in Figure 3. The additional computation is spent on finding 
the state transition boundaries for each stream and each 
word. Each stream has its own Markov chain. Let the 
number of states in stream j  be denoted by jM . The total 
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1. Let ),,( swt  denote the accumulated log-likelihood 
at time t  and state s  of word w  and ),,,( jswtl
denote the log-likelihood at jth stream. 

2. for Tt ,,2
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 where )(ws  denotes the maximum number 
of state combinations occurring during word 
w , Ww ,1 . State 1s  means that all 
streams are at their first state in word w .
for )(,,2 wss

)],,1([max),,,,1(max

),,,(),,(
1

1

swtjswtl

jswtlswt

ss

M

j
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where s  is the number of all possible 
states emitting to state s , j  is the jth 
stream weight. 

end 
end 

 end 
3. Back trace the best path with the maximum 

accumulated log-likelihood ),,( swt .

amount of states in a word is given by 1
1

M
j jM . Notably, 

before calculating log-likelihood ),,,( jswtl  and 
accumulated log-likelihood ),,( swt , we should perform 
FA procedure of extracting common factors and residual 
factors using word-dependent transformation matrix. Also, 
the search of optimal states in different streams is much 
more complicated compared to that only considering one 
stream in standard HMM.  

Figure 3: FASHMM decoding algorithm. 

4. EXPERIMENTS 
4.1. Experimental Setup
In the experiments, we carried out the proposed FASHMM 
for connected digit recognition using TIDIGIT database. 
The vocabulary had 11 words containing digits from “1” to 
“9” and digit “0” with two pronunciations “zero” and “oh”. 
Each speaker uttered isolated digits and connected digit 
strings with up to 7 digits. We used adult utterances from 
111 males and 114 females. There were 1700 training 
utterances and 8000 test utterances. All utterances were 
down sampled to 8 kHz with 16 bit resolution. We extracted 
39 dimensional feature vectors consisting of 12 MFCCs and 
one log-energy, and their first and second derivatives. In 

standard HMM, we fixed 16 states for each digit and one 
shared state for all silence segments. Number of mixture 
components in a HMM state was four at most. In the 
evaluation, we changed the number of states for different 
streams. In FA procedure, we used maximum likelihood 
approach to estimate factor loading matrix and then find 
common factors and residual factors [11]. Considering the 
computational efficiency, we simplified the model topology 
to a two-streamed FASHMM. The first stream corresponded 
to the common factors f  and the other stream corresponded 
to the residual vector r . In this way, the first stream weight 
was determined by integrating the stream weights of M
common factors into one shared weight. 
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Figure 4: Evaluation of log likelihood function. 

4.2. Evaluation of Likelihood Function
In what follows, we calculate the accumulated log-
likelihood to evaluate the goodness-of-fit performance of 
training data using different methods. We compare the 
standard HMM, the streamed FHMM (SFHMM) [6] and the 
proposed FASHMM. FAHMM is not focused on the 
streamed modeling so that we don’t include it for 
comparison. In SFHMM, we used three features of log-
energy, delta log-energy and delta delta log-energy in the 
first stream. The remaining 36 features of 12 MFCCs and 
their first and second derivatives were collected in the 
second stream. In the implementation of FASHMM, we also 
used 3 and 36 acoustic features in the first and the second 
streams, respectively. The assignment of acoustic features to 
two streams was determined automatically by FA principle. 
Number of states was varied at two streams. In Figure 4, we 
fixed 16 states in the second stream and used 6, 10 and 16 
states in the first stream. We can see that SFHMM-(16, 16) 
and FASHMM attain higher likelihood score that standard 
HMM. In case of using 10 and 16 states in the first stream, 
FASHMM has better likelihood score compared to SFHMM. 

4.3. Recognition Results

34



In evaluation of speech recognition, we compare the word 
error rate (WER) of using standard HMM, SFHMM, and 
different realizations of FASHMM in Table 2. Error rate 
reduction is reported in the last column. In realizations of 
FASHMM, we change the number of features and the 
number of states at each stream. The streamed HMMs using 
SFHMM and FASHMM outperform the conventional 
HMM without streaming process. Also, different 
realizations of FASHMM do decrease the word error in 
comparison with SFHMM. The best performance is 
obtained by setting 5 and 34 features and 6 and 16 states for 
the first stream and the second stream, respectively. Error 
rate reduction is 35.8% at most. Attractively, this realization 
does not only attain the lowest word error but also involve 
the smallest model complexity among the streamed HMM 
methods. Further, the number of parameters is almost the 
same as the conventional HMM in case of 9 and 30 features 
and 12 and 9 states for 1st stream and 2nd stream, 
respectively. In this case, the error rate reduction is 13.6% 
which is still significant. 

Table 2: Comparison of word error rates (%) using different 
methods. * and ** denote that FASHMM has significant 

improvement compared to HMM and SFHMM, respectively,  
through the t test at a significance level 05.0 .

No. of 
features at 

each stream 

No. of 
states at 

each stream 

WER 
(%) 

Error rate 
reduction

HMM 39 16 1.702 -- 
SFHMM (3, 36) (16, 16) 1.539 9.6 % 

(16, 16) 1.130 33.6 % ***

(10, 16) 1.130 33.6 % ***(3, 36) 
(6, 16) 1.153 32.2 % ***

(16, 16) 1.122 34.0 % ***

(10, 16) 1.092 35.8 % ***(5, 34) 
(6, 16) 1.137 33.2 % ***

(7, 32) (5, 11) 1.389 18.4 % ***

(9, 30) (12, 9) 1.470 13.6 % *

(16, 16) 1.266 25.6 % ***

(10, 16) 1.221 28.2 % ***

FASHMM 

(10, 29) 
(6, 16) 1.328 22.0 % ***

5. CONCLUSION 
We have presented the FA approach to extract the common 
factors and the residual factors in acoustic features and 
separate the Markov chains for these factors. Accordingly, 
we were able to represent the sophisticated dynamics in 
stochastic process of speech signal. A new topology of FA 
streamed HMM was proposed. By maximizing the 
likelihood of training data, we estimated the FASHMM 
parameters using those features in FA space. From the 
experimental results, we obtained the desirable recognition 
performance on the connected digit recognition using 
TIDIGIT database. In the future, we are investigating the 

issue of model complexity, namely the optimal selection of 
the numbers of stream, state and mixture component. We 
are applying the proposed FASHMM framework for large 
vocabulary continuous speech recognition. 
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