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ABSTRACT

We present in this paper a signal subspace-based approach for

enhancing a noisy signal. This algorithm is based on a prin-

cipal component analysis (PCA) in which the optimal sub-

space selection is provided by a variance of the reconstruc-

tion error (VRE) criterion. This choice overcomes many lim-

itations encountered with other selection criteria, like over-

estimation of the signal subspace or the need for empirical

parameters. We have also extended our subspace algorithm

to take into account the case of colored and babble noise.

The performance evaluation, which is made on the Aurora

database, measures improvements in the distributed speech

recognition of noisy signals corrupted by different types of

additive noises. Our algorithm succeeds in improving the

recognition of noisy speech in all noisy conditions.

Index Terms— Speech enhancement, speech recognition,

model identification, signal subspace, principal component

analysis, colored noise

1. INTRODUCTION

Among all classes of speech enhancement techniques, signal

subspace filtering has gained a lot of attention. Using this

approach, we obtain a nonparametric linear estimate of the

unknown clean-speech signal, based on a decomposition of

the observed noisy signal into mutually orthogonal signal and

noise subspaces. This decomposition is possible under the

assumption of a low-rank linear model for clean speech and

an uncorrelated additive noise interference. Assuming these

conditions, the energy of less correlated noise spreads over all

dimensions of the observation space while the energy of the

correlated speech components is concentrated in a subspace

thereof. This so-called signal subspace can be recovered con-

sistently from the noisy data. Generally speaking, enhance-

ment is obtained by removing the noise subspace and opti-

mally weighting the signal subspace to remove noise energies

from this subspace.

In [1] we had reported a novel signal subspace-based model

identification approach for single channel speech enhance-

ment in noisy environments based on the Karhunen-Loève

Transform (KLT), and implemented it via Principal Compo-

nent Analysis (PCA) [2] [3]. The motivation to choose KLT is

its optimality in compression of information, while the DFT

and the DCT are suboptimal. The main problem in subspace

approaches is the optimal choice of signal dimension. In

[1] we introduced a novel approach for the optimal subspace

partitioning using the Variance of the Reconstruction Error

(VRE) criterion [4]. This criterion provides consistent pa-

rameter estimates and allows us to implement an automatic

noise reduction algorithm that can be simply applied to the

observed data. In this paper we apply this method to a dis-

tributed speech recognition task carried out on TESTA of

the Aurora database. This test set includes four types of noise

(subway, babble, car and exhibition hall noise) artificially added

to clean signals provided in the same set. In the end, we prove

the method to be merited the best to ameliorate the quality of

a noisy signal as well as the recognition accuracy.

The organization of the paper is given as follows. Section

2 of this paper describes the proposed subspace approach in

enhancement of the noisy signal. Performance evaluation is

made in section 3, and in section 4 the paper is concluded.

2. PROPOSED SUBSPACE APPROACH

In this section we first present fundamental relations and no-

tations of PCA and then introduce the proposed method for

model identification. The last part of this section explains

how to reconstruct the clean signal from the observation, us-

ing the identified model.

2.1. Principal component analysis

We define a real-valued observation vector x(t) ∈ R
K to be

the sum of the signal vector s(t) ∈ R
K and noise vector

n(t) ∈ R
K , i.e.,

x(t) = s(t) + n(t), (1)

where

x(t) = [x1, x2, . . . , xK ]T , (2)

where K is chosen such that Wide Sense Ergodicity is satis-

fied, and s(t) and n(t) are defined similar to x(t). We arrange

19978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



a K-dimensional observation vector in a M × N Hankel-

structed (i.e., constant across the anti-diagonals) observation

matrix XM×N (t), where K = M + N − 1, i.e.,

XM×N (t) =

⎛
⎜⎜⎜⎝

x1 x2 . . . xN

x2 x3 . . . xN+1

...
...

. . .
...

xM xM+1 . . . xK

⎞
⎟⎟⎟⎠ . (3)

The time-variable notation is from now on considered implicit

and will therefore be left out in the remainder of the paper.

From x we can calculate the covariance matrix Rxx which

we define to be the expectation value of the outer product of

the observation vector with itself, i.e.,

Rxx = E{xxT }. (4)

Due to the ergodicity assumption made in (2), we can esti-

mate the covariance matrix Rxx using the zero-mean-scaled

version of (3) as

R̂xx =
1

M − 1
XT X ∈ R

N×N . (5)

The covariance matrix R̂xx ∈ R
N×N can be examined by its

eigenvalues and corresponding eigenvectors. Let q1, q2, . . . , qN

be eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λN

of the covariance matrix R̂xx. We define the matrix Q as

Q = [q1, q2, . . . , qN ] ∈ R
N×N (6)

where, due to the symmetry in R̂xx, the elements (eigenvec-

tors) are orthonormal. If we arrange the eigenvalues in de-

creasing order in a diagonal matrix

Λ = diag(λ1, λ2, . . . , λN ) ∈ R
N×N , (7)

where

λ1 ≥ λ2 ≥ . . . ≥ 0 (8)

for positive-definite covariance matrices, we can decompose

R̂xx into its eigenvalue decomposition (EVD), i.e.,

R̂xx = QΛQT . (9)

Since noise is assumed to be spread in the whole space, and

noise and clean signal are assumed uncorrelated, the eigen-

vectors of R̂xx, R̂ss and R̂nn are the same and

R̂xx = R̂ss + R̂nn. (10)

In all subspace signal enhancement algorithms it is assumed

that every short-time speech vector s = [s1, s2, . . . , sN ] can

be written as a linear combination of k < N linearly indepen-

dent basic functions mi, i = 1, 2, . . . , k where

s = My, (11)

where M is a (N×k) matrix containing the basis functions in

columns and y is a (k×1) weight vector. Since rank(Rss) =
k, there are k positive and N − k zero eigenvalues in EVD of

Rss.

The speech enhancement procedure can now be summa-

rized as follows:

• Separate the signal (signal + noise) subspace from the

noise-only subspace.

• Remove the noise-only subspace.

• Remove the noise components in the signal subspace.

The first operation needs a prior knowledge of signal dimen-

sion to correctly define the signal subspace. Theoretically the

signal dimension is defined by the order of the linear signal

model in (11) where in practice due to the strong variation in

speech contents (e.g., voiced versus unvoiced segments), the

entire signal will never exactly obey one model. Numerous

approaches for estimating the order of a model were reported

in the literature, but in most of them the noise is assumed to be

white noise and sometimes further assumptions are made. As

an example a popular approach is the minimum description

length (MDL) of Rissanen [5]. Schwarz [6] has shown that

MDL is optimal in the minimum probability of error sense

in detecting the order of the model, assuming that it has an

underlying exponential (Koopman-Darmois) probability dis-

tribution.

2.2. Model identification using VRE

In [4] Valle et al. have estimated the Variance of the Recon-

struction Error (VRE) to detect the faulty sensor. In this part

we apply this technique to the speech enhancement domain

and define the rank of the speech signal and enhance the ob-

servation signal by removing the remaining noise-only sub-

space. The minimum of the VRE consistently corresponds

to the best reconstruction. When reconstruction of the noisy

signal is based on the PCA model, the error is a function of

the number of PCs and the minimum found in the VRE cal-

culation directly determines the number of PCs. This is be-

cause the VRE is decomposed into the principal components

subspace and a residual subspace. The portion in the prin-

cipal components subspace has a tendency to increase with

the number of PCs, and that in the residual subspace has a

tendency to decrease, resulting in a minimum in VRE.

Imagine that our signal is corrupted with a noise along a

direction ξi

x = s + niξi (12)

where s is the clean portion, ni is the noise magnitude and

ξi ∈ R
N where ‖ξi‖ = 1. The reconstruction of the signal is

given by correction along the noise direction, that is,

ŝ = x − niξi, (13)
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so that ŝ is most consistent with the PCA model. The dif-

ference s − ŝ is known as the reconstruction error. In [7]

Qin and Dunia define the variance of the reconstruction error

along each dimension as

ui(l) ≡ var{ξT
i (x − ŝ)} =

ζT
i (l)R̂xxζi(l)
(ζT

i (l)ζi(l))2
(14)

where

ζi(l) = (I − Q̂(l)Q̂T (l))ξi. (15)

In (14) and (15), l is an assumption for the rank of clean

speech signal (k) and Q̂(l) is obtained from Q in (9) by keep-

ing only the first l columns as the PCs. In order to find the

number of PCs, we have to minimize ui(l) with respect to the

number of PCs. Considering different noise directions, we

propose the VRE to be minimized as

V RE(l) =
N∑

i=1

ui(l)
var{ξT

i x} =
N∑

i=1

ui(l)
ξT
i R̂ξi

. (16)

In this equation we calculate the VRE by summing ui(l) in

all dimensions (i = 1, 2, . . . , N). In order to equalize the

importance of each variable, variance-based weighting factors

are applied.

In summary, in order to select the rank of the signal we

have to go through the following steps:

• Build a PCA model for the original noisy data.

• Calculate the ui and VRE using (14) and (16).

• The minimum VRE occurs in a specific number of PCs,

which corresponds to the best reconstruction.

In a particular dimension ξi that is highly uncorrelated to the

others, it is possible that ui(l) ≥ var{ξT
i x}, which means the

model gives a worse prediction than the mean of the data (put

ŝ = 0 in (14)). In this case we should drop the uncorrelated

variable from the model.

2.3. Signal reconstruction

In order to reconstruct a signal from an observation, after

identifying the speech-signal model, we should remove the

noise-only subspace and modify the signal subspace to elim-

inate the effect of noise from this subspace.

Ephraim and Trees [8] developed two estimators of the

clean signal using two perceptually meaningful estimation cri-

teria. In the first estimator, signal distortion is minimized

while the residual noise energy is maintained below some

given threshold. This criterion results in a Wiener filter with

adjustable input noise level. In the second one, signal distor-

tion is minimized for a fixed spectrum of the residual noise. In

this estimator the speech signal masks the residual noise and

results in a filter whose structure is similar to that obtained in

the first case, except that now the gain function which mod-

ifies the KLT coefficients is solely dependent on the desired

spectrum of the residual noise. Generally the first estimator

allows a time domain constraint (TDC) on the residual noise,

while the second is designed for noise shaping using spectral

domain constraints (SDC). In this paper we use a modified

version of a TDC estimator.

The original TDC estimator in [8] is as

Ŝ = XQ̂GμQ̂T (17)

where Q̂ is the truncated Q. The truncation is made by cutting

the last N − l columns of Q (l is the rank of signal which

minimizes (16)). As in [8] only white noise is considered, Gμ

is a diagonal matrix containing l diagonal elements as

gμ(m) =
λs(m)

λs(m) + μσ2
ω

, (18)

where σ2
ω is the variance of the white noise and λs(m) is the

clean signal’s variance in the mth dimension. In our case

as we are dealing with real world noise signals, we associate

different variances of noise to each space dimension:

gμ(m) =
λs(m)

λs(m) + μσ2
m

. (19)

In (18) and (19), μ is the Lagrange multiplier in [8].

After estimating Ŝ using the modified TDC estimator, we

can simply estimate the clean signal (ŝ) by averaging the anti-

diagonal values of Ŝ.

3. EXPERIMENTS

In order to perform the evaluation, we have chosen three en-

hancement methods, each from different categories of single

channel enhancement algorithms. The methods to be com-

pared with VRE are as follows:

• Minimum description length (MDL) [5]: A subspace

approach using the KLT transform and MDL model

identification.

• Wiener [9]: A well-known minimum mean-square er-

ror (MMSE) algorithm using mean-square error crite-

rion to enhance a noisy signal in the discrete fourier

transform (DFT) domain.

• Spectral subtraction (SS) [10] [11]: A Maximum like-

lihood (ML) approach using spectral subtraction to re-

move noise from the speech signal.

In this section we analyze the performance of our method

comparing to other methods in terms of recognition rate and

global signal-to-noise ratio (SNR) improvement as two main

objective quality measurements. To evaluate and to compare

the performance of the different estimators, we carried out
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(a)

(b)

(c)

(d)

Fig. 1. SNR improvement using different enhancing methods

in (a) N1: Subway noise, (b) N2: Babble noise (c) N3: Car

noise (d) N4: Exhibition hall.

Table 1. Word accuracy (%) in different noisy conditions
(a) N1: Subway noise

SNR Noisy VRE MDL Wiener SS

-5 13.39 27.01 25.07 21.05 19.89

0 27.68 40.45 38.64 35.33 32.69

5 52.95 63.42 59.68 55.72 56.45

10 77.97 82.30 82.21 81.24 80.32

15 93.11 95.20 94.11 93.23 93.02

20 97.09 97.95 96.96 95.62 95.59

(b) N2: Babble noise

SNR Noisy VRE MDL Wiener SS

-5 5.12 21.35 18.18 16.97 14.38

0 12.20 24.95 20.24 18.74 16.98

5 26.89 37.40 35.34 30.49 30.02

10 48.96 55.65 54.53 51.86 51.32

15 74.02 76.75 75.96 72.50 72.43

20 88.97 90.92 90.54 77.83 75.23

(c) N3: Car noise

SNR Noisy VRE MDL Wiener SS

-5 9.51 23.97 20.65 17.28 16.29

0 15.03 25.63 23.37 18.42 17.38

5 33.50 45.35 42.48 38.94 37.45

10 66.61 71.93 70.29 69.47 68.49

15 88.42 91.93 91.32 89.51 90.03

20 95.11 96.94 96.41 95.19 95.10

(d) N4: Exhibition hall noise

SNR Noisy VRE MDL Wiener SS

-5 8.36 26.31 21.38 18.55 16.03

0 17.19 30.74 27.23 22.83 20.73

5 44.25 54.74 51.30 44.33 41.47

10 76.31 82.24 79.63 78.63 77.53

15 90.18 95.73 93.33 92.35 92.54

20 95.86 97.85 96.97 94.80 94.89

computer simulations with the TESTA database of Aurora

[12] (fs = 8 kHz). These speech signals were corrupted with

four types of noise at different global SNR levels. These types

of noises are as follows:

• N1: Subway noise.

• N2: Babble noise.

• N3: Car noise.

• N4: Exhibition hall noise.

In the segmentation process, a frame length of 30 millisec-

onds, 40% overlap and a hamming window is applied. In

VRE and MDL, N = 21, μ = 2 and σ2
m is obtained by

averaging noise power in each dimension over the initial non-

speech segments. In Wiener, α (the smoothing factor for the
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Decision-Directed method for estimation of A Priori SNR)

equals 0.99 and the smoothing factor for the noise updating is

9. In SS, c (the scaling factor in silence periods) is set to 0.03.

In Fig. 1, SNR improvements using different methods as

well as the SNRs of the original noisy signals are shown. Each

figure represents different noisy conditions (N1 to N4). As

we can see, in all situations VRE outperforms other methods.

Thus far we have proven VRE to be better than other

methods regarding SNR improvement. Now we apply our en-

hancement algorithm as a preprocessing stage to distributed

speech recognition in noise. We have used the speech recog-

nizer provided in Aurora [12], which has been designed and

trained on clean speech for digit recognition. The recognizer

has been designed with the HTK HMM toolkit version 3.4.

The features for speech recognition are the 12 MFCC and the

energy, together with the first and second order derivatives of

these 13 parameters which constitute a 39-dimensional vector.

The general model for the isolated digit recognition consists

of a model for silence between the digits (3 emitting states).

The testing database contains TESTA of Aurora database.

Table 1 gives the recognition results in terms of correct-

ness for the compared algorithms. These results underline

that our method allows an extraction of the relevant features

of speech even in highly noisy conditions.

4. CONCLUSIONS

We have presented in this paper a promising enhancement

method based on subspace approach for distributed speech

recognition in noisy environments. This approach is based on

PCA and an associated VRE subspace selection. The perfor-

mance evaluation based on recognition accuracy shows clearly

that our algorithm makes the front-end more robust to noise

than other existing enhancement methods based on MMSE,

ML or even PCA, even in the existence of colored and babble

noise. A prominent point in our method is that it does not

require any empirical parameter.
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