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ABSTRACT 
This paper presents a method for interpolation of lost speech 
segments. The short-time spectral amplitude (STSA) of speech is 
modeled using a linear prediction (LP) model of the spectral 
envelop and a harmonic plus noise model (HNM) of the excitation. 
The restoration algorithm is based on interpolation of the 
parameters of LP-HNM models of speech from both side of the 
gap. A codebook mapping (CBM) technique is used to fit the 
interpolated parameters to a pre-trained speech model. 
Experiments show that the CBM module mitigates the artifacts that 
may result from interpolation of relatively long speech gaps. 
Evaluations demonstrate that the proposed interpolation method 
results in a superior quality in comparison to alternative restoration 
methods.  

1. INTRODUCTION 
This paper describes a model-based signal interpolation method for 
restoration of lost speech segments. The interpolation method can 
be used in a number of applications for estimation of speech 
segments that are missing or lost to noise or dropouts such as for 
packet loss concealment (PLC) in speech communication over 
mobile phones or voice over IP (VoIP), for restoration of archived 
speech recordings and for general purpose interpolation.  

In general, speech interpolation methods utilize signal models 
that capture the correlations of speech parameters on both sides of 
the missing speech segment. Algorithms specifically designed for 
speech gap restoration can be categorized into two classes, i) 
predictive or extrapolative, where only the past samples are 
available and ii) estimative or interpolative, where some future 
samples are also available.  

Autoregressive (AR) and Markov models are of particular 
interest in restoration of lost speech samples. Esquef et al. [2] 
recently proposed a time-reversed excitation substitution algorithm 
with a multi-rate post-processing module for audio gap restoration. 
Rødbro et al proposed a packet loss concealment using hidden 
Markov models. 

Sinusoidal models, and their extended version HNM, have 
been applied to speech gap restoration. In [6] the excitation signal 
is modeled using a sinusoidal model and the LP parameters are 
repeated for each frame. Rødbro et al. proposed a linear 

interpolation technique for estimation of the sinusoidal model 
parameters of missing frames [7].  

In this paper we propose a LP-HNM model of speech where 
the spectral envelope is modeled using a LSF representation of a 
linear prediction (LP) model  and the excitation is modeled with a 
HNM, whose parameters are the harmonic frequencies, harmonic 
amplitudes, harmonicities (voicing levels) and phase. The 
advantage of using LP-HNMs is that the time-varying contours of 
the formants and the harmonic energies of the signal are tracked 
and then interpolated across the speech gap to produce a 
synthesized speech segment that fits the speech characteristics on 
both sides of the gap. 

Furthermore, a codebook-mapping technique is used as a post-
processing module for fitting the interpolated parameters to a pre-
trained speech model. Codebook-mapping technique has found 
applications in bandwidth extension [5] and noise reduction [8]. 
Interpolation of LSF values of speech sometimes results in 
unusually sharp poles giving rise to tonal artefacts. The 
conventional method of mitigating such effects is through damping 
of the poles of LP model at the cost of smearing the signal 
spectrum [9]. Application of the codebook-mapping technique 
mitigates the effects of tonal artefacts without an undesirable 
broadening of the poles’ bandwidths. We compare gap restoration 
methods with the International Telecommunications Union’s (ITU) 
standard for waveform substitution of lost speech signals. 

2. LP-HNM MODEL OF SPEECH 
In frequency domain the LP-HNM model of the speech, X(f) may 
be expressed as: 

( ) ( ) / ( )X f C E f L f    (1) 

where ( )E f is the excitation, / ( )C L f  is the LP model of the 
spectral envelope and f is the frequency variable. C is the time-
varying gain and ( )L f can be modeled with LSF parameters Q. 
The excitation signal is modeled using a HNM with three 
parameters: amplitude Ak, harmonicity Vk and harmonic frequency 
fk where k is the harmonic index. Harmonicity is a real-valued 
measure between 0 and 1; it represents the voicing degree of each 
harmonic sub-band. In the frequency domain, the synthesis 
Equation for the excitation signal is:  
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where G(f) models the shape of each harmonic which may be set to 
a delta function or more realistically to a Gaussian-shaped 
spectrum and R(f) is the noise component of the excitation. The 
magnitude spectrum of R(f) has a Rayleigh distribution.  

3. INTERPOLATION METHOD 
Figure 1 shows the proposed interpolation method where speech 
interpolation is transformed into the interpolation of the LP-HNM 
frequency-time tracks. The interpolation of each LP-HNM track is 
achieved using a combination of two methods:  

(1) a simple linear interpolation of the mean values across 
the gap,  

(2) a combination of linear and autoregressive interpolation 
methods.  

Assume that TG consecutive frames of speech are missing where 
each speech frame has W samples including S new (non-
overlapping) samples; and let TA and TB be the number of available 
speech frames after and before the speech gap respectively. Our 
goal is to estimate the LP-HNM parameters of TG missing frames 
using the TB frames before and TA frames after the gap. This is 
shown in Figure 2. It is assumed that the interpolation delay is less 
than the maximum acceptable system delay.  

3.1 Linear Interpolation 

Assuming TB =TA=1, i.e. only one speech frame is available before 
and after the gap, the LP-HNM parameters can be linearly 
interpolated. We define the general linear interpolating function as 
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where x1, x2 are the known values at the two ends of the gap. Each 
LP-HNM parameter track, Akt, Vkt, fkt, Qit and Ct, can be linearly 
interpolated using equation (3). Note the subscripts k, i and t 
represent the harmonic, LSF and frame indices respectively. 

The linear interpolation method joins the HNM parameters of 
speech across the gap with a straight line. Preliminary experiments 
show that the quality of the interpolated speech is sensitive to 
estimation error of the excitation harmonic amplitudes and LSF 
values. Similar results are reported in [8] and [5]. Further 
experiments show that classical high-order polynomial 
interpolators also result in artefacts in the output.  

3.2 LP-model Interpolation 

Note that in this paper we use the terms LP model and 
autoregressive (AR) model interchangeably.  The zero excitation 
response of a stable LP model, with non-zero initial conditions, 
decays with time towards zero. The proposed interpolation method 
exploits this fact in order to obtain an estimate of the parameter 
sequence which has a smooth transition at each side of the gap and 
is modeled by the mean values of the LP-HNM parameters in the 
middle. 

Assume the values of the time series xt are missing from the time 
instance tg to ta-1. One solution would be the least squared error 
autoregressive (LSAR) interpolator which incorporates information 
from both sides of the gap simultaneously [1]. However, LSAR 
assumes that the signals on both sides of the gap are from a 
stationary process. Furthermore, a large number of samples are 
required for a reliable estimate of the LSAR models of the time 
series before and after the gap. 

In [9], low-order (4th order) AR models were used to model 
temporal variations of speech spectrum. Here we use two low order 
AR models for estimation of the zero-mean trend of the time-series 
parameter from each side of the gap. The predicted values from 
each side are overlap-added as shown in Figure 3. The mean value 
of the time series is estimated by linear interpolation of the mean 
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Figure 2. Illustration of a gap of TG missing speech frames.  
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Figure 1. A block diagram of LP-HNM+CBM interpolation system. 
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Figure 3. The mean-subtracted time-series is linearly predicted 
from both sides, weighted-averaged and added to the linearly 
interpolated mean.  
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values of both sides of the gap. Let the number of available frames 
at each side of the gap TA= TB 3. The missing parameter values 
are estimated as: 
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where P is the order of the LP model and 
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respectively. The weights, Wt’s, are chosen from a half of a 

Hanning window of length 2TG. Figure 2 shows the procedure 
applied in Equation (4). Figure 4 shows an example of the AR 
interpolation used for interpolation of the 5th harmonic of a sample 
signal. The length of the gap, TG, is rather long (i.e. equal to 70ms).  

Table 1 shows the type of interpolation technique used for each 
parameter. The range-check ensures the interpolated values are 
within an admissible range. Out of range values are clipped to the 

maximum or minimum admissible values.  The LP-HNM gain is 
linearly interpolated in the base-10 logarithmic domain.

3.4 Phase Prediction 

The phase estimation method is based on a model that exploits the 
continuity of the harmonic parts of speech and maintains the 
randomness of the non-harmonic parts. The equation for phase at 
harmonics is defined [????] as 

, 1 , 1 , ,
2

kt k t ip k t k t k t
s

f f T f f Sf
F
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where (fkt) is the phase of the kth harmonic at frame t, Tip is the 
“in-phase” sample index that is where harmonic fkt and fk,t-1 are in 
phase, S is the shift size and Fs is the sampling frequency, the in-
phase sample is chosen to be halfway through the overlap as i.e.  

2ipT W S  where W is the window size. Furthermore, a level 
of randomness needs to be added to the phase for unvoiced (noise) 
synthesis,  for each harmonic sub-band of an arbitrary frame: 
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where Sa W F  i the slope of the phase, R(f) is a random 
variable uniformly distributed in the range [- , ], (f) is a 
weighting factor that increases with the frequency distance from 
the centre of the harmonic. We use the following function: 

1
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3000

N
k

k k

h f f f
f

h f f
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were h(f) is a hamming window in the range [-F0/2, F0/2]. 

4. CODEBOOK MAPPING 
Codebook-mapping (CBM) is a heuristic technique normally used 
for partial estimation of a set of parameters, e.g. estimation of the 
upper band’s parameters based on those of the lower bands for 
bandwidth extension [5], or correction of over-suppressed 
harmonics in a noise reduction system [8]. Codebook mapping 
forces a model upon the parameters through the use of pre-trained 
codebooks. 

In estimation of the LSF parameters, denoted as Q’s, using linear 
interpolators, we notice that the resulting spectral envelope may 
have sharp peaks or sound unnatural. These artefacts can be even 
more annoying than the effect of the original packet loss. One 
technique that can be particularly useful is damping the poles of 
the LP model perhaps proportional to the distance from the two 
ends of the gap [6]. This would mitigate the problem of perceiving 
sharp peaks in the spectrum at the cost of a de-shaped spectrum. 

We propose the use of the codebook mapping (CBM) technique for 
improving interpolation results and mitigating the effects of 
unwanted artefacts. CBM technique fits the estimated values into a 
pre-trained speech model through use of codebooks.  

A codebook is trained on LSF parameters of various speech 
utterances. The utterances were taken from the wall street journal 
(WSJ) database of spoken language. Each interpolated LSF vector 
is then compared to the vectors in the codebook and the K nearest 
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Figure 4 AR interpolation of the 5th harmonic of a sample signal. 

Table 1. Interpolation and post-processing methods used for LP-
HNM parameters 

 HNM Envelope AR 

Parameter Ak Vk fk Q C 

Method AR+ 
Linear Linear Linear Linear Log-Linear

Post-
processing 

Range 
Check 

>0 

Range 
Check 

0,1  
None 

CBM+ 
Range Check 

0, 2SF  
None 
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codewords, 
1

, ,
K

k k
Q Q , are selected according to the Euclidian 

distance:  

L

k k
D Q Q    (9) 

where Q(L) is a linearly-interpolated LSF vector, kQ  is the kth 
codeword of the LSF codebook, Dk is the Euclidian distance 
between the two and k1, k2 … kK are the indices of the nearest 
codewords to Q(L). These codewords are weighted averaged where 
the weights are inversely related to their distances from the original 
LSF vector. The resulting vector replaces the interpolated LSF 
vector. 
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Where the superscript (CBM) shows the codebook mapped 
estimate of the LSF vector. 

5. EVALUATION 
Three different versions of the proposed algorithm are evaluated 
and compared to some other alternative methods in this section. 
Besides parametric LP-HNM interpolation with and without 
codebook mapping, a different method which interpolates the 
HNM parameters extracted from the speech spectrum itself (and 
not the excitation) is also evaluated.  

The multirate gap restoration algorithm, introduced in the recent 
work by Esquef, and Biscainho [2], is chosen for comparison 
purposes. This algorithm is composed of two modules: i) a core 
module which uses an AR model for each side of the gap and 
estimates the signal using an estimated excitation signal, and ii) a 
multirate post-processing module, which further enhances the 
interpolated signal in two low frequency sub-bands. In addition to 
the complete algorithm as introduced in [2], the performance of 
core method (i.e. without the multirate post-processing) is also 
evaluated and compared with the proposed algorithms. 

Many PLC algorithms proposed in the literature are compared to 
the standard ITU-T G.711 PLC algorithm [4]. Even though the 
G.711 PLC algorithm is based on a different set of assumptions 
than the proposed algorithm, its performance is evaluated 
compared with the proposed algorithm as a reference point.  

A 2-state Markov model is used to model the frame loss introduced 
in the speech signal. The probability of a “bad” frame after a 
“good” frame is p and that of a good frame after a bad frame is q 
[10]. This model emphasizes the burst errors that might occur in 
some applications.  

5.1. Objective Evaluation Results 
After introducing the gaps in the signals, each signal is restored 
using different algorithms, e.g. ITU G.711 PLC algorithm (G.711), 
multirate gap restoration (Multirate), the core AR-based algorithm 
of [2] (AR) and the proposed algorithms (HNM, LP-HNM, LP-
HNM+CBM).  

The performance of these algorithms is evaluated using Perceptual 
Evaluation of Speech Quality (PESQ) scores and log spectral 
distance (LSD) measure. The results are calculated and averaged 
for 100 sentences randomly selected from WSJ database. The 

performances of different algorithms in for restoration of the gaps 
generated by a 2-state Markov model are illustrated in Table 2. 

 

5.2. Subjective Evaluation
A set of 5 utterances are selected randomly from the WSJ database. 
Three different sets of packet loss patterns are generated, using the 
2-state Markov model explained in the previous section, with a 
fixed loss rate of 40 percent and different average gap lengths of 2, 
5 and 7 frames [11]. An experiment similar to ITU-T’s 
Comparison Category Rating (CCR) is conducted [12]. After 
introduction of the gaps, each signal is restored using the three 
proposed methods and G.711 method. 10 Listeners were asked to 
listen to the resulting signals, each played after its G.711’s restored 
counterpart and compare the second utterance to the first one and 
rate it from -3 to 3 representing a “much worse” and “much better” 
respectively. The results are summarized in Table 3.  

 
Table 2. Performance of different algorithms for restoration of 2-
state Markov generated gaps 
 PESQ LSD 
q 0.85 0.7 0.5 0.4 0.85 0.7 0.5 0.4 
p 0.1 0.2 0.3 0.6 0.1 0.2 0.3 0.6 
Loss Rate % 11 22 38 60 11 22 38 60 

Av. Gap Length 1.18 1.43 2.00 2.50 1.18 1.43 2.00 2.50
HNM 3.15 2.73 2.43 2.12 0.52 0.72 0.85 1.06
LP-HNM 3.15 2.74 2.44 2.13 0.52 0.74 0.86 1.00
LP-HNM+CBM 3.14 2.74 2.48 2.21 0.52 0.70 0.81 0.96
G.711 – A1 3.14 2.59 2.07 1.51 1.59 1.99 2.09 2.19
AR 3.00 2.60 2.25 1.77 0.42 0.56 0.64 0.80
Multirate 2.54 2.07 1.73 1.24 0.58 0.77 0.88 1.11
Distorted 2.76 2.01 1.18 0.44 - - - - 
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Figure 5. Spectrograms of a sample signal, with introduction of 
40% Bernoulli frame loss and the restored versions
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5.3. Discussion 

Figure 5 shows the spectrograms of a part of a speech signal; it’s 
distorted (with missing samples) and restored versions. It is evident 
that the restored consonant appeared in the middle of the sample 
(before 0.4 ms) suffers from different artefacts in different 
methods. The upper-bands of the speech signal, after restoration 
with the proposed algorithms, have a higher level of harmonicity 
compared to interpolation method used in G.711 method. This is 
due to the more harmonic start of the consonant, available to the 
algorithms. Freezing effect can be seen throughout the restored 
gaps of G.711 algorithm which is a known problem of this method. 
Furthermore, it is observed that the formant trajectories are best 
recovered using LP-HNM based algorithms. 

As mentioned before and generally accepted it is rather difficult to 
evaluate and compare the performance of speech gap restoration 
algorithms. Not only each method is designed for a particular 
application and uses specific resources available, they perform 
differently in reconstruction of different parts of speech signals. 
Through exhaustive experiments it was concluded that gap 
restoration algorithms, in general, are less successful in restoration 
of vowel-consonant and consonant-vowel transition and even less 
successful in restoration of vowel-consonant-vowel in which the 
restored quality is reduced to that of a mumbled speech.  

The objective results represented in the previous section shows that 
the proposed algorithms outperform other algorithms discussed 
here in most cases. While a very similar output quality is gained in 
restoration of short gaps, the proposed algorithms are particularly 
powerful in restoration of longer gaps. The CBM technique 
proposed in the previous sections results in a level of noise which 
is believed to be the result of the quantization of the LSF vectors. 
While at shorter gap lengths this reduces the quality in comparison 
with some other methods, it makes the algorithm more robust to 
increases in the gap length particularly for gap length greater than 
5 frames as evident in Table 3. 

Table 3. Comparative subjective results of proposed methods with 
a loss rate of 40%. 

Restoration 
Method HNM LP-HNM LP-

HNM+CBM 

q 0.5 0.2 0.14 0.5 0.2 0.14 0.5 0.2 0.14

p 0.3 0.13 0.95 0.3 0.13 0.95 0.3 0.13 0.95

Av. Gap 
Length 2 5 7 2 5 7 2 5 7 

Subjective 
Score 1.64 1.12 0.61 2.36 1.88 0.73 1.68 1.60 1.29

 

6. CONCLUSION 
The problem of restoration of gaps in speech signals was addressed 
and a solution for reconstruction of the missing parts of the signal 
resulting in three different algorithms was proposed. It was shown 
through objective and subjective evaluation tests that the 
interpolation of the HNM or LP-HNM parameters of speech, used 
for detailed modeling of the speech envelope and excitation, results 
in superior output quality. Furthermore, a codebook-mapping 

technique was employed to make the LP-HNM based algorithm 
more robust to longer gap lengths. This technique mitigates the 
problem of tonal artefacts resulting from simple interpolation of 
LSF parameters at the cost of introduction of some level of 
quantization noise. We believe that the performance of the 
proposed LP-HNM+CBM technique can be improved by 
introducing a gap-length dependency in the CBM technique which 
will then reduce the level of quantization noise while maintaining 
the advantage of gap-length robustness of the algorithm. This is 
being investigated for further improvement of the system. 
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