
GRAMMAR LEARNING FOR SPOKEN LANGUAGE
UNDERSTANDING

Ye-Yi Wang and Alex Acero
Microsoft Research

Redmond, Washington 98052, USA

ABSTRACT
Many state-of-the-art conversational systems use semantic-based
robust understanding and manually derived grammars, a very
time-consuming and error-prone process. This paper describes a
machine-aided grammar authoring system that enables a
programmer to rapidly develop a high quality grammar for
conversational systems. This is achieved with a combination of
domain-specific semantics, a library grammar, syntactic
constraints and a small amount of example sentences that have
been semantically annotated. Our experiments show that the
learned semantic grammars consistently outperform manually
authored grammars requiring much less authoring load.

1. INTRODUCTION
Semantic-based robust understanding technology has been
widely used in human/machine [1-3] and human/human [4]
conversational systems. It has been used by many labs in
evaluating the DARPA-sponsored Airline Travel Information
System (ATIS) evaluation. Such implementations have relied on
manual development of a domain-specific grammar, a task that
is time-consuming, error-prone and requires a significant
amount of expertise. If conversational systems are to be
mainstream, it becomes apparent that writing domain-specific
grammars is a major obstacle for a typical application developer.
Recently researchers have been working on tools for rapid
development of mixed-initiative systems [5], but without
addressing the problem of grammar authoring per se. Also, other
researchers have developed tools that let a end user refine an
existing grammar [6], which still relies on an initial grammar
and also assumes that the developer has a good knowledge of
language structures.

Automatic grammar inference has attracted the attention of
researchers for many years [7-11], though most of that work has
focused on toy problems. Application of such approaches on
grammar structure learning for natural language has not been
satisfactory for natural language understanding applications [12,
13]. This limited success is due to the complexity of the
problem: that available data will typically be sparse relative to
the complexity of the target grammar, and there is not a good
generalization mechanism to correctly cover a large variety of
language constructions.

So instead of an ambitious empirical automatic grammar
inference, we focus in this paper on an engineering approach
that could greatly ease grammar development by taking
advantage of many different sources of prior information. In
doing so, a good quality semantic grammar can be derived semi-
automatically with a small amount of data.

2. SEMANTIC GRAMMAR AND
MULTIPLE INFORMATION SOURCES

A semantic context free grammar (CFG), like a syntactic CFG,
defines the legal combination of individual words into
constituents and constituents into sentences. In addition, it also
has to define the concepts and their relations in a specific
domain. It is this additional dimension of variation that makes it
necessary to develop a grammar for every new domain. While it
is not realistic to empirically learn structures from a large corpus
due to technical and resource constraints, we can greatly
facilitate grammar development by integrating different
information sources to semi-automatically induce language
structures. These various information sources are described in
this section.

2.1 Domain-Specific Semantic Information

We use semantic schema to define the entity relations of a
specific domain in our multi-modal research. Semantic schema
is used for many different purposes. It serves as the specification
for a language-enabled application: once a semantic schema is
defined, grammar and application logic development can
proceed simultaneously according to the semantic schema. It
also plays a critical role in dialog management [14]. It is also
language independent in the sense that it does not specify the
linguistic expressions used to express the concepts. Because of
this, it is used not only for language-enabled applications, but
also for integrating inputs from multi-modalities, such as mouse
click events. A developer has to author the semantic schema
anyway in a multi-modal application; therefore it is not an extra
burden for grammar learning. Because it is language-
independent, it is easy for a developer with good knowledge of
an application to author its semantic schema. For the calendar
domain in [16], the schema contains 16 concepts with fewer
than 60 slots. This is two orders of magnitude lower than the
~3000 CFG rules for ~1000 nonterminals, so the semantic
schema was developed in a couple of hours. Below is an
example of concept definitions in a semantic schema:
 <entity type=”ExistingAppt” name=”ApptByAttributes”>
 <slot type=”People”/>
 </entity>
 <command type=”ApptUpdate” name=”AddAttendee”>
 <slot type=”People”/>
 <slot type=”ExistingAppt”/>
 </command>
Here the semantic class ApptByAttributes is an entity with one
slot that represents the attendees of an existing appointment. It
covers expressions like “the meeting with Alex.” (The example
is greatly simplified for the sake of brevity). It has the semantic
type ExistingAppt, which means that it is one of the many
different ways to refer to an existing appointment. Other ways
include ApptByAnaphora (e.g. “that meeting”). The semantic

class AddAttendee is a command. It has two slots, which simply
states that you can add People to an ExistingAppt.

2.2 Grammar Library
Some low level semantic entities, such as date, time, duration,
postal address, currency, numbers, percentage, etc, are not
domain-specific. They are universal building blocks that can be
written once and then shared by many applications. Grammar
libraries can greatly save development time.

2.3 Annotation
We can also get developers involved to annotate the data against
the schema. For example, the sentence “invite Ed to the meeting
with Alex” is annotated against the schema as follows:

Fig. 1. Semantic annotation of a sentence against the schema.
In Fig. 1, each XML tag is the name of a semantic class in the
schema, and the sub-structures are the semantic objects that fill
the slots of a semantic class. The annotation is surface-structure
independent --- different sentences that convey the same
meaning would have the same annotation. The use of the
grammar library also eases the annotation process since we do
not have to annotate to the very bottom level of concepts.

2.4 Syntactic Constraints

Domain specific language must comply with the syntactic
constraints of language. Some simple syntactic clues, for
example, part-of-speech constraints, are used to reduce the
search space in grammar learning.

3. LEARNING PROCEDURE
3.1 Inherit Semantic Constraints from Schema

An assumption we made is that the linguistic constraints that
guide the integration of smaller units into a larger chunk is an
invariant for the subset of the natural language used in human-
computer interaction. The things that vary are the domain-
specific semantics and linguistic expressions for concepts. This
allows us to create a template CFG that inherits the semantic
constraints from the semantic schema. For example, the two
concepts in the previous example can be automatically translated
to the following template CFG:

<T_ExistingAppt> <C_ApptByAttributes> (1)
<C_ApptByAttributes> {<ApptByAttributeMods>}
 <ApptByAttributeHead> {<ApptByAttributeProperties>} (2)
<ApptByAttributeProperties> <ApptByAttributeProperty>
 {<ApptByAttributeProperties>} (3)
<ApptByAttributeProperty>
 <ApptByAttributePeopleProperty> |
 <ApptByAttributeStartTimeProperty> |
 <ApptByAttributeEndTimeProperty> (4)

<ApptByAttributePeopleProperty>
 {<PreApptByAttributePeopleProperty>} <T_People>
 {<PostApptByAttributePeopleProperty>} (5)
<ApptByAttributeHead> NN (6)
<PreApptByAttributePeopleProperty> .*
<T_UpdateAppt> <C_AddAttendee>
<C_AddAttendee>
 <AddAttendeeCmd> {<AddAttendeeProperties>}
<AddAttendeeCmd> .*
<AddAttendeeProperties>
 <AddAttendeeProperty> {<AddAttendeeProperties>}
<AddAttendeeProperty> <AddAttendeePeopleProperty> |
 <AddAttendeeExistingApptProperty>
<AddAttendeeExistingApptProperty>
 {<PreAddAttendeeExistingApptProperty>} <T_ExistingAppt>
 {<PostAddAttendeeExistingApptProperty>
<AddAttendeePeopleProperty>
 {<PreAddAttendeePeopletProperty>} <T_People>
 {<PostAddAttendeePeopletProperty>
<PreAddAttendeeExistingApptProperty .*
<PostAddAttendeeExistingApptProperty .*
<PreAddAttendeePeopleProperty .*
<PostAddAttendeePeopleProperty .*

Here an entity, like ApptByAttributes, consists of a head, optional
(in braces) modifiers that appear in front of the head (e.g.
“Alex’s meeting”), and optional properties that follow the head
(e.g. “meeting with Alex”) (rule 2). Both modifiers and
properties are defined recursively, so that they finally
incorporate a sequence of different slots (rules 3-4). Each slot is
bracketed by an optional preamble and postamble (rule 5). The
heads, slot preambles and postambles are originally placeholders
(.*). Some placeholders are specified with part-of-speech
constraints --- e.g., head must be a NN (noun). For a command
like AddAttendee, the template starts with a command part
<AddAttendeeCmd>, followed by <AddAttendeeProperties>. The
rest is very similar to that of the template rules for an entity. The
template sets up the structural skeleton of a grammar. Hence the
task of grammar learning becomes to learn the expressions for
the pre-terminals like heads, commands, preambles, etc. The
placeholders, without any learning, can match anything and
result in ambiguities. When the learned grammar is used in our
experiments, the placeholders were allowed to match any input
string with a large penalty. The non-terminal <T_People> is
application dependent and therefore will be provided by the
developer (in the form of a name list in this example).

3.2 Annotation: Reducing the Search Space

The annotation reduces the search space for the rewriting rules
for the pre-terminals: the annotated slots serve as the divider that
localizes the learning space. For example, with the semantic
annotation in Fig. 1 and the template CFG, our robust parser [3,
15] can obtain the partial parse in Fig. 2, where the pre-terminals
in italic are place-holders that are not matched with any word in
the sentence, because neither the template grammar nor the
annotation provides sufficient information for the correct
decision. The terminals in bold face are matched to the pre-
terminals according to the template grammar or the annotation.
For example, Ed and Alex are respectively attached to the two
T_People positions due to the constraints from the annotation.
Meeting is associated with ApptByAttributeHead because it is the

<AddAttendee text=”invite Ed to the meeting with Alex”>
 <ApptByAttributes text=”the meeting with Alex”>
 <People text=”Alex”/>
 </ApptByAttributes>
 <People text=”Ed”/>
</AddAttendee>

only remaining NN found by POS tagger and the template
grammar requires that the head be a NN. Invite, which appears
in front of Ed, can match both AddAttendeeCmd and
PreAddAttendeePeopleProperty. Since the latter is optional, it is
matched against the former. The remaining words, to, the, and
with, cannot be deterministically aligned to any pre-terminals by
the parser. However, given the partial parse tree, they can only
be aligned with those pre-terminals in italic. This effectively
reduces the search space for possible alignment.

Fig. 2. Parse tree obtained with the template grammar and the
annotation for the sentence “Invite Ed to the meeting with Alex”.

3.3 Pre-terminal/Text Alignment

Syntactic clues are then used to align the remaining words in
this example. Prepositions and determiners can only combine
with the word behind them, hence “to the” cannot align with the
pre-terminal PostAddAttendeePeopleProperty. This leaves
PreAddAttendeeExistingApptProperty the only choice. For the
same reason, PreApptByAttributeStartTimeProperty is the only
pre-terminal that with has to be aligned with. Therefore we can
induce the following rules:
 PreAddAttendeeExistingApptProperty to the
 PreApptByAttributePeopleProperty. with

Sometimes syntactic clues are not enough to resolve all the
ambiguities. In this case, the system prompts the developer for
the right decision. We are working on an alignment model based
on Expectation-Maximization to do this automatically.

4. EXPERIMENTAL RESULTS
We have applied this algorithm to MiPad, a multimodal personal
digital assistant for personal information management [16]. For
these experiments, we only used the calendar portion of the data.
This training data contains ~650 spoken sentences, whereas the
test data contains 500 sentences. Both training and test data were
manually annotated against the schema.
We used both the manually authored grammar in [16] and the
grammar learned with the described procedure to parse the

sentences to the semantic representation using our robust parser
[3, 15]. The manually authored grammar was created with about
2.5 man-months and contains about 3000 rules. From them, the
definitions for common semantic classes (<Date>, <Time>,
<Duration>, <OfficeNumber>, etc.), approximately 1400 rules,
were stored into a library that was reused by the learned grammar.
We analyzed the topic ID and slot ID performance of the two
grammars. Topic ID was measured by extracting the top-level
semantic token (14 alternatives) from a parse tree. Differences in
topics for this task are sometimes very subtle. For example,
“show meetings today” and “show the meeting today” were
labeled as ShowCalendar and ShowApt respectively in the
reference set. Slot ID was extracted by listing all the paths from
the root to the pre-terminals in the semantic parse tree. Hence a
topic ID error will cause all the slots in a parse tree to be
incorrect. Slot ID is difficult due to the fact that some slot
contents (like meeting subject) cannot be predicted and hence
have to be modeled with wildcards. We compared the slots of a
parse tree with those in the corresponding manual annotation
and added the insertion, deletion and substitution error rates.

0

20

40

60

80

100

0 100 200 300 400 500 600
Number of sentences

To
pi

c
ID

 e
rro

r r
at

e

Fig. 3. Topic ID error rate vs. amount of annotated data for the
learned grammar (solid line). The manual grammar is in dashed
line.

0

20

40

60

80

100

0 100 200 300 400 500 600
Number of sentences

Sl
ot

 e
rro

r r
at

e

Fig. 4. Slot error rate (Ins+Del+Sub) vs. amount of data used for
the learned grammar (solid line). The manual grammar is in
dashed line.

Fig. 3 shows the Topic ID error rate of the learned grammar
relative to the amount of annotated training data, as well as the
performance of the manually authored grammar. With all the
training data, the learned grammar reduces the error rate by 60%
over the manually authored grammar. Moreover, the most
significant error reduction was achieved with the first 100
annotated sentences. This is very meritorious since a typical
developer is not likely to collect and annotate a large amount of
data. Fig. 4 shows the slot ID error rate, which has a pattern very
similar to Fig. 3.

AddAttendee
 AddAttendeeCmd invite
 AddAttendeeProperties
 AddAttendeeProperty
 AddAttendeePeopleProperty
 T_People Ed

 PostAddAttendeePeopleProperty
 AddAttendeeProperties
 AddAttendeeProperty
 AddAttendeeExistingApptProperty

 PreAddAttendeeExistingApptProperty
 T_ExistingAppt
 C_ApptByAttribute
 ApptByAttributeHead meeting
 ApptByAttributeProperties
 ApptByAttributeProperty
 ApptByAttributePeopleProperty
 PreApptByAttributePeopleProperty
 T_People Alex

We used some other criteria to compute the slots error rates. The
learned grammar consistently reduces the error rate by 40% ~
60%. Due to the space limit, the performance curves are not
included in this paper, but they are all similar to Fig. 4.
We also investigated the performance of the two grammars on
speech directly. Fig. 5 plots the slot error rates when the input to
the grammars is the top choice of a speech recognizer that uses
various n-gram language models with corresponding different
word error rates. The learned grammar consistently
outperformed the manually author grammar even for speech
input.

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30
Word Error Rate

Sl
ot

 E
rro

r R
at

e

Fig. 5. Slot error rate vs. word error rate. The learned grammar
is in solid line, the manual grammar in dashed line.

5. DISCUSSIONS AND SUMMARY
Our preliminary results indicate that the proposed machine aided
grammar development framework is very promising. It achieves
consistently better understanding accuracies with much less
authoring effort than the manually authored grammar. We
believe that the better performance is due to:
1. Data driven learning. Manually developed grammars tend to
over-generalize the grammar for broader coverage. This
generalization often does not cover any unseen data and it often
results in ambiguities.
2. The template grammar. This formalism provides a paradigm
for encoding semantic constraints and hence systematic
structural generalization. We believe that the same paradigm
may help human grammar developers too.
3. The use of multiple information sources. The grammar library
makes it unnecessary to learn very low level concepts, and
syntactic and annotation constraints segment the learning space
so the learner can focus on the local points of interest.
The use of annotations in grammar development originated in
Phoenix [1], where data were annotated against the semantic
grammar. The annotations were used for grammar refinement by
introducing new pre-terminal to terminal association rules. The
benefit of our proposed approach is that we annotate against a
schema that is independent of surface-structures. Because of
this, we no longer need an initial semantic grammar, and the
annotation task becomes much easier: For the ATIS grammar
we’d only need to annotate text to the ~30 concepts instead of
the 3000+ non-terminals. The cost of doing this is that the
system has to be able to induce the CFG structures, which we
have shown is viable with our proposed approach.
The MiPad data has only been used inside Microsoft. So far
there is no comparison between our manually authored grammar

and any other spoken language understanding technology,
except for the comparative study that used the structured
language model for information extraction [17]. To study the
general applicability of our approach and provide the research
community with more informative results, we intend to evaluate
our approach with the ATIS data.

6. ACKNOWLEDGEMENTS
The slot ID evaluation criteria and the measuring tool were
initially developed by M. Mahajan. We also like to thank C.
Chelba, H. Hon, X. D. Huang, M. Mahajan, and K. Wang for
their constructive suggestions and comments.

7. REFERENCES
[1] W. Ward, "Understanding Spontaneous Speech: the

Phoenix System," ICASSP, Toronto, Canada, 1991.
[2] V. Zue et al, "JUPITER: A Telephone-Based Conver-

sational Interface for Weather Information," IEEE
Transactions on Speech and Audio Processing, 2000.

[3] Y. Wang, "Robust Spoken Language Understanding in
MiPad," Eurospeech, Aalborg, Denmark, 2001.

[4] A. Waibel, "Interactive Translation of Conversational
Speech," Computer, vol. 29, 1996.

[5] J. Glass and E. Weinstein, "SPEECHBUILDER:
Facilitating Spoken Dialogue System Development,"
Eurospeech 2001, Aalborg, Denmark, 2001.

[6] M. Gavalda, "Growing Semantics Grammar." Ph.D
Thesis, Carnegie Mellon University, 2000.

[7] K. S. Fu and T. L. Booth, "Grammatical inference:
Introduction and survey, part 1," IEEE Transactions
on Systems, Man and Cybernetics, vol. 5, 1975.

[8] K. S. Fu and T. L. Booth, "Grammatical inference:
Introduction and survey, part 2," IEEE Transactions
on Systems, Man and Cybernetics, vol. 5, 1975.

[9] R. C. Carrasco and J. Oncina, "Grammatical Inference
and Applications," LNAI 862, Springer-Verlag, 1994.

[10] L. Miclet and C. d. l. Higuera, "Grammatical
Inference: Learning Syntax from Sentences," LNAI
1147, Springer-Verlag, 1996.

[11] V. Honavar and G. Slutzki, "Grammatical Inference,"
LNAI 143, Springer-Verlag, 1998.

[12] Y. Wang and A. Waibel, "Modeling with Structures in
Statistical Machine Translation," COLING/ACL98,
Montréal, Québec, Canada, 1998.

[13] A. Stolcke and S. M. Omohundro, "Inducing
Probabilistic Grammars by Bayesian Model Merging,"
in Proceedings of the Second International
Colloquium on Grammatical Inference and
Applications. 1994.

[14] K. Wang, "A Plan-Based Dialog System with
Probabilistic Inference," ICSLP, Beijing, China, 2000.

[15] Y. Wang, "A Robust Parser For Spoken Language
Understanding," Eurospeech, Budapest, 1999.

[16] X. Huang et al, "MiPad: A Multimodel Interaction
prototype," ICASSP, Salt Lake City, Utah, 2001.

[17] C. Chelba and M. Mahajan, "Information Extraction
Using the Structured Language Model," EMNLP,
Pittsburgh, 2001.

