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ABSTRACT 
Many state-of-the-art conversational systems use semantic-based 
robust understanding and manually derived grammars, a very 
time-consuming and error-prone process. This paper describes a 
machine-aided grammar authoring system that enables a 
programmer to rapidly develop a high quality grammar for 
conversational systems. This is achieved with a combination of 
domain-specific semantics, a library grammar, syntactic 
constraints and a small amount of example sentences that have 
been semantically annotated. Our experiments show that the 
learned semantic grammars consistently outperform manually 
authored grammars requiring much less authoring load. 

1. INTRODUCTION 
Semantic-based robust understanding technology has been 
widely used in human/machine [1-3] and human/human [4] 
conversational systems. It has been used by many labs in 
evaluating the DARPA-sponsored Airline Travel Information 
System (ATIS) evaluation. Such implementations have relied on 
manual development of a domain-specific grammar, a task that 
is time-consuming, error-prone and requires a significant 
amount of expertise. If conversational systems are to be 
mainstream, it becomes apparent that writing domain-specific 
grammars is a major obstacle for a typical application developer. 
Recently researchers have been working on tools for rapid 
development of mixed-initiative systems [5], but without 
addressing the problem of grammar authoring per se. Also, other 
researchers have developed tools that let a end user refine an 
existing grammar [6], which still relies on an initial grammar 
and also assumes that the developer has a good knowledge of 
language structures. 

Automatic grammar inference has attracted the attention of 
researchers for many years [7-11], though most of that work has 
focused on toy problems. Application of such approaches on 
grammar structure learning for natural language has not been 
satisfactory for natural language understanding applications [12, 
13]. This limited success is due to the complexity of the 
problem: that available data will typically be sparse relative to 
the complexity of the target grammar, and there is not a good 
generalization mechanism to correctly cover a large variety of 
language constructions. 

So instead of an ambitious empirical automatic grammar 
inference, we focus in this paper on an engineering approach 
that could greatly ease grammar development by taking 
advantage of many different sources of prior information. In 
doing so, a good quality semantic grammar can be derived semi-
automatically with a small amount of data. 

2. SEMANTIC GRAMMAR AND 
MULTIPLE INFORMATION SOURCES 

A semantic context free grammar (CFG), like a syntactic CFG, 
defines the legal combination of individual words into 
constituents and constituents into sentences. In addition, it also 
has to define the concepts and their relations in a specific 
domain. It is this additional dimension of variation that makes it 
necessary to develop a grammar for every new domain. While it 
is not realistic to empirically learn structures from a large corpus 
due to technical and resource constraints, we can greatly 
facilitate grammar development by integrating different 
information sources to semi-automatically induce language 
structures. These various information sources are described in 
this section. 

2.1 Domain-Specific Semantic Information 

We use semantic schema to define the entity relations of a 
specific domain in our multi-modal research. Semantic schema 
is used for many different purposes. It serves as the specification 
for a language-enabled application: once a semantic schema is 
defined, grammar and application logic development can 
proceed simultaneously according to the semantic schema. It 
also plays a critical role in dialog management [14]. It is also 
language independent in the sense that it does not specify the 
linguistic expressions used to express the concepts. Because of 
this, it is used not only for language-enabled applications, but 
also for integrating inputs from multi-modalities, such as mouse 
click events. A developer has to author the semantic schema 
anyway in a multi-modal application; therefore it is not an extra 
burden for grammar learning. Because it is language-
independent, it is easy for a developer with good knowledge of 
an application to author its semantic schema. For the calendar 
domain in [16], the schema contains 16 concepts with fewer 
than 60 slots. This is two orders of magnitude lower than the 
~3000 CFG rules for ~1000 nonterminals, so the semantic 
schema was developed in a couple of hours. Below is an 
example of concept definitions in a semantic schema: 
   <entity type=”ExistingAppt” name=”ApptByAttributes”> 
          <slot type=”People”/> 
   </entity> 
   <command type=”ApptUpdate” name=”AddAttendee”> 
          <slot type=”People”/> 
          <slot type=”ExistingAppt”/> 
   </command> 
Here the semantic class ApptByAttributes is an entity with one 
slot that represents the attendees of an existing appointment. It 
covers expressions like “the meeting with Alex.” (The example 
is greatly simplified for the sake of brevity). It has the semantic 
type ExistingAppt, which means that it is one of the many 
different ways to refer to an existing appointment. Other ways 
include ApptByAnaphora (e.g. “that meeting”). The semantic 



  

class AddAttendee is a command. It has two slots, which simply 
states that you can add People to an ExistingAppt. 

2.2 Grammar Library 
Some low level semantic entities, such as date, time, duration, 
postal address, currency, numbers, percentage, etc, are not 
domain-specific. They are universal building blocks that can be 
written once and then shared by many applications. Grammar 
libraries can greatly save development time.  

2.3 Annotation 
We can also get developers involved to annotate the data against 
the schema. For example, the sentence “invite Ed to the meeting 
with Alex” is annotated against the schema as follows: 

 

Fig. 1. Semantic annotation of a sentence against the schema. 
In Fig. 1, each XML tag is the name of a semantic class in the 
schema, and the sub-structures are the semantic objects that fill 
the slots of a semantic class. The annotation is surface-structure 
independent --- different sentences that convey the same 
meaning would have the same annotation. The use of the 
grammar library also eases the annotation process since we do 
not have to annotate to the very bottom level of concepts. 

2.4 Syntactic Constraints 

Domain specific language must comply with the syntactic 
constraints of language. Some simple syntactic clues, for 
example, part-of-speech constraints, are used to reduce the 
search space in grammar learning. 

3. LEARNING PROCEDURE 
3.1 Inherit Semantic Constraints from Schema 

An assumption we made is that the linguistic constraints that 
guide the integration of smaller units into a larger chunk is an 
invariant for the subset of the natural language used in human-
computer interaction. The things that vary are the domain-
specific semantics and linguistic expressions for concepts. This 
allows us to create a template CFG that inherits the semantic 
constraints from the semantic schema. For example, the two 
concepts in the previous example can be automatically translated 
to the following template CFG: 

<T_ExistingAppt>  <C_ApptByAttributes>      (1) 
<C_ApptByAttributes>   {<ApptByAttributeMods>}   
     <ApptByAttributeHead>  {<ApptByAttributeProperties>}    (2) 
<ApptByAttributeProperties>  <ApptByAttributeProperty>  
     {<ApptByAttributeProperties>}                                               (3) 
<ApptByAttributeProperty>   
     <ApptByAttributePeopleProperty> | 
     <ApptByAttributeStartTimeProperty> | 
     <ApptByAttributeEndTimeProperty>      (4) 

<ApptByAttributePeopleProperty>     
     {<PreApptByAttributePeopleProperty>} <T_People>     
     {<PostApptByAttributePeopleProperty>}      (5) 
<ApptByAttributeHead>    NN                          (6) 
<PreApptByAttributePeopleProperty>  .* 
<T_UpdateAppt>  <C_AddAttendee>  
<C_AddAttendee>  
     <AddAttendeeCmd> {<AddAttendeeProperties>} 
<AddAttendeeCmd>  .* 
<AddAttendeeProperties>  
     <AddAttendeeProperty> {<AddAttendeeProperties>} 
<AddAttendeeProperty>  <AddAttendeePeopleProperty> | 
     <AddAttendeeExistingApptProperty> 
<AddAttendeeExistingApptProperty>  
     {<PreAddAttendeeExistingApptProperty>} <T_ExistingAppt>  
     {<PostAddAttendeeExistingApptProperty> 
<AddAttendeePeopleProperty>  
     {<PreAddAttendeePeopletProperty>} <T_People>  
     {<PostAddAttendeePeopletProperty> 
<PreAddAttendeeExistingApptProperty  .* 
<PostAddAttendeeExistingApptProperty  .* 
<PreAddAttendeePeopleProperty  .* 
<PostAddAttendeePeopleProperty  .* 

Here an entity, like ApptByAttributes, consists of a head, optional 
(in braces) modifiers that appear in front of the head (e.g. 
“Alex’s meeting”), and optional properties that follow the head 
(e.g. “meeting with Alex”) (rule 2). Both modifiers and 
properties are defined recursively, so that they finally 
incorporate a sequence of different slots (rules 3-4). Each slot is 
bracketed by an optional preamble and postamble (rule 5). The 
heads, slot preambles and postambles are originally placeholders 
(.*). Some placeholders are specified with part-of-speech 
constraints --- e.g., head must be a NN (noun). For a command 
like AddAttendee, the template starts with a command part 
<AddAttendeeCmd>, followed by <AddAttendeeProperties>. The 
rest is very similar to that of the template rules for an entity. The 
template sets up the structural skeleton of a grammar. Hence the 
task of grammar learning becomes to learn the expressions for 
the pre-terminals like heads, commands, preambles, etc. The 
placeholders, without any learning, can match anything and 
result in ambiguities. When the learned grammar is used in our 
experiments, the placeholders were allowed to match any input 
string with a large penalty. The non-terminal <T_People> is 
application dependent and therefore will be provided by the 
developer (in the form of a name list in this example). 

3.2 Annotation: Reducing the Search Space 

The annotation reduces the search space for the rewriting rules 
for the pre-terminals: the annotated slots serve as the divider that 
localizes the learning space. For example, with the semantic 
annotation in Fig. 1 and the template CFG, our robust parser [3, 
15] can obtain the partial parse in Fig. 2, where the pre-terminals 
in italic are place-holders that are not matched with any word in 
the sentence, because neither the template grammar nor the 
annotation provides sufficient information for the correct 
decision. The terminals in bold face are matched to the pre-
terminals according to the template grammar or the annotation. 
For example, Ed and Alex are respectively attached to the two 
T_People positions due to the constraints from the annotation. 
Meeting is associated with ApptByAttributeHead because it is the 

<AddAttendee text=”invite Ed to the meeting with Alex”>    
         <ApptByAttributes text=”the meeting with Alex”> 
                  <People text=”Alex”/> 
         </ApptByAttributes> 
         <People text=”Ed”/> 
</AddAttendee> 



  

only remaining NN found by POS tagger and the template 
grammar requires that the head be a NN. Invite, which appears 
in front of Ed, can match both AddAttendeeCmd and 
PreAddAttendeePeopleProperty. Since the latter is optional, it is 
matched against the former. The remaining words, to, the, and 
with, cannot be deterministically aligned to any pre-terminals by 
the parser. However, given the partial parse tree, they can only 
be aligned with those pre-terminals in italic. This effectively 
reduces the search space for possible alignment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Parse tree obtained with the template grammar and the 
annotation for the sentence “Invite Ed to the meeting with Alex”. 

3.3 Pre-terminal/Text Alignment 

Syntactic clues are then used to align the remaining words in 
this example. Prepositions and determiners can only combine 
with the word behind them, hence “to the” cannot align with the 
pre-terminal PostAddAttendeePeopleProperty. This leaves 
PreAddAttendeeExistingApptProperty the only choice. For the 
same reason, PreApptByAttributeStartTimeProperty is the only 
pre-terminal that with has to be aligned with. Therefore we can 
induce the following rules: 
   PreAddAttendeeExistingApptProperty  to the  
   PreApptByAttributePeopleProperty.  with 

Sometimes syntactic clues are not enough to resolve all the 
ambiguities. In this case, the system prompts the developer for 
the right decision. We are working on an alignment model based 
on Expectation-Maximization to do this automatically. 

4. EXPERIMENTAL RESULTS 
We have applied this algorithm to MiPad, a multimodal personal 
digital assistant for personal information management [16]. For 
these experiments, we only used the calendar portion of the data. 
This training data contains ~650 spoken sentences, whereas the 
test data contains 500 sentences. Both training and test data were 
manually annotated against the schema. 
We used both the manually authored grammar in [16] and the 
grammar learned with the described procedure to parse the 

sentences to the semantic representation using our robust parser 
[3, 15]. The manually authored grammar was created with about 
2.5 man-months and contains about 3000 rules. From them, the 
definitions for common semantic classes (<Date>, <Time>, 
<Duration>, <OfficeNumber>, etc.), approximately 1400 rules, 
were stored into a library that was reused by the learned grammar. 
We analyzed the topic ID and slot ID performance of the two 
grammars. Topic ID was measured by extracting the top-level 
semantic token (14 alternatives) from a parse tree. Differences in 
topics for this task are sometimes very subtle. For example, 
“show meetings today” and “show the meeting today” were 
labeled as ShowCalendar and ShowApt respectively in the 
reference set. Slot ID was extracted by listing all the paths from 
the root to the pre-terminals in the semantic parse tree. Hence a 
topic ID error will cause all the slots in a parse tree to be 
incorrect. Slot ID is difficult due to the fact that some slot 
contents (like meeting subject) cannot be predicted and hence 
have to be modeled with wildcards. We compared the slots of a 
parse tree with those in the corresponding manual annotation 
and added the insertion, deletion and substitution error rates. 
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Fig. 3. Topic ID error rate vs. amount of annotated data for the 
learned grammar (solid line). The manual grammar is in dashed 
line. 
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Fig. 4. Slot error rate (Ins+Del+Sub) vs. amount of data used for 
the learned grammar (solid line). The manual grammar is in 
dashed line. 

Fig. 3 shows the Topic ID error rate of the learned grammar 
relative to the amount of annotated training data, as well as the 
performance of the manually authored grammar. With all the 
training data, the learned grammar reduces the error rate by 60% 
over the manually authored grammar. Moreover, the most 
significant error reduction was achieved with the first 100 
annotated sentences. This is very meritorious since a typical 
developer is not likely to collect and annotate a large amount of 
data. Fig. 4 shows the slot ID error rate, which has a pattern very 
similar to Fig. 3.  

AddAttendee 
    AddAttendeeCmd invite 
    AddAttendeeProperties 
        AddAttendeeProperty 
             AddAttendeePeopleProperty 
                 T_People Ed 

 PostAddAttendeePeopleProperty 
        AddAttendeeProperties 
             AddAttendeeProperty 
                 AddAttendeeExistingApptProperty 

      PreAddAttendeeExistingApptProperty  
                      T_ExistingAppt 
                           C_ApptByAttribute 
                                ApptByAttributeHead meeting 
                                ApptByAttributeProperties 
                                   ApptByAttributeProperty 
                                       ApptByAttributePeopleProperty 
                                          PreApptByAttributePeopleProperty 
                                           T_People Alex   



  

We used some other criteria to compute the slots error rates. The 
learned grammar consistently reduces the error rate by 40% ~ 
60%. Due to the space limit, the performance curves are not 
included in this paper, but they are all similar to Fig. 4. 
We also investigated the performance of the two grammars on 
speech directly. Fig. 5 plots the slot error rates when the input to 
the grammars is the top choice of a speech recognizer that uses 
various n-gram language models with corresponding different 
word error rates. The learned grammar consistently 
outperformed the manually author grammar even for speech 
input. 
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Fig. 5. Slot error rate vs. word error rate. The learned grammar 
is in solid line, the manual grammar in dashed line. 

5. DISCUSSIONS AND SUMMARY 
Our preliminary results indicate that the proposed machine aided 
grammar development framework is very promising. It achieves 
consistently better understanding accuracies with much less 
authoring effort than the manually authored grammar. We 
believe that the better performance is due to: 
1. Data driven learning. Manually developed grammars tend to 
over-generalize the grammar for broader coverage. This 
generalization often does not cover any unseen data and it often 
results in ambiguities.  
2. The template grammar. This formalism provides a paradigm 
for encoding semantic constraints and hence systematic 
structural generalization. We believe that the same paradigm 
may help human grammar developers too. 
3. The use of multiple information sources. The grammar library 
makes it unnecessary to learn very low level concepts, and 
syntactic and annotation constraints segment the learning space 
so the learner can focus on the local points of interest. 
The use of annotations in grammar development originated in 
Phoenix [1], where data were annotated against the semantic 
grammar. The annotations were used for grammar refinement by 
introducing new pre-terminal to terminal association rules. The 
benefit of our proposed approach is that we annotate against a 
schema that is independent of surface-structures. Because of 
this, we no longer need an initial semantic grammar, and the 
annotation task becomes much easier: For the ATIS grammar 
we’d only need to annotate text to the ~30 concepts instead of 
the 3000+ non-terminals. The cost of doing this is that the 
system has to be able to induce the CFG structures, which we 
have shown is viable with our proposed approach. 
The MiPad data has only been used inside Microsoft. So far 
there is no comparison between our manually authored grammar 

and any other spoken language understanding technology, 
except for the comparative study that used the structured 
language model for information extraction [17]. To study the 
general applicability of our approach and provide the research 
community with more informative results, we intend to evaluate 
our approach with the ATIS data.  
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