Improvements on a Semi-Automatic Grammar Induction Framework
Chin-Chung Wong and Helen Meng

Human-Computer Communications Laboratory
Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
{wongcc, hmmeng} @se.cuhk.edu.hk

ABSTRACT

This work extends the semi-automatic grammar induction
approach previously proposed in [1]. The data-driven approach
learns semantic and phrasal categories from a training corpus of
unannotated natural language queries in a specific domain. The
approach can be seeded with pre-specified semantic categories
to expedite the learning process. Grammar rules are
automatically acquired by an agglomerative clustering
procedure, and the resulting grammar may be hand-edited easily
for refinement. This work attempts to improve the grammar
induction framework by leveraging information in the SQL
query that accompanies every training query. The SQL
expression specifies the action of database access in relation to
the query, and hence provides information about meaningful
natural language structures that should to be captured in
induced grammar. We have also incorporated the use of
Information Gain in place of Mutual Information to capture
phrasal structures, as well as the determination of an automatic
stopping criterion for agglomerative clustering.

1. INTRODUCTION
This work extends the semi-automatic grammar induction
approach previously proposed in [1]. The goal is to reduce the
amount of handcrafting involved for the development of

domain-specific natural/spoken language understanding systems.

Handcrafting grammars is laborious and hinders portability and
scalability to alternative, more complex application domains. In
[1], we presented a data-driven approach that learns semantic
and phrasal categories from a training corpus of unannotated
natural language queries relating to a specific domain. The
approach can be seeded with pre-specified semantic categories
to expedite the learning process, and reduce the demand for
large training corpora. Grammar rules are automatically
acquired by an agglomerative clustering procedure, and the
resulting grammar may be post-edited easily by a human for
refinement. The approach is inspired by previous work on
statistical language modeling [2], and our motivation is similar
to that in semi-automatic language model acquisition for speech
recognition [3].

In this work, we have incorporated an alternative clustering
criterion for capturing phrasal structures, as well as an automatic
stopping criterion to terminate the agglomerative clustering.
Our experiments are conducted based on the ATIS-3 corpus
which contains disjoint training and test sets (see Table 1).
Each natural language query in ATIS-3 is accompanied by an
SQL that serves to perform database access to retrieve the
relevant information for the query. Hence the SQL contains
valuable information about meaningful semantic / phrasal
categories that should be captured in the grammar. An example
is shown in Table 2. This work attempts to reference the
meaningful natural language structures in the SQL during the
grammar induction process in an attempt to learn a better
grammar more quickly.

Training Test Set 1993 Test Set 1994
1564 448 444
Table 1. Number of natural language queries in the ATIS-3
(Air Travel Information Service) corpora.

Utterance: is there a flight around three p m from
charlotte to minneapolis

Simplified SQL

Select FLIGHT _ID from ORIGIN, DESTINATION
where ORIGIN.CITY_NAME = “charlotte”

and DESTINATION.CITY_NAME = “minneapolis”
and DEPARTURE_TIME = “around three pm”
Table 2. Example of an ATIS query and its corresponding SQL.

2. OVERVIEW OF THE SEMI-AUTOMATIC
GRAMMAR INDUCTION APPROACH

This section presents a brief overview of the semi-automatic
grammar induction approach in [1] as well as some
modifications.

Grammar induction is based on agglomerative clustering of
words in a corpus of un-annotated sentences from the ATIS
domain. Clustering is implemented both spatially and
temporally. In spatial clustering, words or multi-word entities
with similar left and right linguistic contexts are clustered
together. Consider the clustering of entities £; and E,. If p;
denotes the unigram distribution of words occurring to the left
of E;, and p, denotes that for E, then we can measure the
similarity of the two distributions by the divergence metric Div
(or symmetrized Kullback-Leibler distance) as shown in
Equations (1) and (2):

Divpy”, py") = D(p || p5™)+ D(py" || pi).....0)

where V' in Equation (2) denotes the corpus vocabulary.
Equations (3) shows the distance metric Dist needed when both
the left and right contexts are considered.

The probabilities are obtained from the frequency counts
in the training corpus. Only the words that have at least M (=5)

z . pl(i)
D(p, | p) = p, ()] L)
(p, || p>) ;p (i) °C Q)

occurrences are considered, in order to avoid sparse data
problems. All word pairs are considered as described in
Equation 3, and the algorithm selects the N (=5) most similar
pairs (i.e. lowest values for Dist) to form spatial clusters that are

Distle,,e,) = DiMp”, p5")+ DiMp{™", pi")....0)

labeled as SC; where i is a counter of the number of spatial
clusters formed. Thereafter, the appropriate word pairs in the
training corpus are substituted by their SC labels, and the
algorithm proceeds to an iteration of temporal clustering. The
values of M and N are set based on empirical experiments.

In temporal clustering, words or multi-word entities that
co-occur sequentially are clustered together. Originally, Mutual
Information (MI) is used as the metric for clustering, as shown
in Equation (4). In this work, we replaced MI with Information
Gain (IG), as shown in Equation (5).

Mi(e, e,) = Ple, ,e;)log P(Pe(e"")))
P(e,e) P(ez,e)
]G ’ly €2 :P Ly zl 5
(eve) = P(e,ey)log PP (2)+ Plee)gP(e)P(e) ()
P(€1 ez) - — P(@l, ez)
1, 2 1 1 2 l —_——
+Pleselog oo P(e))P(e:) +He.elog P(e))P(e:)

It has been pointed out that the use of MI to find co-
occurring entities is subjected to estimation errors especially
when the occurrences of both entities are rare [4]. IG is the sum
of mutual information that considers all the combinations of the
presence of absence of the entities, and empirical experiments
indicate that the use of IG lead to about 3% to 4% higher
precision and recall rates in extracting meaningful natural
language structures.

Again, only words that have at least M occurrences are
considered, and the N pairs of entities with highest MI are
selected to form temporal clusters labeled as 7C; where i is a
counter of the number of temporal clusters formed. Thereafter,
the appropriate word pairs in the training corpus are substituted
by their 7C labels, and the algorithm proceeds to another
iteration of spatial clustering.

As such, the agglomerative clustering approach proceeds
iteratively, alternating between the formation of SC and 7C
categories, thus producing a context-free grammar. The SC and
TC are nonterminals in the grammar. SC clusters tend to be
semantic structures, and 7C clusters tend to be phrasal structures.
The grammar is then post-processed by hand-editing, hence the
grammar induction approach is deemed semi-automatic.

We defined a stopping criterion to automatically terminate
the clustering process by measuring the percentage of terminals
covered in each iteration. For ATIS-3 (Air Travel Information
Service) Class A training set, only 300 out of 531 unique words
have at least M (=5) occurrences counts. Running grammar
induction for 40 iterations produces a grammar that covers 167
unique words from the original natural language queries. Hence
a rough estimate of the coverage of grammar terminals is
167/300=55.7%. The stopping criterion is met when the relative
growth of this coverage falls below 1%.

3. LEVERAGING KNOWLEDGE FROM SQL
FOR GRAMMAR INDUCTION

We attempt to improve our grammar induction strategy by
leveraging the knowledge in the SQL queries. Each SQL
expression specify the database access action for its
corresponding natural language queries and should contain the
meaning natural language structures that should be captured in
the grammar. Similar information may be available from
coarsely annotated / bracketed corpora.

3.1 Evaluating an Induced Grammar

At a given iteration in the grammar induction process, we can
evaluate the interim grammar by using it to parse every training
query. We can search within the parse for the meaningful
structures derived from the corresponding SQL expression, and
measure the precision and recall rates of these meaningful
structures. This is essentially the PARSEVAL framework
mentioned in [5] [6]. An example is shown in Table 3.

1. Bracket delimiters based on input natural language
query:

isg therey ay flight; around threes pg my fromg charlottey
toyy minneapolisy;

2. Reference brackets based on the SQL expression:
around three p m (4, 7)*

charlotte (9, 9)*

minneapolis (11, 11)

3. Excerpt of grammar G from the induction process:
SC13 > one | two | three | ...

SC24 - ...charlotte | chicago | ...

TC22 - SC24 to

TC23 > SCI13pm

SC25 > ...may | june| ...

4. Hypothesized brackets from candidate parse with
G:

three (5, 5)

around three pm (4, T)*

charlotte (9, 9)*

charlotte to (9, 10)

Table 3. Example illustrating the computation precision and
recall values. Matching brackets are marked in “*’.

The input sentence is the same as that in Table 1. We
label each word with an index to be used as a bracket delimiter
(see Section 1 of Table 3). The reference brackets in Section 2
or Table 3 are derived from the SQL expression in Table 1.
Section 3 provides an excerpt of the grammar rules that are
applicable to parsing the input query, and section 4 lists the
hypothesized brackets from the candidate parse.

Based on the reference and hypothesized grammars as
illustrated in Table 3, we can compute the precision (P) and
recall (R) of the meaningful language structures captured in the
induced grammar.

P =+# of matching brackets / # of hypothesized brackets

R =# of matching brackets / # of reference brackets
As we aim to induce a grammar with high precision and high
recall rates, we can combine the two measurements into a single
F-measure, as shown in Equation (6), in which we set a=1/ to
weigh P and R to be equally important [7] [8]. For the example
in Table 3, P=1/2, R=2/3 and F=0.572.

_(a®>+1)PR
a’P+R
3.2 Informed Selection between Spatial Clustering and

Temporal Clustering
In our baseline configuration, the iterative clustering process
alternates between spatial clustering (production of N=5 SC
categories) and temporal clustering (production of N=5 TC
categories) in a rote manner. We believe a potential
improvement is to choose between SC and 7C for a given
iteration to avoid introducing unwanted structures into our
grammar. As an example, consider the SCs and 7Cs from
iteration 15 in our grammar induction process, i.e. compare the
two sets of rules:

SC41: airline | city

SC42: westchester county |
montreal

SC43: meal | sunday

SC44: take | downtown
SC45: back | take

Table 4 The SC and 7C categories generated with the baseline
configuration for grammar induction at iteration 15.

TC72: on continental
TC73: united airlines
TC74: in the morning
TC75: north carolina
TC76: midwest express

It seems that for this iteration, instead of choosing clustering for
SCs in rote manner, we should choose 7Cs in order to learn a
better grammar.

More specifically, when the grammar induction process has
completed i iterations, and the current grammar is G;. As we
proceed to the next iteration (i+1), we can either expand the
grammar with N SC categories to produce the grammar Gy ;
or with N TC categories to produce the grammar Gy¢;.;. We
can compare the F-measures attained by Ggq;.; and Gy to
decide whether we should incorporate the SC or 7C categories
for iteration (i+1). In this way, we aim to supervise the
clustering algorithm and add mostly meaningful language
structures to the growing grammar G. In implementing this
selection method, we increased N from 5 to /0 in anticipation of
the next step in which we try to “optimize” on the number of
merges as well.

3.3 Selecting the Number of Clusters Per Iteration

We attempt to be more aggressive in our grammar induction
algorithm to learn more “useful” rules per iteration. Previously,
in our baseline configuration, we performed some empirical
experiments to set the number of clusters per iteration at N=3.
In the current configuration, having chosen between SC or 7C
clustering for a given iteration, we have a list of N=/0 rules that
can potentially be added to the grammar. These are ranked
ordered according to the values of Divergence or Information
Gain. We first add the top five rules to the grammar. Thereafter,
for rules 6 to 10, we consider them sequentially and incorporate
the rule into the grammar if it contributes towards an increment
to the F-measure, and we stop when we encounter a rule that
leads to a decrement in the F-measure.

4. EXPERIMENTAL RESULTS

Based on the ATIS training set, we ran the automatic
grammar induction algorithm with the baseline configuration, i.e.
using Information Gain for temporal clustering to produce 7Cs,
alternating between SC and 7C formation in a rote manner for
successive iterations, it forms M(=5) clusters per iteration, and
uses an automatic stopping criterion that terminates the iterative
process when the relative growth in training vocabulary
coverage scants 1%. As shown in Figure 1, this baseline
configuration terminated at iteration 150, achieving a training
vocabulary coverage of 86%.

The enhanced approach (also see Figure 1) leverages the
knowledge from the SQL expressions. The interim grammar at
every iteration is used to parse the training queries, and parsed
structures are compared with the desired meaningful strcutures
extracted from the SQL expressions, using the F-measure as the
evaluation criterion. Based on the value of the F-measure, the
enhanced grammar induction algorithm selects between SC or
TC formation for every iteration, as well as the number of
clusters that should be formed. The automatic stopping criterion
is also incorporated. Figure 1 shows that this enhanced
configuration terminated at iteration 70 and achieved full
vocabulary coverage (i.e. for words with at least M=35
occurrences) of the training set. This is an improvement over
the baseline configuration.

‘ —e—Baseline Approach —#— Enhanced Approach

100% —
80% [

60% |- /

40%

20% |- l
0%

0 50 100 150

% of training
vocabulary coverage

Iteration

Figure 1. Graph plotting the training vocabulary coverage
(measured in terms of the percentage of words/terminals in the
training corpus that are captured in the grammar) with respect to
the number of iterations for both the baseline and enhanced
configurations of our automatic grammar induction algorithm.

We denote the grammar learnt with the baseline induction
configuration with G, the grammar learnt with the enhanced
induction configuration with G, and a handcrafted grammar
with G5 No hand-editing is performed to Gz or Gx. Parsing
the test sets with these grammars, and comparison with the test
set SQL expressions yields the precision, recall and F-measure
values as tabulated in Table 5.

1993 Test Set
GB GL GH

Recall 0.605 0.801 0.889
Precision 0.252 0.273 0.634
F-measure 0.356 0.407 0.740

1994 Test Set
Recall 0.663 0.809 0.909
Precision 0.276 0.279 0.626
F-measure 0.389 0.416 0.741

Table 5. Comparison of the induced grammars from the baseline
configuration (Gp), the enhance configuration (Gz) with the
handcrafter grammar (Gy). These grammars are used to parse
the test sets and the parsed structures are compared with those
extracted from the SQL expressions in terms of precision, recall
and F-measure.

It can be seen that G;; achieves higher performance values
than Gg. Gy fares best — with higher recall rates mainly due to
the absence of a minimum word count constraint (i.e. M=5), and
higher precision rates due to careful selection by handcrafting.
Handcrafted grammars do not contain structures or grammar
rules that are introduced into the automatically induced
grammars by virtue of their statistical values (i.e. Divergence or
Information Gain).

We also tried to compare these three grammars (G, G and
Gy) in terms of their performance on natural language
understanding. Each SQL expression is used to form a reference
semantic frame, which consists of attribute-value pairs. An
example is shown in Table 6.

Input Query:
What are the nonstop flights between houston and
memphis

Reference Semantic Frame (from SQL expression)
CITY_NAME: houston

CITY_NAME: memphis

STOPS: nonstop

Table 6. Example of a reference semantic frame corresponding
to an input query.

By generating the reference semantic frames for the
training queries, we obtain the set of unique attributes
characterizing the ATIS domain. For each unique attribute label,
we traverse the automatically induced grammar (which may be
Gy or Gy) and select the single rule deemed most suitable to
replace the SC or 7C label with the attribute label.

For example, in the grammar excerpt shown in Table 7, all
the grammar rules contain names of cities. The nonterminal
SC9 contains eight city names. SC/7 contains three city names.
Hence we replaced the label SC9 with the attribute label
CITY_NAME.

SC2 - paul | petersburg

SC9 -> nashville | toronto | TC6 | milwaukee | TC9 | SC27
SC27 -> long beach | ontario

SC17 = TC20|1_a| chicago

TC6 -> saint SC2

TC9 -> kansas city

TC20-> san jose

Table 7. Examples of automatically induced grammar rules of
baseline configuration. SC9 contains the maximum number of
city names and is re-labeled with the attribute CITY NAME.

It may also occur that no grammar rule is deemed suitable
for an attribute label, in which case the attribute label is omitted
from the grammar. With this method, we assigned 13 attribute
labels to G and 15 attribute labels to Gy The two grammar
rules (or attribute lables) absent from G, are:

MEAL _DESCRIPTION -> dinner | lunch | cities
ONE_WAY - one way

Having incorporated these attribute labels, we can parse
the test queries with Gy or G, and generate hypothesized
semantic frames. These are compared with the reference
semantic frames and we followed the evaluation scheme
described in [1] where Full Understanding refers to the
percentage of queries with exact matches between the reference
and hypothesized frames. Partial Understanding refers to the
percentage of queries with partial matches between the reference
and hypothesized frames. No Understanding refers to no
matches, primarily due to out-of-vocabulary words. Results are
tabulated in Table 8.

1993 Test Set

Gp Gy Gy
Full (%) 0.7 34.2 85.5
Partial (%) 80.1 56.9 14.5
No (%) 19.2 8.9 0

1994 Test Set

Full (%) 0 259 78.6
Partial (%) 87.4 70.9 20.2
No (%) 12.6 32 1.1

Table 8. Comparison of the induced grammars from the baseline
configuration (Gp), the enhance configuration (Gz) with the
handcrafter grammar (G). Parsing the test query with these
grammars produce a hypothesized semantic frame, which is
compared with the reference semantic frame derived from the
SQL expression. Comparison of these two frames lead to Full /
Partial / No Understanding for full / partial / no matches.

As seen from Table 8, G, performs significantly better
than Gy in natural language understanding performance. The
enhanced configuration can automatically acquire grammar rules
with a richer set of terminals than the baseline configuration.

An example is illustrated with the attribute label
CITY_NAME. Gy, is able to acquire the rule with 42 city names:
CITY_NAME > toronto | detroit | seattle | ... (from Gy)

This category is segmented into several grammar rules in Gg, of
which only one is labeled as CITY_NAME for parsing.

CITY_NAME > nashville | toronto | ontario | ... (from Gg)

SC11 - detroit | pittsburgh | cleveland | ...

SC17 - san jose | 1_a| chicago |

Similar conditions apply to the attribute labels MONTH and
AIRLINE NAME, which caused great losses in the percentage of
queries achieving Full Understanding with the grammar Gy, as
well as a higher rate in No Understanding.

5. CONCLUSIONS AND FUTURE WORK
We present improvements to a semi-automatic grammar
induction framework. In the baseline configuration, grammar
rules are induced with an agglomerative clustering algorithm
with alternate iterations between spatial and temporal clustering,
and forming a fixed number (M=35) of clusters per iteration. The
algorithm has been applied to the ATIS-3 corpora. We present
an enhanced configuration that leverages knowledge from the
SQL expressions in the ATIS-3 corpora. Since these
expressions specify the action of database access in relation to
the queries they contain meaningful linguistic structures that
should be captured in the grammar. Our enhanced configuration
references such knowledge during the clustering process, by
comparing the structures captured in the induced grammar with
those in the SQL expressions in terms of precision, recall and F-
measure. Such comparisons are used to drive the decision
between spatial and temporal clustering for each iteration, as
well as the number of clusters formed for every iteration.
Results show that the enhanced configuration led to improved
performance in natural language understanding.

6. REFERENCES

1. Meng, H. and K. C. Siu, “Semi-Automatic Acquisition of
Domain-Specific Semantic Structures”, IEEE Trans. on
Knowledge and Data Engineering, in press.

2. McCandless, M. and J. Glass, “Empirical Acquisition of
Word and Phrases Classes in the ATIS Domain”, The 3t
European Conference on Speech Communication and
Technology, 1993.

3. Akiba T. and K. Itou, “Semi-Automatic Language Model
Acquisition without Large Corpora”, Proceedings of the
ICSLP, 2000.

4. Wu, M. W. and K. Y. Su, “Corpus-based Automatic
Compound Extraction with Mutual Information and
Relative Frequency Count”, Proceedings of R. O. C.
Computational Linguistics Conference VI, 1993.

5. Manning, C. D. and H. Schutze, Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge, Massachusetts 1999.

6. Potamianos, A. and J. Kuo, “Statistical Recursive Finite
state Machine Parsing for Speech Understanding”,
Proceedings of the ICSLP, 2000.

7. Thompson, C. and M. Califf and R. Mooney, “Active
Learning for Natural Language Parsing and Information
Extraction”, Proceedings of the ICML, 1999.

8. Rijsbergen, V. Information Retrieval. London, Boston,
Butterworths 1979.

