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ABSTRACT

We introducea methodfor performingspeaker-trainedrecogni-
tion basedon context-dependentallophonemodelsfrom a large-
vocabulary, speaker-independentrecognitionsystem. In this ap-
proach,a setof speaker-enrollmenttemplatesis selectedfrom the
context-dependentallophonemodels. Thesetemplatesare used
to build representationsof the speaker-enrolledutterances.The
advantagesof this approachinclude improved performanceand
portabilityof theenrollmentsacrossdifferentacousticmodels.

We describethe approachusedto selectthe enrollmenttem-
platesandhow to apply themto speaker-trainedrecognition.The
approachhasbeenevaluatedon an over-the-telephone,voice-ac-
tivateddialing task andshows significantperformanceimprove-
mentsover techniquesbasedon context-independentphonemod-
elsor generalacousticmodeltemplates.In addition,theportability
of enrollmentsfrom onemodelsetto anotheris shown to resultin
almostnoperformancedegradation.

1. INTRODUCTION

In general,speechrecognitionsystemsdo not rely on acousticin-
formation to derive their languagemodels. However, someap-
plicationsrequirethe ability to personalizethe vocabulary inter-
actively, without any mediumother than the audio channel. In
theseapplications,theuserneedsto beableto updatethelanguage
modelby interactingwith thesystemby voice.As a consequence,
therecognitionengineneedsto beableto updateits modelsbased
solelyon theacousticscollectedduring theinteraction.A typical
examplewould be a voice-activateddialing applicationin which
userswould beableto maintaina personallist of names.To adda
nameto thelist, theusersaysthenameoneor moretimesandthe
recognitionenginebuilds a modelof the spoken utterance.This
utterancemodelcanthenbe usedby the recognitionsystemin a
laterinteraction.

1.1. The Speaker-Trained Recognition (STR) Process

In order to adda new word or phraseto the system,the useris
queriedto speakit oneor several times. The enrollment mecha-
nismextractstheinformationneededby therecognizerandstores
it in its database.Whentheword is subsequentlyused,duringthe
recognition phase,the systemretrieves the information from the
databaseandcombinesit with therecognitionmodels.

Sincetheenrollmentoperationmodifiestherecognitionmod-
elsonline,severalchecksareperformedto ensurethat the recog-
nition accuracy is nothurtby addinganew word. First, thesystem
checksthat theword, or any similar soundingone,is not already
presentin the languagemodel. This operationis referredto as
clash testing. In a secondstep,thevalidity of theacousticsof the

word itself is checked. Typically theuseris requiredto repeatthe
word at leasttwice. The systemmakes surethat the two utter-
ancesareconsistentwith eachother. Consistency testing ensures
thattheportionof speechcapturedby thesystemis indeedtheone
intendedto beenrolled.

1.2. Design Constraints

In thedesignof a STRsystem,several factorscomeinto play be-
yondthetypicalaccuracy issues.

From a user interfaceperspective, the enrollmentoperation
mustbefastandeasyto perform.This meansthatthefalserejec-
tion rateof bothclashandconsistency testinghasto beminimized,
while ensuringthatthefalseacceptrateis low enoughto maintain
theusefulnessof thetests.

Becauseof thedistinctiveorigin of wordsenrolledusingSTR,
theaccuracy of thesystemon thesewordsconsideredin isolation
might not be consistentwith the performancewhenusedin con-
junctionwith speaker-independentgrammars.Maintaininga high
level of accuracy in speaker-independentcontexts is critical to ap-
plicationssuchasvoice-activateddialing.

In addition,it is of practicalimportancefor thecompatibility
of enrolledwordsto bemaintainedwhentheunderlyingacoustic
modelsarechangedor upgraded.This ensuresthat improvements
obtainedthroughalgorithmicchanges,retrainingor adaptationof
the modelswill not be detrimentalto speaker trainedwords,and
that the interoperabilitywith speaker-independenttasksis consis-
tently maintained.

2. BASELINE SYSTEMS

Typical speaker-trainedrecognitionsystemsfall into two catego-
ries: phonetic systems, which usephone-like basesasenrollment
models([1], [2], [3]), andacoustic systems, which uselow-level
representationsof theacoustics(e.g. DTW or templatematching
systems;seealso[4]).

2.1. Baseline Phonetic System

Phoneticsystemsusephoneticallylabeledmodelsastemplatesfor
enrollment. In practice, thesesystemsgenerallyrely on broad
speaker-independentmodels,which canunderminetheir accuracy
whenenrollmentsarecombinedwith largevocabularyspeaker-in-
dependentgrammars.

The baselinephoneticsystemconsideredin this paperuses
a setof monophonehiddenMarkov modelsto representspeech.
Theenrollmentprocesslearnsthesequenceof monophonemodels
correspondingto theenrolledutterance.Two consistentpronunci-
ationsof thewordsarerequired,andthephonemesequencesgen-



eratedareusedasalternative pronunciationsof theenrolledword
in a similar way astheoneproposedin [3]. At recognitiontime,
themonophoneenrollmentmodelsareevaluatedto determinethe
spoken utterance. An advantageof the monophoneapproachis
that the numberof parametersinvolved is minimal, leadingto a
very inexpensive enrollmentprocess.

2.2. Baseline Acoustic System

Acousticsystemstake full advantageof speaker-dependence,and
modeltheacousticsof thetrainingdataat a fine level with no ex-
plicit phoneticconstraints. Theseare in generalvery accurate,
andcanbe maderobust by training the templateson speaker-in-
dependentdata.Themajordrawbackof thesesystemsis portabil-
ity: sincethe templatesusedareexplicitly tied to the underlying
acousticmodels,robustnessto modificationsor adaptationof the
underlyingmodelsetis poor.

The baselineacousticsystemevaluatedin this paperis built
on top of the phoneticbaseline. The underlyingacousticmodel
consideredusesgenones[5] as acousticmodel clusters. A sin-
gle enrollmentmodel is derived from eachclusterby averaging
the mixture weightsof all the allophonespointing to this partic-
ular genone.This methodensuresa propercoverageof thecom-
pleteacousticspace,while limiting thetotalnumberof enrollment
modelsto a reasonablelevel. Thesemodelsarethenaddedto the
enrollmentgrammarloop in parallelwith themonophones.

3. PROPOSED APPROACH

3.1. Allophonic Enrollment Models (AEM)

A naturalwayto combinetheadvantagesof bothacousticandpho-
netic systemsis to considerusingspeaker-independent,context-
dependentallophonicmodelsfor enrollment. Allophoneshave a
labelingthatdependsonly on thephoneset,potentiallyproviding
somelevel of independencewith respectto theunderlyingacoustic
models. On the otherhand,large vocabulary speechrecognition
systemstypically useseveral thousandmodels,providing a fine
segmentationof theacousticspace.

Theproposedsystemusesanunconstrainedloopof allophones
for enrollment.An additionalmodeltransitionpenaltyis applied
duringenrollmentto controlthelengthof theallophonesequence.
Becausethe objective is to obtain a transcriptionof the spoken
utteranceat a potentially finer level than the phonetictranscrip-
tion, noneof thecontext dependenciesbetweenallophonesareen-
forced.Thispolicy letseachstateof eachmodelaligntowhichever
segmentof theacousticstring is themostlikely, regardlessof the
neighboringallophones,andprovidesa richersetof templatesto
matchagainstat any point in time. This reducesdramaticallythe
complexity of theenrollmentgrammarandsignificantlyeasesthe
processof selectingtheenrollmentmodels.

3.2. Model Selection

The grammarusedto enroll speaker-trained items is an uncon-
strainedAEM loop. As a consequence,the enrollmentspeedis
inverselyproportionalto the numberof modelsused. To make
this approachpractical,only a subsetof theavailablepool of allo-
phoneswill beconsidered.

A naturalway of selectingtheappropriateAEM setis to con-
sider a loop containingall the available models,enroll a large
amountof datawith it, andselectthemodelswith highestunigram

probabilities.Figure1 showsthefrequency/rankdistributionof the
modelsfor a typical speaker-independentmodelset(dottedline is
anexponentialfit). Notethatthemodeldistributionapproximately
follows Zipf ’s law, with a smallertail thanthelaw would predict.
This indicatesthatverygoodcoverageof themodelsactuallyused
during enrollmentcanbe achieved while selectingrelatively few
of them.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

Rank (log scale)

F
re

qu
en

cy
 (

lo
g 

sc
al

e)

Fig. 1. Frequency/rankdistributionof theAEM

This result can be assumedto apply to any type of mixture
model.In thecontext of genonicmixturemodels,thegenonecov-
eragecanbeexpectedto beagoodstatisticof thelevel of coverage
of the acousticspace.Figure2 shows that althoughthe percent-
ageof thetrainingdatacoveredby selectinga subsetof theAEM
grows slowly with the rank of the last AEM selected,very good
coverageof thegenoneandphoneticspacescanbeachievedwith
very few AEM models.
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Fig. 2. CoverageStatistics

Therearesomepracticalissuesassociatedwith this selection
process.Sincea significantportionof theprobabilityis contained
in thelow-rankingmodels,how thisprobabilitymassredistributes
acrossthe top-rankingmodelsafter selectionmight significantly
altertheirordering.Ideally, selectionshouldbecarriedout in suc-
cessive steps,reevaluatingthe distribution of the modelson the
dataaftereachresampling.



An alternative schemeis to considerthe allophonestatistics
collectedduring the training of the speaker-independentacoustic
models. Thesestatisticsarea by-productof the training process
andthereis no overheadassociatedwith collectingthis informa-
tion. They are only consistentacrossallophoneswith the same
context span.It is reasonableto consideronly thelongestcontext
spanallophones(typically triphones)andselecttheoneswith the
highestprior probability. Thesemodelshave beentrainedon the
largestamountof dataandareexpectedto be bestat segmenting
theacousticspace.

Thissecondselectionmethodis alsoa reasonablepredictorof
the previous one. On an AmericanEnglishmodelset,the Spear-
manrankcorrelationbetweenthe two selectionschemesis about
0.89,which meansthattherankingof themodelsobtainedduring
training is a goodpredictorof the rankingobtainedby enrolling
data.The two selectionmethodshave alsoshown experimentally
to performsimilarly.

4. EXPERIMENTAL SETUP

The task usedto evaluatethe AEM STR approachsimulatesa
voice-activateddialingapplication.Thedataconsistsof 66 Amer-
icanspeakersenrollingover thetelephonechannel50nameseach.
Eachenrollmentcorrespondsto two consistentrepetitionsof the
name. Recognitionaccuracy is evaluatedon 50 moreutterances
perspeaker. Clashtestingis disabledduringaccuracy experiments
in orderto keepthenumberof utterancesconstant.

Clashtestingis implementedusinganapproximaterescoring
of theacousticsof theword beingenrolledagainstthe pronunci-
ationsof the potentialclashes.Words above a thresholdon the
likelihooddistancebetweenthe currentenrollmentandthe other
wordsareconsideredclashes.Clashtestingperformanceis evalu-
atedby attemptingto enroll thethesamenameseveraltimesunder
different labels(FalseAccepts),and by countingthe numberof
enrollmentsthatwererejectedalthoughthey werevery dissimilar
acoustically(FalseRejects).

Consistency testingis implementedusinganapproximatere-
scoringof the acousticsof the word being enrolledagainstthe
pronunciationsof the wordsto be consistentwith. Wordsbelow
a thresholdon the likelihooddistancebetweenthecurrentenroll-
mentand the otherwordsaredeemedinconsistent.Consistency
testingperformanceis evaluatedby trying to enrollunderthesame
label utteranceswhoseacousticsare very dissimilar (FalseAc-
cepts),andby countingthe numberof enrollmentsthat werere-
jectedalthoughthey were distinct utterancesof the samename
(FalseRejects).

Robustnessto combinationwith speaker-independentgram-
mars is evaluatedby running the samerecognitionexperiment,
addingin parallelwith theSTRnamesalist of SI namesof variable
size.

Models Error Rate
Monophones 2.9%
1000Genones 2.7%
1000AEM 2.1%

Table 1. STRAccuracy

5. RESULTS

5.1. Accuracy

Table1 comparestheerror rateof thevarioussetupson theSTR
taskwithout any competingspeaker-independententries. Perfor-
manceof theAEM systemis 22%betterthanthesystembasedon
genonictemplates,and27%betterthanthemonophonesystem.

Experimentscombiningspeaker-independentandSTR name
lists demonstrateclearly the drawbacksof typical phoneticap-
proaches(Figure3). Theperformanceof a monophoneloop does
not scalewell with the numberof names.While the sizeof the
enrollmentmodelsetdoesnot seemto matterin isolation,for any
practicalapplicationusingSTRin a speaker-independentcontext,
the granularityof the acousticmodelsis critical. This is demon-
stratedby the genonesandAEM performancesas the namelist
sizegrows.
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5.2. Clash and Consistency Testing

Performanceof clashtestingis greatly improved by usingAEM
for enrollment(Figure4). At typical operatingpoints(low false
reject rates),the reductionin falseacceptsat a given falsereject
rateis abouttwofold over genonesandmonophones.

Performanceof consistency testing(Figure5) follows a sim-
ilar trend. At low flase reject rates, the reductionin false ac-
ceptratescomparedto thebaselinesystemsis evenmoredramatic
(around70%).

5.3. Robustness to changes in the underlying acoustic model

In this experiment,two differentmodelsets(denotedModel I and
II in Table2) wereusedto evaluatetheportability of AEM across
acousticmodels. The two modelsetshave very different model
parametercomplexities. Thetrainingdatafor bothmodelsoverlap,
but the trainingprocessfor eachof themwasdifferentenoughto
simulateportabilityacrosssuccessive retrainingsof models.
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Table2 shows the resultof porting enrollmentson onemod-
elsetto the other. The porting of enrolledwords betweenmod-
elsets,whichwasimpossiblewith anacousticenrollmentmethod,
canbeperformedatnostatisticallysignificantcostwhenAEM are
usedastemplates.

Enrollment Recognition ErrorRate
Model I Model I 2.68%
Model I Model II 2.71%

Table 2. Robustnessto ModelsetChange

6. CONCLUSION

Weshowedthattheuseof AllophonicEnrollmentModelsprovides
a robust,practicalmethodto performspeaker-trainedrecognition.
The main featuresof the techniquearean excellent tradeoff be-
tweenspeedandaccuracy, robustnessto speaker-independenten-
vironmentsandportabilityacrossmodelsets.In addition,thistech-
niqueis verysimpleto implementontopof aspeaker-independent
speechrecognitionengine.It guaranteesthat improvementsto the
performanceof thespeaker-independentsystem,throughalgorith-
mic changesaswell asimprovementsof theacousticmodels,can
beintegratedinto asystemcontainingspeaker-trainedenrollments
withoutdegradingSTRperformance.
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