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ABSTRACT

We introducea methodfor performingspeakrtrainedrecogni-
tion basedon context-dependengllophonemodelsfrom a large-
vocahilary, speakr-independentecognitionsystem. In this ap-
proach,a setof speakr-enrollmenttemplatess selectedrom the
context-dependentallophonemodels. Thesetemplatesare used
to build representationsf the speakr-enrolled utterances.The
adwantagesof this approachinclude improved performanceand
portability of the enrolimentsacrosdifferentacousticnodels.

We describethe approachusedto selectthe enrolimenttem-
platesandhow to applythemto spealkrtrainedrecognition. The
approachhasbeenevaluatedon an over-the-telephoneyoice-ac-
tivateddialing task and shaws significant performancemprove-
mentsover techniquedasedon contet-independenphonemod-
elsor generahcoustianodeltemplatesin addition,theportability
of enrollmentdrom onemodelsetto anotheris shovn to resultin
almostno performancealegradation.

1. INTRODUCTION

In general speectrecognitionsystemslo not rely on acousticn-
formationto derive their languagemodels. However, someap-
plicationsrequirethe ability to personalizethe vocalulary inter-
actively, without ary medium other than the audio channel. In
theseapplicationstheusemeedgo beableto updatehelanguage
modelby interactingwith the systemby voice. As aconsequence,
therecognitionengineneeddo beableto updateits modelsbased
solely on the acousticzcollectedduring the interaction. A typical
examplewould be a voice-actvateddialing applicationin which
userswould be ableto maintaina personalist of names.To adda
nameto thelist, the usersaysthe nameoneor moretimesandthe
recognitionenginebuilds a model of the spolen utterance.This
utterancemodel canthenbe usedby the recognitionsystemin a
laterinteraction.

1.1. The Speaker-Trained Recognition (STR) Process

In orderto add a new word or phraseto the system,the useris
queriedto speakit one or severaltimes. The enrollment mecha-
nismextractstheinformationneededy therecognizermandstores
it in its databaseWhentheword is subsequentlyised duringthe
recognition phase the systemretrievesthe information from the
databas@ndcombinest with therecognitionmodels.

Sincethe enrollmentoperationrmodifiesthe recognitionmod-
elsonline, several checksare performedto ensurethatthe recog-
nition accurag is nothurtby addinganew word. First, thesystem
checksthatthe word, or ary similar soundingone, is not already
presentin the languagemodel. This operationis referredto as
clash testing. In a secondstep,thevalidity of the acousticf the

word itself is checled. Typically the useris requiredto repeatthe
word at leasttwice. The systemmales surethat the two utter
ancesare consistenwith eachother Consistency testing ensures
thattheportionof speecttapturedoy thesystemis indeedtheone
intendedto beenrolled.

1.2. Design Constraints

In thedesignof a STR system several factorscomeinto play be-
yondthetypical accurag issues.

From a userinterface perspectie, the enrollmentoperation
mustbe fastandeasyto perform. This meanghatthe falserejec-
tion rateof bothclashandconsisteng testinghasto beminimized,
while ensuringhatthefalseacceptateis low enoughto maintain
theusefulnes®f thetests.

Becausef thedistinctive origin of wordsenrolledusingSTR,
theaccurag of the systemon thesewordsconsideredn isolation
might not be consistenwith the performancevhenusedin con-
junctionwith speakrindependengrammars Maintaininga high
level of accurayg in speakrindependentontetsiis critical to ap-
plicationssuchasvoice-actvateddialing.

In addition, it is of practicalimportancefor the compatibility
of enrolledwordsto be maintainedvhenthe underlyingacoustic
modelsarechangecr upgraded.This ensureghatimprovements
obtainedthroughalgorithmicchangesretrainingor adaptatiorof
the modelswill not be detrimentalto spealer trainedwords, and
thattheinteroperabilitywith speakr-independentasksis consis-
tently maintained.

2. BASELINE SYSTEMS

Typical spealkrtrainedrecognitionsystemdall into two cateyo-
ries: phonetic systems, which usephone-lile basesasenrollment
models([1], [2], [3]), andacoustic systems, which uselow-level
representationsf the acousticge.g. DTW or templatematching
systemsseealso[4]).

2.1. Basdline Phonetic System

Phoneticsystemsausephoneticallylabeledmodelsastemplategor
enrollment. In practice,thesesystemsgenerallyrely on broad
speakr-independenmodels which canunderminegheir accurag
whenenrollmentsarecombinedwith large vocalulary speakr-in-
dependengrammars.

The baselinephoneticsystemconsideredn this paperuses
a setof monophonehiddenMarkov modelsto represenspeech.
Theenrollmentprocesdearnsthesequencef monophonenodels
correspondingdo the enrolledutterance Two consistenpronunci-
ationsof thewordsarerequired,andthe phonemesequencegen-



eratedareusedasalternatve pronunciation®f the enrolledword
in a similar way asthe oneproposedn [3]. At recognitiontime,
the monophoneenrollmentmodelsareevaluatedto determinethe
spolen utterance. An adwantageof the monophoneapproachis
that the numberof parametersnvolved is minimal, leadingto a
very inexpensve enrollmentprocess.

2.2. Basdine Acoustic System

Acousticsystemdake full advantageof speakr-dependenceand
modelthe acousticof thetraining dataat a fine level with no ex-
plicit phoneticconstraints. Theseare in generalvery accurate,
and canbe maderohust by training the templateson spealkr-in-
dependentiata. The major dravbackof thesesystemds portabil-
ity: sincethe templatesusedare explicitly tied to the underlying
acousticmodels,robustnesgo modificationsor adaptatiorof the
underlyingmodelseis poor

The baselineacousticsystemevaluatedin this paperis built
on top of the phoneticbaseline. The underlyingacousticmodel
consideredusesgenoneq5] asacousticmodel clusters. A sin-
gle enrolimentmodelis derived from eachclusterby averaging
the mixture weightsof all the allophonegpointing to this partic-
ular genone.This methodensuresa propercoverageof the com-
pleteacousticspacewhile limiting thetotal numberof enroliment
modelsto areasonabléevel. Thesemodelsarethenaddedto the
enrollmentgrammaroopin parallelwith themonophones.

3. PROPOSED APPROACH

3.1. Allophonic Enrollment Models (AEM)

A naturalwayto combinetheadwantage®f bothacoustiandpho-
netic systemss to considerusing speakrindependentcontext-
dependenallophonicmodelsfor enrollment. Allophoneshave a
labelingthatdepend®nly on the phoneset,potentiallyproviding
somelevel of independencwith respecto theunderlyingacoustic
models. On the otherhand,large vocalulary speechrecognition
systemstypically use several thousandmodels, providing a fine
segmentatiorof theacousticspace.
Theproposedystenusesanunconstrainetbopof allophones
for enroliment. An additionalmodeltransitionpenaltyis applied

duringenrolimentto controlthelengthof theallophonesequence.

Becausethe objective is to obtain a transcriptionof the spolen
utteranceat a potentially finer level than the phonetictranscrip-
tion, noneof thecontext dependenciesetweerallophonesreen-
forced.Thispolicy letseachstateof eachmodelalignto whichever
segmentof the acousticstringis the mostlikely, regardlesof the
neighboringallophonesandprovidesa richer setof templatego
matchagainstat ary pointin time. This reducesdramaticallythe
compleity of the enrollmentgrammarandsignificantlyeaseshe
procesof selectinghe enrolilmentmodels.

3.2. Moddl Selection

The grammarusedto enroll spealer-trained itemsis an uncon-
strainedAEM loop. As a consequencethe enrollmentspeedis
inversely proportionalto the numberof modelsused. To make
this approactpractical,only a subsebf the availablepool of allo-
phoneswill beconsidered.

A naturalway of selectingtheappropriatéAEM setis to con-
sider a loop containingall the available models, enroll a large
amountof datawith it, andselecthemodelswith highestunigram

probabilities.Figurel shavsthefrequeng/rankdistribution of the

modelsfor atypical speakrindependentodelsetdottedline is

anexponentiafit). Notethatthemodeldistributionapproximately
follows Zipf’s law, with a smallertail thanthe law would predict.
Thisindicateshatvery goodcoverageof themodelsactuallyused
during enrolimentcan be achieved while selectingrelatively few

of them.
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Fig. 1. Frequenyg/rankdistribution of the AEM

This resultcan be assumedo apply to ary type of mixture
model.In the context of genonicmixture models the genonecov-
eragecanbeexpectedo beagoodstatisticof thelevel of coverage
of the acousticspace.Figure 2 shaws that althoughthe percent-
ageof thetraining datacoveredby selectinga subsef the AEM
grows slowly with the rank of the last AEM selectedyvery good
coverageof the genoneandphoneticspacesanbe achieved with
very few AEM models.
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Fig. 2. CoverageStatistics

Therearesomepracticalissuesassociatedvith this selection
process Sincea significantportion of the probabilityis contained
in thelow-rankingmodels how this probabilitymassredistritutes
acrossthe top-rankingmodelsafter selectionmight significantly
altertheir ordering.ldeally, selectionshouldbe carriedoutin suc-
cessve steps,reevaluatingthe distribution of the modelson the
dataaftereachresampling.



An alternatve schemeis to considerthe allophonestatistics
collectedduring the training of the spealkr-independentcoustic
models. Thesestatisticsare a by-productof the training process
andthereis no overheadassociatedvith collectingthis informa-
tion. They areonly consistentacrossallophoneswith the same
contet span.lt is reasonabl¢o consideronly the longestcontext
spanallophoneqgtypically triphones)andselectthe oneswith the
highestprior probability Thesemodelshave beentrainedon the
largestamountof dataand are expectedto be bestat segmenting
theacousticspace.

This secondselectiormethodis alsoa reasonablgredictorof
the previous one. On an AmericanEnglishmodelsetthe Spear
manrank correlationbetweenthe two selectionschemess about
0.89,which meanghattherankingof the modelsobtainedduring
training is a good predictorof the ranking obtainedby enrolling
data. The two selectionmethodshave alsoshavn experimentally
to performsimilarly.

4. EXPERIMENTAL SETUP

The task usedto evaluatethe AEM STR approachsimulatesa
voice-actvateddialing application.The dataconsistsof 66 Amer-
icanspealersenrollingoverthetelephonechanneb0 nameseach.
Eachenrollmentcorrespondso two consistentepetitionsof the
name. Recognitionaccuray is evaluatedon 50 more utterances
perspealer. Clashtestingis disabledduringaccurag experiments
in orderto keepthe numberof utterancegonstant.

Clashtestingis implementedisingan approximateescoring
of the acousticsof the word beingenrolledagainstthe pronunci-
ationsof the potential clashes. Words above a thresholdon the
likelihood distancebetweenthe currentenrollmentand the other
wordsareconsideredlashes Clashtestingperformances evalu-
atedby attemptingo enrollthethe samenameseveraltimesunder
differentlabels (False Accepts),and by countingthe numberof
enrollmentghatwererejectedalthoughthey werevery dissimilar
acoustically(FalseRejects).

Consisteng testingis implementedisingan approximatere-
scoring of the acousticsof the word being enrolled againstthe
pronunciationf the wordsto be consistentwith. Wordsbelov
athresholdon the likelihooddistancebetweerthe currentenroll-
mentandthe otherwords are deemednconsistent. Consisteng
testingperformancés evaluatedby trying to enrollunderthesame
label utteranceavhoseacousticsare very dissimilar (False Ac-
cepts),and by countingthe numberof enrolimentsthat were re-
jected althoughthey were distinct utterancef the samename
(FalseRejects).

Rolustnesso combinationwith spealkrindependengram-
marsis evaluatedby running the samerecognitionexperiment,
addingin parallelwith theSTRnameslist of S| namef variable
size.

Models Error Rate
Monophones 2.9%
1000Genones 2.7%
1000AEM 2.1%

Table1l. STRAccuray

5. RESULTS

5.1. Accuracy

Table1 compareghe errorrate of the varioussetupson the STR
taskwithout ary competingspeakr-independenentries. Perfor
manceof the AEM systemis 22%betterthanthe systembasedn
genonictemplatesand27%betterthanthe monophonesystem.

Experimentscombiningspeakr-independenand STR name
lists demonstrateclearly the dravbacksof typical phoneticap-
proachegFigure3). The performanceof a monophondoop does
not scalewell with the numberof names. While the size of the
enrollmentmodelsetdoesnot seemto matterin isolation,for ary
practicalapplicationusingSTRin a speakrindependentontext,
the granularityof the acousticmodelsis critical. This is demon-
stratedby the genonesand AEM performancess the namelist
sizegrows.
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Fig. 3. CombiningSTRandSI Grammars

5.2. Clash and Consistency Testing

Performanceof clashtestingis greatlyimproved by using AEM
for enrollment(Figure4). At typical operatingpoints (low false
rejectrates),the reductionin falseacceptsat a given falsereject
rateis abouttwofold over genonesndmonophones.

Performancef consisteny testing(Figure5) follows a sim-
ilar trend. At low flaserejectrates,the reductionin false ac-
ceptratescomparedo thebaselinesystemss evenmoredramatic
(around70%).

5.3. Robustnessto changesin the underlying acoustic model

In this experiment,two differentmodelset§denotedModel | and

Il in Table2) wereusedto evaluatethe portability of AEM across
acousticmodels. The two modelsetshave very different model

parametecompleities. Thetrainingdatafor bothmodelsoverlap,
but the training procesdor eachof themwasdifferentenoughto

simulateportability acrosssuccessie retrainingsof models.
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Fig. 5. Consisteng TestingROC

Table2 shaws the resultof porting enrollmentson one mod-
elsetto the other The porting of enrolledwords betweenmod-
elsetswhich wasimpossiblewith anacousticenrolimentmethod,
canbe performedatno statisticallysignificantcostwhenAEM are
usedastemplates.

Enrollment | Recognition| Error Rate
Modell Modell 2.68%
Model| Model Il 2.71%

Table 2. Rolustnesto ModelsetChange

6. CONCLUSION

We shavedthattheuseof Allophonic EnrollmentModelsprovides
arohust, practicalmethodto performspealer-trainedrecognition.
The main featuresof the techniqueare an excellenttradeof be-
tweenspeedandaccuray, robustnesgo speakrindependenen-
vironmentsandportability acrossnodelsetsin addition,thistech-
nigueis very simpleto implementontop of aspeakrindependent
speeclrecognitionengine.lt guaranteethatimprovementgo the
performancef the speakrindependensystemthroughalgorith-
mic changesaswell asimprovementsof the acousticmodels,can
beintegratedinto a systemcontainingspeakr-trainedenroliments
withoutdegradingSTR performance.
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