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ABSTRACT

In this paper we report on the use of multilingual
Hidden Markov Models for the recognition of non-native
speech. Based on the design of a common phoneme
set that provides a phone compression rate of almost
80 percent compared to a conglomerate of language
dependent phone sets, we create acoustic models that
share training data from up to 5 languages. Results ob-
tained on two different data bases of non-native English
demonstrate the feasibility of the approach, showing
improved recognition accuracy in case of sparse train-
ing material, and also for speakers whose native lan-
guage is not in the training data.

1. INTRODUCTION

With the emergence of new technologies and devices
in the field of telecommunications speech is expected
to become a predominant input medium for easy and
natural access to information from anywhere. Despite
large progress in fields like large vocabulary continuous
speech recognition or noise robustness, many speech
recognizers still reveal accuracy problems if a speaker’s
pronunication systematically differs from those observed
during system training. In applications such as desk-
top dictation, this problem can successfully be tackled
by speaker adaptation methods such as e.g. MAP [§],
and these techniques have also been applied for (of-
fline) adaptation of acoustic models to certain dialects,
see e.g. [6]. However, there is a growing number of
applications that do not allow the collection of a suffi-
cient amount of adaptation data and have to cope with
a large variety of individual pronunciations; consider,
for example, a tourist information system that is used
only once each by many individuals with numerous ac-
cents and/or native languages.

Partially motivated by these considerations there is
a growing interest in language independent and mul-
tilingual speech recognition. While language indepen-

dent acoustic modeling [3] utilizes training data from
several languages for the fast bootstrapping of mono-
lingual recognizers for an unseen target language, mul-
tilingual speech recognition [11, 12, 7] aims on the cre-
ation of acoustic models that can decode speech from
a variety of languages at one and the same time.

In this study we investigate the use of multilingual
acoustic models for the recognition of non-native En-
glish. In contrast to e.g. [13], where non-native speech
in the target language was included in the training
data, we restrict ourselves to the use of native training
material from several languages. In doing so, we start
with a brief review on our efforts to merge the phone
alphabets of seven different languages into a common
phone set. Section 3 outlines the training of rank-based
multilingual Hidden Markov Models, and in Section 4
we report on some initial recognition experiments on
two different data bases, an in-house collection of non
native speech data and a part of the Polycost speaker
verification database [10]. Finally, Section 5 gives a
conclusion and some prospects for further work.

2. COMMON PHONOLOGY

Our initial work towards a seamless multilingual speech
recognizer (see [7]) has concentrated on the definition
of a common phone alphabet for seven languages: Ara-
bic, (British) English, French, German, Italian, (Brazil-
ian) Portuguese, and Spanish. A common phone set
for these languages was created in a two-stage pro-
cess: using SAMPA notation, we first mapped the lan-
guage specific phones to their closest IPA [1] equivalent,
which required simplifications for some languages, but
also resulted in the introduction of new phone mod-
els for other languages. For example, we gave up syl-
labic consonant phones in German, whereas for British
English we introduced new diphtong phones. Subse-
quently, phones that shared the same SAMPA symbol
were merged. In order to still achieve high phone com-



pression rates when adding more and more languages,
we then defined a reduced common phonology [9]. For
that purpose, diphtongs (and most of the long vow-
els) were replaced by a sequence of two (in case of
long vowels identical) short vowels, stressed vowels were
dropped, and also some changes to the coding of con-
sonants were made.

Table 1 compares the size of the language specific
phone sets of the seven languages to the reduced com-
mon phone set, and Table 2 shows the number of vowel
and consonant phones that are unique to one of the
seven languages. The overall phone compression rate
is 78.7 percent, and is slightly larger for consonants
(79.9 percent) than for vowels (76.5 percent).

| (a) [ total | En Fr Gr It Es Pt Ar ]
vowels 132 18 17 23 22 14 24 14
cons. 224 31 19 37 48 35 24 30

total 356 49 36 60 70 49 48 44

| (b) [ total | En Fr Gr It Es Pt Ar ]
vowels 31 13 15 17 7 5 12 11
cons. 45 24 19 23 28 24 22 28
total 76 37 34 40 35 29 34 39

Table 1: Number of vowels and consonants in the phone
sets of seven languages (a), and in the common phone
set (b). Languages are British English (En), French
(Fr), German (Gr), Italian (It), Spanish (Es), Brazilian
Portuguese (Pt), Arabic (Ar).

While data driven phone clustering methods (e.g.
[4]) usually tend to achieve a less significant phone com-
pression rate, but may produce more accurate recogni-
tion results as long as only few languages are consid-
ered, we think that the utilization of phonetic expert
knowledge is the more promising way if many languages
are involved. Moreover, by e.g. the use of language
questions [14] for phonetical decision tree growing a
data driven differentiation can be introduced in the
acoustic model training (cf. Section 3).

| [ total | En Fr Gr It Es Pt Ar |

vowels 14 3 2 2 - - 3 4
cons. 16 -1 1 6 - - 8
total 30 3 3 3 6 - 3 12

Table 2: Number of vowels and consonants in the re-
duced common phone set that are unique to one of the
seven languages.

3. MULTILINGUAL MODELS

Feature extraction, the construction of a set of context
dependent allophonic Hidden Markov Models (HMMs),
and the estimation of continuous density Gaussian mix-
ture model parameters are the main aspects to consider
in the training of a rank-based speech recognizer [2].

The acoustic front end used in this study computes
13 MFCC (including C0) and their first and second
order derivative every ten milliseconds. By means of a
multilingual bootstrap acoustic model sequences of fea-
ture vectors are viterbi-aligned against the transcrip-
tion of the training data in order to obtain an allo-
phonic label for each vector. Subsequently, a set of
binary questions about the phonetic context (“Is the
phone in position ¢ in the subset S;?”) is used to iden-
tify homogeneous regions of the feature space. Each
terminal node (leaf) of the so created polyphone de-
cision network is represented as a context dependent,
single-state Gaussian mixture HMM, and a k-means
procedure is employed to obtain initial HMM output
probabilities from the data at each leaf of the network.
Finally, the initial HMM parameters are refined by run-
ning a few forward-backward iterations.

In [7] we obtained improved models from several
extensions of the sketched procedure which include:

e the transformation of cepstral feature vectors by
means of a multilingual linear discriminant anal-
ysis (LDA),

o the use of language questions (“Is the phone in
position i from a subset £; of languages”) [14]
in the creation of the phonetic decision network,
and

o the replacement of k-means clustering by a Bayesian
Information Criterion (BIC) based cluster proce-
dure [5] that allows a proper determination of
acoustic model complexity.

However, since we did not implement LDA and lan-
guage question support in the viterbi decoder used in
Section 4, only clustering via BIC was used for the
acoustic model training.

In the experiments described below we utilized a
shortcut method which enables the fast bootstrap of
acoustic models that make use of training data from
an arbitrary subset of languages £; = {L;|i =1...n}.
For that purpose we first created a common HMM in-
ventory by growing of a multilingual polyphone deci-
sion network from all data. Subsequently, the common
HMMs were individually trained with data from each
language L;,i = 1...m > n, resulting in m sets of



mono-lingual Gaussians that serve as a repository for
the creation of true multilingual HMMs. Finally, given
the desired set £; of languages, the latter were created
by the merging of (language dependent) Gaussians that
belong to the same leaf of the common decision net-
work.

4. EXPERIMENTS

Investigations on the use of multilingual acoustic mod-
els for the recognition of non-native speech were car-
ried out on two different databases, both consisting of
(continuous) English digit strings, but dealing with dif-
ferent scenarios. In both experimental setups we used
the training procedure outlined above, data from up to
five languages (French, German, Italian, Spanish, and
UK English) for the creation of multilingual crossword
triphone HMMs, and a single-pass, time synchronous
viterbi-decoder.

4.1. In-house database

In a first row of experiments we collected test data
from 29 non-native and 10 native speakers (16 female,
23 male) that read the same test script (English digits),
cf. Table 3.

A modest amount of 11 kHz training data that was
chosen from a database of office correspondence, jour-
nalism, etc., was used for the creation of acoustic mod-
els M1 — M4. All models make use of the same multi-
lingual HMM inventory, but were trained with a differ-
ent amount of data: M1 is a monolingual model build
from UK English training data, M2 and M3 are bilin-
gual models that make additional use of either French
or German data, and M4 was trained with data from
all languages.

| (a) | Es Fr Gr It | En |
no.of speakers 250 1105 500 500 | 699
speech data [h] || 16.3 19.5 19.6 19.8 | 16.2
words [x1000] || 13.2 11.1 181 33.5 | 21.6

| (b) | B8 Fr Gr It [ En |
test speakers 6 7 10 6 10
digits[x1000] 3 3.5 5 3 5

Table 3: Training (a) and test data (b) overview for
the 11 kHz acoustic models.

Recognition results for non-native speakers from Spain,
France, Germany, and Italy as well as for native speak-
ers are given in Table 4. For both French and German
test speakers we achieved a small improvement from

the bilingual models M2 and M3, but also obtained a
degradation for the control group of native speakers.
In contrast, by using training data from all languages
(M4) we obtained an average improvement of 22.4 per-
cent for the non-native speakers, whereas the control
group improved by 29.4 percent. Clearly, this has to
be attributed to the larger amount of training data and
demonstrates the cross-language transfer capabilities of
the multilingual models.

| WER| Es | Fr | Gr | It || avg. || En |
M1 12.13 | 591 | 9.26 | 12.03 || 9.62 || 6.40
M2 - 577 | - - - 6.60
M3 - | 810 7.26

M4 10.07 | 5.17 | 5.98 | 10.03 || 7.47 | 4.52

Table 4: English digit error rate for non-native speakers
from Spain (Es), France (Fr), Germany (Gr), and Ttaly
(It); avg: average over the four groups; En: native
control group.

4.2. Polycost database

Since we considered a lack of training data as one rea-
son for the fairly high digit error rates, more recently
we also used larger corpora of telephone speech for
the training of multilingual acoustic models, cf. Ta-
ble 5. Those models were evaluated on a subset of
the Polycost 250 speech database [10], which was orig-
inally designed for speaker verification tasks. For our
test we used digit strings from 60 speakers (30 female,
30 male) and calls from 12 different countries: Bel-
gium, Switzerland, Denmark, Spain, France, Ireland,
Ttaly, The Netherlands, Portugal, Sweden, Turkey, and
The United Kingdom. Note, however, that the origin
of the call is only a vague indication for the speakers’
native language, which is in particular true for calls
from countries such as Belgium or Switzerland.

| || Es Fr Gr It | En |
no.of speakers || 5541 3004 4544 1940 | 5077
speech data [h] || 40.1 47.2 40.1 43.1 | 51.7
words [x1000] || 163 226 117 128 | 191

Table 5: Training data overview for the 8 kHz acoustic
models.

Table 6 gives results for three different acoustic mod-
els: M5 is a monolingual model that was trained with
51.7 hours of speech from 5077 native English speak-
ers, M6 used all data for the creation of a multilingual



triphone decision tree, and for M7 data from 5 lan-
guages was used for both decision tree growing and the
estimation of HMM parameters.

WER [%] || non-native | native
M5 5.51 2.91
M6 3.86 291
M7 4.52 3.16

Table 6: Word error rates for non-native (Be, Ch, Dk,
Es, Fr, It, N1, Pt, Se, Tr) and native (Ireland, United
Kingdom) English digits for the 8 kHz acoustic models.

Although the multilingual models M6 and M7 per-
formed better for callers from most countries (Switzer-
land, Denmark, Spain, France, The Netherlands, and
Sweden), we observed a 15 percent relative decrease in
word error rate for non-native English when compar-
ing M6 and M7. The source of this discrepancy were
calls from Turkey, for which the multilingual models
showed a 25 percent decrease in accuracy, and — sur-
prisingly — also Italian speakers showed a 10 percent
degradation. These results are currently undergoing
investigation.

5. CONCLUSION

In this paper we have used multilingual acoustic models
for the recognition of non-native speech from two differ-
ent data bases. The reasonable improvement obtained
on the 11kHz in-house data base underlines demon-
strates the efficiency of multilingual acoustic models in
case of sparse training data. Results for the Polycost
data base show that this effect becomes smaller, if a
larger amount of training data from the target language
is available. However, these results also demonstrate
that — aside from Turkish — improved error rates for
non-native speech can be obtained without having the
speakers’ native language in the training data.

We have recently started to explore whether a priori
knowledge about the target language, as — for example
— given by (sub-)phone unigram or bigram probabili-
ties can be used to improve the recognition accuracy of
multilingual models. In case of the in-house data base
we found an average improvement of 5 percent relative
when combining a speech frame’s sub-phone unigram
and acoustic score. We wish to report more detailed on
this approach, once we have tested it in a true multi-
lingual decoding scenario, that might include language
identification as well.
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