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ABSTRACT 

    We investigate various strategies to improve the utter-
ance verification performance using a 2-class pattern classi-
fier. They include utilizing N-best candidate scores, modify-
ing segmentation boundaries, applying background and 
out-of-vocabulary filler models, incorporating contexts, and 
minimizing verification errors via discriminative training.  
A connected-digit database containing utterances recorded in 
a noisy, moving car with a hands-free microphone mounted 
on a sun-visor is used to evaluate the verification perform-
ance. The equal error rate (EER) of word verification is em-
ployed as the performance measure in our evaluations. All 
factors considered in our study and their effects on the veri-
fication performance are presented in detail. The EER is re-
duced from 29%, using the standard likelihood ratio test, 
down to 21.4%, when all enhancements are integrated to-
gether.  

1. INTRODUCTION 

   The automatic speech recognition (ASR) systems in hu-
man-machine dialogue systems require a high word recogni-
tion accuracy. However, the performance of these systems 
can be seriously degraded, especially in noisy and hands-free 
environments. To enhance the ASR performance and to de-
sign a friendlier voice user interface, a procedure is often 
integrated into ASR systems to verify or reaffirm the recog-
nition results. In [1]-[3], the recognizer itself is redesigned 
with a verification procedure. In [4]-[10], a verification pro-
cedure is used as a post-classification measure in the second 
stage before the recognition result is declared final.  
    This study investigates a verification procedure as a 
post-classification measure. Although recognition errors are 
inevitable, the verification procedure can potentially reduce 
the negative impact of an incorrect recognition decision or 
false triggering due to background interference, as found in 
hands-free environments. 
    Presently, utterance verification is performed based on 
the traditional framework of hypothesis testing. It employs a 
“standard” likelihood ratio (SLR) test to reconfirm a tentative 
decision that given token Xu is recognized as word wu. The 
decision rule is expressed as follows: 
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where ρ is the prescribed threshold and uw is related to an 
alternate decision (i.e., to reject the tentative decision). 
    The legitimacy of SLR based hypothesis testing de-
pends on the conditional probability density function (pdf) 
being accurate for each word, and in the case of continuous 
speech recognition, it depends on acoustic token Xu being 
correctly segmented. In reality, however, the pdf needs to be 
modeled by an appropriate functional form and the parame-
ters need to be accurately estimated from a limited amount of 
training data. Because the token is obtained as a byproduct of 
the recognizer, its segmentation may not be perfect due to 
noise in the observations. That is, the supporting probability 
space as implied in the traditional hypothesis-testing frame-
work may not have a clear yet practical definition. One thus 
may wish to transform the verification problem as a separate 
2-class classification problem potentially involving a new set 
of observations as outlined below. 
    In our new 2-class classifier approach to the verification 
problem, we use the likelihoods evaluated on all classes as 
the observations. This enables a more sophisticated dis-
criminant function for classes uw  and uw  and provides 
several additional refinements, for example, tests at different 
levels (e.g., the phone and word-levels can be accommodated 
[5]-[7]); use of different features (e.g., the state duration can 
be incorporated [5]-[7]); use of non-linear classifiers; and 
integration of supplementary tests using N-best hypotheses. 
We believe that a 2-class classifier is a good alternative to the 
traditional SLR paradigm and allows the possible design of a 
robust test function. 
 

2. CLASSIFIER DESIGN 

    As input parameters, the approach uses the likelihood 
value of each recognized word, which is a byproduct of the 
recognition process. To alleviate insertions, it also employs 
the likelihood values of the BG and OOV filler models. The 
traditional hypothesis testing is supplemented with the like-



lihood ratios for the N-best candidates to make it robust to 
noise. To reduce the adverse impact of doubtful likelihood 
values due to outliers, the likelihood ratios are smoothed, 
compressed, and regulated by logarithm and sigmoid func-
tions. The classifier is optimized using discriminative train-
ing to minimize the classification error.  
    The definition is as follows. 
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where )(i
uw  indicates the ith best word candidate, φ the BG 

model, and ϕ the OOV model. δ is the sigmoid function and 
lu is the elliptical function of the log-likelihood ratio. The 
likelihood values of anti-models ϕφ  and ,,)(i

uw  are ap-
proximated by taking the geometric means of all likelihood 
values except those of , and ,,)( ϕφi

uw  respectively, as fol-
lows. 
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{λ1,…, λN, λφ, λϕ} is discriminatively trained using the GPD 
method [11]. 
 

3. DISCRIMINATIVE TRAINING 

   The classifier coefficients {λ1,…, λN, λφ, λϕ} are discri-
minatively trained using the GPD method [11] to minimize 
the classification error. In the hypothesis testing, the dis-
criminative functions for null hypothesis (H0) and alternative 
hypothesis (H1)  are defined as follow. 
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The misclassification measure is defined as follow.  
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By minimizing the cost function in (9), which is defined as 
the sigmoid function of the misclassification measure, we 
obtain the optimal set of classification coefficients {θ1,…, θN, 
θφ, θϕ}. 

[ ]
))(exp(1

1
)(

βα
δ

+⋅+
=

u
u Xd

Xd                  (9) 

     θi is adjusted by a small amount ∆θi according to (10) for 
the null hypothesis and (11) for the alternative hypothesis. 
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   It should be noted that the notion of negative examples, 
as in the conventional discriminative learning paradigm, is 
not applicable here. We shall not attempt to use correctly 
recognized tokens for negative learning assuming they could 
have been misrecognized, for the recognizer already entirely 
defined by the data characteristics. These tokens do not ap-
pear in the testing to reduce uncertainties in misrecognized 
decisions.  

4. CHANGING SEGMENTATION POINTS 

    Segmentation points are usually obtained based on the 
maximum likelihood (ML) criterion for a recognition unit, 
e.g., an utterance between silent pauses. It might not be op-
timal to verify each component word in an utterance. We 
therefore vary the segmentation points in an attempt to im-
prove the verification result. This is motivated on the basis 
that neighboring speech events can overlap each other due to 
co-articulation effects. Moreover, in [6], it was reported that 
extending boundaries up to 50% to overlap with neighboring 
segments can lead to performance improvements. We expand 
the word segment by k frames at both ends and find the op-
timal k using the training data.  

5. EXPERIMENTS 

5.1 Database and System Description 

    All experiments are carried out using the car voice user 
interface (CARVUI) database, containing utterances recorded 
in a running car under typical car noise in the background. 
More specifically, the CARVUI database consists of speech 
data simultaneously recorded through multi-microphone 
channels, including a head-mounted, close-talking micro-



phone and a 16-channel microphone array located on a 
sun-visor. 56 speakers including some non-native English 
speakers uttered phonetically-balanced TIMIT sentences, 
digit strings with 1 to 7 digits, and about 85 short commands 
for car application. The data was originally sampled at 24 
kHz. In our experiments, hands-free speech data recorded 
through a channel of the microphone array is used, and all 
data is down-sampled to 8 kHz.  
    For the baseline recognizer, speaker-independent mo-
nophone acoustic models are built for 41 phones and three 
short/long/noisy silences using 3,984 utterances of digit 
strings and TIMIT sentences uttered by 45 speakers. The 
total number of mixture components is 2,055 and the aver-
aged number per state is 15.8. The feature vectors of 39 
components, consisting of 12th-order mel-frequency cepstral 
coefficients plus the normalized log energy term and both of 
their first and second derivatives, are derived every 10 ms 
over 20 ms Hamming windowed segments. The number of 
filters is 18. Cepstral mean subtraction is applied for each 
utterance both in the training and testing. A finite state 
grammar with digit strings of an unknown length is used as 
the language model. The lexicon size is 11 including /0/ to 
/9/ and /oh/. 
    The BG filler model is composed of a silence-loop 
model consisting of 3-state long, 1-state short, and 3-state 
noisy silence models in the above speaker-independent mo-
nophone models. The OOV filler model is composed of a 
phone-loop model consisting of 41 phone models in 
speaker-independent monophone models having less resolu-
tion with 483 mixture components in total and 3.9 per state. 
    In the GPD training, 7,481 correct segments in digit 
strings uttered by the same 45 speakers as those for the 
acoustic models are used. The number of digit speakers per 
speaker is 50. 
    In the testing, 965 correct, 125 substitution, and 72 in-
sertion segments uttered by seven speakers, who are different 
from the training speakers, are used. The word correct rate 
with the speaker-independent models is 87.5% on average. 
We use the equal error rate (EER) of word verification as the 
performance measure in our evaluations. The verification 
threshold is set a posteriori and is digit-dependent. The clas-
sifier coefficients are estimated for each digit. 

5.2 SLR-Based Hypothesis Testing vs. 2-Class Classifier  

    The performance of the SLR-based hypothesis testing 
and that of our 2-class classifier are compared. The form for 
the SLR-based hypothesis testing is defined as follows. 
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For our 2-class classifier, in contrast, several variations can 
be considered. Here, we examine the following three varia-
tions. 
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In “2CC N-best” of (13), only the likelihood ratios for the 
N-best candidates are used. In “2CC BG+OOV” of (14), the 
likelihood ratios for the best candidate, BG model, and OOV 
model are used. In “2CC All” of (15), all of the likelihood 
ratios (i.e., the N-best candidates, BG model, and OOV mod-
el) are used.  
    Figure 1 shows the equal error rates for word verifica-
tion when comparing the performance of the SLR-based hy-
pothesis testing and that of our 2-class classifier. The 11-best 
likelihood ratios are used in “2CC N-best” and “2CC All”. 
As the figure illustrates, the 2-class classifier performs better 
than the SLR-based hypothesis testing. The performance 
improves as more information is used.  

5.3 Likelihood vs. Likelihood Ratio Based Formulation 

    Our 2-class classifier is formulated based on not the 
likelihood but the likelihood ratio. The appropriateness of 
this is examined by comparing the performance of the likeli-
hood based formulation and that of the likelihood ratio based 
formulation. The likelihood based formulation is expressed 
as follows.  
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Fig. 1. SLR-based hypothesis testing vs. 2-class classifier. 
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Fig. 2. Likelihood vs. likelihood ratio based formulation. 



It should be noted that for both formulations, the input pa-
rameters of the likelihood values of the N-best candidates, 
BG model, and OOV model are the same.  
    Figure 2 shows the equal error rates for word verifica-
tion when comparing the performance of the likelihood based 
formulation and that of the likelihood ratio based formulation, 
“2CC All(L)” and “2CC All(LR)”, respectively. In the figure, 
the latter performs better than the former. This indicates that 
our formulation can be considered appropriate. 

5.4 Effects of Changing Segmentation Points 

   This section evaluates the performance of changing seg-
mentation point (CSP) optimization. Figure 3 shows equal 
error rates for training and testing data as a function of k 
frames extended at both ends. In Figure 3, the case of 0 frame 
corresponds to using the recognized segmentation. The equal 
error rates show almost the same tendencies for the training 
and testing data. From two frames to six frames, the curves 
of the equal error rates were relatively flat. With increasing 
number of frames, the performance degrades more. These 
results confirm that the optimal k can be found using training 
data. Here, we set k to 4.  
    Figure 4 shows the equal error rates of word verification 
with/without CSP optimization. The figure shows that CSP 
increases the performance. The relative error reduction from 
the SLR-based hypothesis testing to our classifier with CSP 
is 26.2%, while that from the SLR-based hypothesis testing 
to our classifier without CSP is 16.9%. In addition, the rela-
tive error reduction from our classifier without CSP to with 
CSP is 11.2%. 

6. CONCLUSIONS AND  
ACKNOWLEDGEMENT 

    This paper proposes a new confidence measure based on 
a 2-class classifier with GPD training. The traditional hy-
pothesis testing is improved with N-best candidate scores. 
Segmentation point optimization improves the performance. 
In connected digit recognition experiments using dis-
tant-talking, hands-free speech data, the proposed method is 
shown to achieve an equal error rate of word verification of 
21.4%. The relative error reduction is 26.2%, when com-
pared with the standard likelihood ratio test. 
    We thank Dr. Seiichi Yamamoto and Dr. Satoshi Na-
kamura of ATR-SLT for supporting this study. 
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Fig. 3. Word verification performance for training and test-

ing data as a function of k frames extended at both ends. 
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Fig. 4. Word verification performance with/without CSP. 


