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ABSTRACT

The performance of speech cleaning and noise adaptation
algorithms is heavily dependent on the quality of the noise
and channel models. Various strategies have been proposed
in the literature for adapting to the current noise and chan-
nel conditions. In this paper, we describe the joint learning
of noise and channel distortion in a novel framework called
ALGONQUIN. The learning algorithm employs a general-
ized EM strategy wherein the E step is approximate. We
discuss the characteristics of the new algorithm, with a fo-
cus on convergence rates and parameter initialization. We
show that the learning algorithm can successfully disentan-
gle the non-linear effects of noise and linear effects of the
channel and achieve a relative reduction in WER of 21.8%
over the non-adaptive algorithm.

1. INTRODUCTION

It is well known that recognition rates of speech recogni-
tion systems suffer considerably when there is a mismatch
between training and deployment conditions. One approach
to dealing with this mismatch is to restore or clean the noisy
features such that they resemble those of the training envi-
ronment. Methods that fall into this category are Spectral
Subtraction (SS)[2], Cepstral mean normalization (CMN)
and Algonquin[3], to name a few.

The performance of a feature cleaning method is greatly
dependent on how well the noise and channel distortion
are estimated and modeled. For example, it is possible to
use point estimates or single or multiple mixture gaussian
distributions[4]. In general, for methods that employ noise
and channel models of some sort, the correct estimation of
the model parameters is crucial.

Estimation of the noise and channel model parameters
is complicated by the fact that the observations contain a
combination of speech, noise and channel distortion. Vari-
ous ad-hoc methods are used to deal with this problem such
as using low powered frames to estimate the parameters of
the noise model, and high powered frames to estimate the

parameters of the channel model.
In this paper, we discuss a principled method for jointly

learning the parameters of the noise and channel models.
The method is able to learn the noise and the channel model
simultaneously, by employing an accurate speech model and
a model for the combination of speech, noise and channel.
In [5] we described the use of noise adaptation to enhance
performance. In this paper we extend the framework to in-
clude learning of channel distortion.

In the first section we introduce the Algonquin frame-
work and discuss the estimation of the posterior p(x;n;hjy).
Then we discuss the learning of the noise and channel pa-
rameters within the Generalized EM framework. In the Anal-
ysis section we discuss convergence characteristics and patho-
logical cases when run on synthetic data. In the Results
section, we show that the algorithm performs well for real
speech data.

2. THE ALGONQUIN FRAMEWORK

In the Algonquin framework[3], the MMSE estimate of the
clean speech x̂ is estimated.

x̂ =

Z
x

xp(xjy) (1)

where

p(xjy) /

Z
n;h

p(yjx;n;h)p(x;n;h) (2)

The crux of the method is the way in which the posterior
p(x;n;hjy) is approximated by a simplified posterior func-
tion q(x;n;h). As described below, a variational approach
is used to find the parameters of the approximate joint dis-
tribution q(x;n;h). This procedure constitutes the E step
of the Generalized EM algorithm.

In the Fourier domain, the relationship between speech
X , channel H , noise N and noisy observation Y is:

Y (f) = H(f)X(f) +N(f): (3)



After taking the magnitude squared and logarithm we arrive
at the equivalent equation in the log-spectrum domain:
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where ln() and exp() operate on the individual elements of
their vector arguments.

Assuming the errors in the above approximation are Gaus-
sian, the observation likelihood is
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�"x
n

h

#�
;	); (5)

The ALGONQUIN framework employs Gaussian mixture
models to model the speech, noise and channel impulse re-
sponse in the log-spectrum domain, thus, the joint distribu-
tion over noisy speech y, speech x, speech class cx, noise
n, noise class cn, channel h and channel class ch is:
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For the current frame of noisy speech y, ALGONQUIN ap-
proximates the posterior using a simpler, parameterized dis-
tribution, q:

p(x;n;h; cx; cn; chjy) � q(x;n;h; cx; cn; ch): (7)

The “variational parameters” of q are adjusted to make this
approximation accurate, and then q is used as a surrogate for
the true posterior when computing x̂ and learning the noise
and channel models. See [6] for a review of variational in-
ference techniques.

The q function is a mixture of gaussians:

q(x;n;h) =
X

fcx;cn;chg
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where �
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h are the mixture weights. The form of each

component q(x;n;hjcx; cn; ch) is:

q(x;n;hjcx; cn; ch) =

N

�24xn
h

3
5 ;

2
4�xcxcnch�

n

c
x
c
n
c
h

�
h

c
x
c
n
c
h

3
5 ;
2
64
�

xx

c
x
c
n
c
h�

xn

c
x
c
n
c
h�

xh

c
x
c
n
c
h

�
xn

c
x
c
n
c
h�

nn

c
x
c
n
c
h�

nh

c
x
c
n
c
h

�
xh

c
x
c
n
c
h�

nh

c
x
c
n
c
h�

hh

c
x
c
n
c
h

3
75
�
;

where �x

c
x
c
n
c
h

, �n
c
x
c
n
c
h

and �h
c
x
c
n
c
h

are the approximate
posterior means of the speech, noise and channel for classes
c
x, cn and c

h, and �xx

c
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h etc. specify the covariance ma-

trices for the speech, noise and channel for classes c
x, cn

and c
h.

The goal of variational inference is to minimize the rel-
ative entropy (Kullback-Leibler divergence) between q and
p:

K =
X

fcx;cn;chg

Z
fx;n;hg

q(x;n;h; cx; cn; ch)

� ln
q(x;n;h; cx; cn; ch)

p(x;n;h; cx; cn; chjy)
: (9)

This is a particularly good choice for a cost function, be-
cause minimizingK is equivalent to maximizing

F = ln p(y) �K =X
fcx;cn;chg

Z
fx;n;hg

q(x;n;h; cx; cn; ch)

� ln
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q(x;n;h; cx; cn; ch)
: (10)

The form of the re-estimation formulas for the parameters
of the q distribution can be found in [3].

3. JOINT LEARNING OF NOISE AND CHANNEL
DISTORTION

The generalized EM algorithm alternates between: 1) up-
dating one set of variational parameters �(t)
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,
etc. for each frame t = 1; : : : ; T , and 2) maximizingF with
respect to the noise and channel model parameters �n
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this procedure maximizes a lower bound on the log-probability
of the data, up to approximations in the optimization proce-
dure (see Figure 2).

Setting the derivatives of F with respect to the noise
model parameters to zero, we obtain the following M step
updates 1:
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The update equations for the parameters of the channel model
are analogous.

1A detailed exposition of this derivation can be found at
http://newgist.uwaterloo.ca/˜trausti/RobustASR/AdaptiveAlgonquin.html



4. ANALYSIS

In order to disentangle and learn the parameters of the noise
and channel models, the algorithm relies on an accurate
speech model p(x) as well as a model for how speech, noise
and the channel are combined p(yjx;n;h).

In order to assess the susceptibility of the algorithm to
pathological behaviour such as slow or stalled convergence,
local minima, and saddle points, we ran the algorithm on
synthetic data. The data was generated by sampling from
the speech model, noise model and channel model and com-
bining the samples according to Eqn. (4).

Figure 1 shows a pathological case for synthetic data.
The figure shows the value of �

h
and �

n
as a function of it-

eration. In this case, the algorithm learns the channel model
quickly, i.e. within about 3-5 iterations.

The true noise model has a relatively flat characteristic
with a value of around 6. The noise model is initialized with
zero mean and variance 10. After 50 iterations the �

n
values

for the higher order log-spectrum coefficients are still at 0.
This is due to the algorithm finding and incorrect but

plausible “explanation” of the observed signal. The combi-
nation of the model for the sound /s/ and the noise model
at iteration 50 (see Fig. 1) produces a relatively good fit to
the observed output. The algorithm eventually recovers and
learns the correct model. This shows that the algorithm is
susceptible to poor initialization. We did not observe such
pathological behaviour when the algorithm was run on real
speech data and the noise model was initialized with the
mean and variance of the first 20 frames of the speech file.

The convergence rate is greatly dependent on the vari-
ance of the initial noise and channel models. Convergence
is much slower if the initial variance is set to a small value.

5. RESULTS

We used set C of the ETSI Aurora task to evaluate the per-
formance and convergence characteristics of the algorithm.
The Aurora task consists of spoken digits (TI digits), mixed
with various noise types at multiple signal to noise ratios.
In addition, set C has been filtered (ITU MIRS frequency
characteristic) to simulate channel distortion. The results
reported here are for Subway Noise at 10dB SNR. The test
set consisted of 1001 files each containing from 1 to 5 spo-
ken digits.

Figure 3 shows the accuracy results for adaptation of the
channel model alone (diamonds), the noise model alone (tri-
angles) and joint estimation of noise and channel distortion
(squares). In each case the initial noise model was estimated
from the first 20 frames of the a speech file. The initial
channel distortion was initialized to �

h
= 0 with �

2
h

= 1.
In these experiments, the noise and channel models were
single multivariate gaussians.
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Fig. 1. Convergence of �
h

and �
n

as function of iteration,
for joint estimation of noise and channel distortion (simu-
lated data). This shows a pathological case where the noise
model has been poorly initialized. Such behaviour was not
observed for real speech data.

First note the results when the algorithm was constrained
to adapt only the channel model (i.e. noise model was es-
timated from first 20 frames and not adapted). In this case,
the channel model was initialized to �

h
= 0 and �

2
h

= 1.
The accuracy goes from 74.42% to a maximum of 86.09%.
The non-adaptive algorithm that does not take into account
the channel distortion (�

h
= 0, �2

h

= 1 � 10�4) achieves
accuracy of 84.36% for this condition.

A second case was run where only the noise model was
adapted. The initial noise model was estimated from the
first 20 frames, and the variance was multiplied by 3, in
order to speed up convergence. The channel model was set
to �

h
= 0 and �2

h

= 1�10�4. The recognition accuracy goes
from 81.95% to a maximum of 87.23% at iteration 19. The
recognition rate declines after iteration 19. This interesting
effect may be due to the algorithm attempting to compensate
for the channel with the noise model.

The third case shown in Figure 3 is that of joint adap-
tation of noise and channel. In this case, the accuracy goes
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Fig. 2. Convergence of log-likelihood as a function of iter-
ation for the data shown in Figure 1.

from 73.01% to a maximum of 87.78% at iteration 37. This
is 0.55% higher than the accuracy for noise adaptation alone
at iteration 19 (87.23%). In comparison to the non-adaptive
algorithm, the absolute drop in word error rate is 3.4% and
the relative drop of is 21.8%. This illustrates well the effec-
tiveness of joint noise and channel adaptation.

These results indicate that the algorithm can success-
fully and simultaneously learn the additive distortion due to
the channel and the non-linear distortion due the noise, and
thus successfully untangle these two types of distortion.
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Fig. 3. Recognition accuracy as a function of itera-
tion. Diamond-line shows accuracy when adapting h alone,
triangle-line shows n-adaptation and square-line shows ac-
curacy for joint n and h adaptation. Horizontal line shows
result for non-adaptive algorithm.

6. CONCLUSION AND FUTURE WORK

In this paper we have introduce a principled way of jointly
learning the noise and channel distortion characteristics. The
method is based on the Algonquin framework, and employs
a Generalized EM strategy. We examined pathological cases
but found that for real speech data, the algorithm can suc-
cessfully and simultaneously learn the parameters of the
noise and channel models. We showed that recognition ac-
curacy is substantially improved over the recognition accu-
racy of the non-adaptive algorithm.

For this method to be practical, the number of iterations
has to be small. Our current implementation uses a poor
initialization for the channel model. We are currently ex-
ploring better strategies for initializing the parameters of the
channel model, and other methods for speeding up conver-
gence.
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