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ABSTRACT

Conventional wisdom says that incorporating more training data
is the surest way to reduce the error rate of a speech recognition
system. This, in turn, guarantees that speech recognition systems
are expensive to train, because of the high cost of annotating
training data. In this paper, we propose an iterative training
algorithm that seeks to improve the error rate of a speech
recognizer without incurring additional transcription cost, by
selecting a subset of the already available transcribed training
data. We apply the proposed algorithm to an alphadigit
recognition problem and reduce the error rate from 10.3% to
9.4% on a particular test set.

1 INTRODUCTION

Conventional wisdom says that incorporating more training data
is the surest way to reduce the error rate of a speech recognition
system. This, in turn, guarantees that speech recognition systems
are expensive to train, because of the high cost of annotating
training data.

Several authors [1-3] have investigated methods to
incorporate automatically transcribed speech into the training set
to reduce error rates without incurring additional transcription
cost.  These methods start with an initial model and run
recognition on a large amount of available speech data. A
selection criteria is applied that selects a subset of the
automatically recognized material which is then combined with
the initial model to create a larger training set.  A new model is
trained and the error rate of the new model is observed. This
procedure may be applied iteratively on unused data to get
subsequent models.

The approaches differ in the way that the selection is carried
out. In Zavaliagkos [1], a confidence measure is used to select
automatically transcribed data that is most likely to be correctly
transcribed, setting a threshold such that the expected
transcription error of the selected data is around 20%. In Kemp
[3], a confidence measure is also used but the threshold is
determined experimentally to be such that the most reduction in
error of the resulting model can be expected.  Lamel [2] does not
use a confidence measure, instead relying on available close-
captioned transcriptions to arbitrate where the automatic
transcription is correct. Closed-captioned transcriptions are a
close, but not exact, transcription of what is spoken that is
coarsely time-aligned with the audio signal. Sections of the
automatic transcription that align successfully with the closed-
captioned transcription are selected to feed back into the training
set.

In this paper, we propose an iterative training algorithm to
improve speech recognition by automatically selecting a subset
of the available humanly transcribed training data, thereby
improving error rates without incurring additional transcription
cost. We investigate the iterative training algorithm within the
confines of a simple alphadigit recognition problem. Starting
with an initial system trained on a small portion of the available
annotated training data, we desire to reduce the error rate of our
recognition system by iteratively incorporating automatically
selected humanly transcribed data into the training set.

Specifically, using the OGI Alphadigit corpus [4] and the
ISIP-defined training/test partition [5], we define a small subset
of training to use to train our initial system. Then, using this
initial system, we generate the most likely word transcription and
determine the recognition error rate for each sentence in the
unused portion of the full training set. Using the sentence error
rate as a guide, we select sentences to feedback into the training
set, generating a new model using the human transcription. By
iteratively applying this training algorithm, we are able to reduce
the error rate on the test set from 10.3% to 9.4%, and we do this
by selecting 35% of the full training set.

The organization of this paper is as follows. Section 2
introduces the notation used through out this paper and discusses
the automatic training paradigm. Section 3 discusses the corpus,
the baseline systems and the balanced selection procedure.
Section 4 discusses the automatic selection criteria and results.
Section 5 discusses the iterative training algorithm and results.
Finally, a summary and discussion is presented in Section 6.

2 AUTOMATIC TRAINING PARADIGM

In order to discuss the Automatic Training Paradigm, which is
the core of our iterative algorithm, we first must introduce some
notation. Given T, a set of audio speech cuts, or segments, we
define:

• |T|: The size of set T.
• H(T): The human transcription of the set T.
• M(H(T)): The model M built using the human

transcription of set T. (It is assumed that the transcription
is paired with the audio speech cuts and the audio is also
used in modeling.)

• A(M,T): Automatic transcription of the set T using the
model M.

• S(A(M,T)): The subset of T selected by the selection
criterion, based on the automatic transcription of T using
model M.

• E(A(M,T)): The error rate of the automatic transcription
of set T using model M.



The Automatic Training Paradigm, which loosely follows
the procedures in [1-3], is comprised of two steps. The first step,
Automatic Subset Selection [Figure 1], goes as follows: Given a
training set T and a human transcript H(T), train a model
M0=M(H(T)). Given another set of speech U0 which has human
transcription H(U0)), use M0 to get the automatic transcription
A(M0,U0). Apply a selection criterion to A(M0,U0) to get a
subset U1=S(A(M0,U0)) of U0.
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Figure 1: Automatic Training Paradigm:
Automatic Subset Selection

Once the subset is selected the second step, Model Update
and Test [Figure 2], goes as follows: Use human transcription
H(T) and human transcription H(U1) to train model M1=M(H(T)
8 H(U1)). Apply the model M1 to the test set D and observe the
error rate E(A(M1,D)).
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Figure 2: Automatic Training Paradigm:
Model Update and Test

3 CORPUS AND BASELINE SYSTEMS

3.1 Data

The speech corpus chosen to perform this study was selected
based on four criteria:

1. To focus attention on the acoustic problem.
2. To be a realistic task.
3. To have a standard train/test set defined for comparison

with other published results.
4. To be small enough such that experiment turn-around

time would be manageable.
The OGI Alphadigit Corpus [4] met these criteria. The

corpus is a collection of over 3000 subjects speaking strings of 6
alphadigits over the telephone. The alphadigits are the English
letters "A" through "Z" and the digits "0" through "9". The
speakers were prompted to speak either 19 or 29 sets of 6

alphadigits. Researchers at ISIP [5] have defined a standard
train/test partition of this corpus, and have reported error rates
achieved on this corpus [6].

From the ISIP training partition of 51545 sentences, 46730
sentences were selected such that the transcription matches one
of the prompts given in the prompt list [4]. This was an
inexpensive way to remove possible transcription substitution
errors from the training set. In this paper, this training set is
denoted as TALL. From the ISIP evaluation test partition of  3329
sentences, 3112 sentences were selected using the prompt list in
the same way. This test set is denoted as D.

3.2 System Description

The training and testing of the systems described in this paper
were done using HTK [7]. In general, the procedures used
followed the steps given in the HTK documentation.

The first baseline system follows [6], with the exception
that we choose to build word models rather than syllable models.
A word model is created for each alphadigit, plus silence and
short pause. The silence/short pause models are built according
to the procedure in the HTK documentation [7]. Each word
model uses a standard left-right topology including a re-entrant
transition, with the number of states based on one-half the mean
duration of the word.

The word durations are determined by first training a
system with each word model having 10 states. Then a forced
alignment of the models to the training data is generated and the
word duration statistics are computed from this forced word
alignment. All systems discussed in this paper have a total of
825 states.

The features are 12 mel-frequency cepstral coefficients plus
energy, the deltas, and the double deltas to make a feature vector
of length 39. In all systems discussed in this paper, 12 gaussians
are estimated per feature per state.

An equal probability word network is used to drive
recognition. This network is defined as: optional silence,
followed by one or more alphadigits, followed by optional
silence.

3.3 Baseline Systems

3.3.1 Full training

The first baseline system uses the training set TALL. A model
MALL=M(H(TALL)) is built, comprised of 36 "word" models and
2 silence models, using the human transcription of TALL and
standard HTK training procedures [7]. This system gives an error
rate E(A(MALL,D)) of 10.3% on test set D using model MALL.
This performance is comparable to reported performance on the
ISIP full evaluation test of 11.1% [6].

3.3.2 Effect of Reducing the Training Set Size

Since our goal is to improve the error rate by being selective
about what training material is used, it is interesting to observe
how error rate is affected when the training set is reduced in an
unbiased way. To do this, we implemented a Balanced Selection
Procedure.

The Balanced Selection Procedure takes as input a training
set and information about that set and applies a Balanced
Selection Criterion to select a subset of a given size from the
input training set. Information about the training set includes: the
sex of each speaker, the speaker identity of each sentence, the
sentence transcription, and the total number of training examples



per token. The Balanced Selection Criterion, where N is the
desired subset size in percent, is as follows:

1. N% of the training speakers are selected.
2. There are approximately the same number of male and

female speakers.
3. The number of training tokens for each word is

approximately N% of the available training for each
word.

4. Each word is gender balanced.
Using the Balanced Selection procedure, we selected a

subset T1 of the training set TALL such that |T1| = 0.05|TALL|, that
is T1 is a balanced 5% of TALL. We then built a model
M1=M(H(T1)) using the human transcription of T1 and observed
the error rate E(A(M1,D)) of the test set D to be 14.3%. So, using
1/20 of the training set TALL increases the error from 10.3% to
14.3% on test set D.

We were then interested to know how much the error rate
could be affected if the training set size were doubled. We again
used the Balanced Selection Procedure to select a subset T2,
disjoint from T1, of the training set TALL-T1 such that |T2| =
0.05|TALL|. We built a model M2=M(H(T1) 8 H(T2)) using the
human transcription of T1 and T2 and observed the error rate
E(A(M2,D)) of the test set D to be 11.8%. So, doubling the
training set size from 0.05|TALL| to 0.1|TALL| decreases the error
rate from 14.3% to 11.8%, showing that as training size
increases, error rate decreases.

3.3.3 Baseline Summary

The full progression of error rate vs. training size for the OGI-
alphadigit corpus is shown in Table 1. For small training sizes,
increasing the amount of training data can dramatically reduce
the error rate. But, as the training set becomes large, the impact
on error rate of doubling the data is small. This implies that to
improve error rate simply by using more data, it would require
several times more data than is already available in the OGI-
alphadigit corpus.

Training Size
(% of TALL)

Error Rate
(%)

5% 14.3%
10% 11.8%
25% 11.0%
50% 10.4%

100% 10.3%

Table 1: Relation between Error Rate and Training
Size for selected training sizes.

4 AUTOMATIC SELECTION

In [1-3] additional training material is selected based on the
output of a recognizer. In Zavaliagkos [1], material is selected by
inspecting a confidence score and selecting data that the
recognizer has a high confidence of getting correct. In Kemp [3],
material is also selected by confidence score, but more attention
is paid to moderately high confidence scores rather than the
highest confidence scores, thereby trying to select things that the
recognizer probably got correct, but which are not already a
good match to the models. In Lamel [2], material is selected
where the automatic transcription aligns exactly with the closed-
captioned transcription, thereby selecting material that was most
probably recognized correctly.

Based on this previous work, we propose to use recognition
error as a selector of suitable training material, following the
Automatic Training Paradigm described in Section 2.

4.1 Selection by Low Recognition Error

First, we investigate whether doubling the training set by
choosing data that is correctly recognized by the model can
reduce the error rate.

Given a balanced subset set T1 of TALL such that
|T1|=0.05|TALL|, the exact subset T1 used in the baseline system
described in Section 3.3.2, build a model M1=M(H(T1)). Using
the model M1, get the automatic transcription A(M1,TALL-T1)) of
the rest of the training data. Observe the error rate of each
sentence in A(M1,TALL-T1)) and choose a subset T3 of TALL-T1

with the lowest recognition error such that |T3|=|T1|.
Then, build a model M3=M(H(T1) 8 H(T3)) and observe the

error rate E(A(M3,D)) of the automatic transcription A(M3,D) of
test set D using model M3. In this case, we observe the error
E(A(M3,D)) to be 14.1%.

The error rate E(A(M1,D)) of the initial model M1 is 14.4%,
so doubling by selecting correctly recognized material gives a
small improvement. But, since doubling the data using a
balanced selection T2 gave a baseline error rate of 11.8%, we
conclude that doubling the training data by using data which is
already recognized well by the model does little to improve the
recognition error rate.

4.2 Selection by High Recognition Error

Next, we investigate whether doubling the training set by
choosing data that is incorrectly recognized by the model can
reduce the error rate.

Following the procedure in Section 4.1, we instead choose a
subset T4 of TALL-T1 with the highest recognition error such that
|T4|=|T1|. Using model M4=M(H(T1) 8 H(T4)), we observe the
error E(A(M4,D)) to be 11.8%.

Since doubling the data using a low error selection criterion
gave an error rate E(A(M3,D)) of 14.1%,  we conclude that
doubling the training data by using data which is poorly
recognized by the model reduces error rate more than by using
easily recognized data.

Training Size
(% of TALL)

Selection Method Error Rate
(%)

5% Balanced 14.4%
10% Low Error 14.1%
10% High Error 11.8%
10% Balanced 11.8%

Table 2: Comparison of Selection Methods

4.3 Conclusions

A comparison of automatic selection methods is presented in
Table 2. Selecting data for training that is poorly recognized by
the recognizer (labeled "High Error") is clearly superior to
selecting data that is easily recognized by the recognizer (labeled
"Low Error").

5 ITERATIVE TRAINING ALGORITHM

In the previous section, we investigated two selection criteria and
determined that doubling the training set by feeding back poorly
recognized training sentences into the recognition model greatly



reduces the recognition error rate on a test set. Now we take the
obvious next step and propose to iteratively apply the selection
criterion to the remaining unused training data, thereby
generating a sequence of models.

The Iterative Training Algorithm to generate N models is as
follows: Given a set of training data T0 and the human
transcription H(T0):

1. Select a subset T1 from T0 such that it is balanced (i.e.
by sex and token) and let i = 1.

2. Obtain the model Mi = M(H(Ti)) by using Ti and the
human transcription H(Ti).

3. Select a subset Si = S(A(Mi,T0-Ti)) of T0-Ti by
observing error in the automatic transcription A(Mi,T0-
Ti).

4. Let Ti+1 = Si 8 Ti and let i = i + 1.
5. If (i == N) stop, else go to step 2.
We applied the proposed Iterative Training Algorithm to the

OGI-alphadigit corpus by 1) letting T0=TALL, all of the available
training data, 2) letting T1 be the balanced subset selected from
TALL, as described in Section 3.3.2 and, 3) replacing the stopping
rule in step 5 with a heuristic stopping rule which is: stop if the
error is no longer improving on a test set.

We ran the Iterative Training Algorithm using a high error
selection criterion where |Si| = |T1| for i = 1 to N-1. The sequence
of models were judged by applying the model Mi to the test set D
and observing the error rate Ei = E(A(Mi,D)). The error rates of
the sequence of models generated are summarized in Table 3.

By iteratively applying the High Error Selection criteria, it
is possible to select a subset of the full training from which to
build a model that gives better recognition performance (9.4%
error) than a model built using the full training set (10.3% error).
In fact, it is only necessary to use 35% of the full training to
achieve this result.

6 SUMMARY AND DISCUSSION

We have presented an iterative algorithm that automatically
selects training material by observing recognition error and
selecting subsequent data that is hard for the current model to
recognize. We have successfully demonstrated the algorithm on
the OGI-alphadigit corpus, reducing the error rate from 10.3%,
using all of the available training data, to 9.4%, using 35% of the
available training data.

The iterative training algorithm presented in this paper is a
simplified application of the boosting technique. "Boosting" is a
general method for improving the error rate of almost any
learning algorithm. A particular boosting algorithm, called
AdaBoost [8], iteratively calls a base learning algorithm in order
to maintain a distribution of weights on the training examples at
each iteration. The weights on the training set are initially equal,
and are updated on each iteration by increasing the weights of
incorrectly classified examples, thereby forcing the learning
algorithm to focus on the hard to classify examples in the
training set. A new classifier is trained in each iteration, based on
the current weighting of the training examples. Finally, a
composite classifier is based on a weighted majority vote of the
generated sequence of classifiers.

Our iterative training algorithm starts by selecting a subset
of the training set, thereby setting the weights of the subset to 1
and the remainder of the training set to 0. A classifier is built and
applied to the portion of the training set that has weight 0. The
classification error of each training example is observed, and the

weights of a portion of those that are most errorful are updated to
1. A new classifier is built and the algorithm is iteratively
applied to the portion of the training set that now has weight 0.
The final classifier is chosen from the classifiers built at each
iteration, based on performance on a held out test set.

Our algorithm can be extended to enable pragmatic use of
future human transcription investment by selecting speech data
to transcribe which will contribute most to reduce the error rate.
By using a low confidence selection criterion rather than a high
error selection criterion on a large set of untranscribed speech, a
small set of data could be selected, transcribed by humans and
then fed back into training. By observing error on a reasonably
large test set, this process could be iterated until no reduction in
error rate is observed. If this scenario were followed on our
example corpus and the selection criteria performs similarly,
only 40% of the speech data would have been transcribed.

Iteration Training Size
(% of TALL)

Error Rate
(%)

1 5% 14.3%
2 10% 11.8%
3 15% 11.1%
4 20% 10.4%
5 25% 9.9%
6 30% 9.5%
7 35% 9.4%
8 40% 9.7%

Table 3: Comparison of Model Error Rates at each Iteration
of the Iterative Training Algorithm
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