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ABSTRACT 

It is well known that speaker variability caused by accent is an 
important factor in speech recognition. Some major accents in 
China are so different as to make this problem very severe. In 
this paper, we propose a Gaussian mixture model (GMM) based 
Mandarin accent identification method. In this method, a 
number of GMMs are trained to identify the most likely accent 
given test utterances. The identified accent type can be used to 
select an accent-dependent model for speech recognition. A 
multi-accent Mandarin corpus was developed for the task, 
including 4 typical accents in China with 1,440 speakers (1,200 
for training, 240 for testing). We explore experimentally the 
effect of the number of components in GMM on identification 
performance. We also investigate how many utterances per 
speaker are sufficient to reliably recognize his/her accent. 
Finally, we show the correlations among accents and provide 
some discussions. 

1. INTRODUCTION 

Speaker variability, such as gender, accent, age, speaking rate, 
and phones realizations, is one of the main difficulties in speech 
recognition task. It is shown in [1] that gender and accent are the 
two most important factors in speaker variability. Usually, 
gender-dependent model is used to deal with the gender 
variability problem. 

In China, almost each province has its own dialect. When 
speaking Mandarin, the speaker’s dialect greatly affects his/her 
accent. Some typical accents, such as Beijing, Shanghai, 
Guangdong and Taiwan, are quite different from each other in 
acoustic characteristics. Similar to gender variability, a simple 
method to deal with accent problem is to build multiple models 
of smaller accent variances, and then use a model selector for 
the adaptation. Cross accents experiments [2] show that 
performance of accent-independent systems is generally 30% 
worse than that of accent-dependent ones. Thus it is meaningful 
to develop an accent identification method with acceptable error 
rate. 

Current accent identification research focuses on foreign 
accent problem. That is, identifying non-native accents. Teixeira 

et al. [3] proposed a Hidden Markov Model (HMM) based 
system to identify English with 6 foreign accents. A context 
independent HMM was used since the corpus consisted most of 
isolated words, which is not always the case in applications. 
Hansen and Arslan [4] also built HMM to classify foreign 
accent of American English. They analyzed some prosodic 
features’ impact on classification performance and concluded 
that carefully selected prosodic features would improve the 
classification accuracy. Instead of phoneme-based HMM, Fung 
and Liu [5] used phoneme-class HMMs to differentiate 
Cantonese English from native English. Berkling et al. [6] 
added English syllable structure knowledge to help recognize 3 
accented speaker groups of Australian English. 

Although foreign accent identification is extensively 
explored, little has been done to domestic one, to the best of our 
knowledge. Actually, domestic accent identification is more 
challenging: 1) Some linguistic knowledge, such as syllable 
structure used in [6], is of little use since people seldom make 
such mistakes in their mother language; 2) Difference among 
domestic speakers is relatively smaller than that among foreign 
speakers. In our work, we want to identify different accent types 
spoken by people with the same mother language. 

Most of current accent identification systems, as mentioned 
above, are built based on the HMM framework. Although 
HMM is effective in classifying accents, its training procedure 
is time-consuming. Also, using HMM to model every phoneme 
or phoneme-class is computationally expensive.  Furthermore, 
HMM training is a supervised one: it needs phone transcriptions. 
The transcriptions are either manually labeled, or obtained from 
a speaker independent model, in which the word error rate will 
certainly degrade the identification performance.  

In this paper, we propose a GMM based method for the 
identification of domestic speaker accent. 4 typical Mandarin 
accent types are explored. Since phoneme or phoneme class 
information are out of our concern, we just model accent 
characteristics of speech signals. GMM training is an 
unsupervised one: no transcriptions are needed. We train two 
GMMs for each accent: one for male, the other for female, as 
gender is the greatest speaker variability. Given test utterances, 
the speaker’s gender and accent can be identified at the same 
time, compared with the two-stage method in [3]. The 
relationship between GMM parameter and recognition accuracy 



is examined. We also investigate how many utterances per 
speaker are sufficient to reliably recognize his/her accent. We 
randomly select N utterances from each test speaker and average 
their log-likelihoods in each GMM. It is hoped that the more the 
averaged utterances, the more robust the identification results. 
Experiments show that with 4 test utterances per speaker, about 
11.7% and 15.5% error rate in accent classification is achieved 
for female and male speakers, respectively. Finally, we show the 
correlations among accents and provide some discussions. 

This paper is organized as follows. In Section 2, we will 
describe the multi-accent Mandarin corpus we collected for this 
task. GMM based accent identification system is presented in 
Section 3. Detailed experiments and result analysis are given in 
Section 4. Section 5 concludes with summary of our work and 
discussions on possible applications. 

2. MULTI-ACCENT MANDARIN CORPUS 

The multi-accent Mandarin corpus, consisting of 1,440 speakers, 
is part of 7 corpora for speech recognition research collected by 
Microsoft Research China. There are 4 accents: Beijing (BJ, 
including 3 channels, that is, collection venues: BJ, EW, FL), 
Shanghai (SH, including 2 channels: SH, JD), Guangdong (GD) 
and Taiwan (TW). All waveforms were recorded at a sampling 
rate of 16 kHz, except that the TW ones were 22 kHz. Most of 
the data were from students and staff at universities in Beijing, 
Shanghai, Guangdong and Taiwan, with ages varying from 18 to 
40. In training corpus, there are 150 female and 150 male 
speakers of each accent, with 2 utterances per speaker. In test 
corpus, there are 30 female and 30 male speakers of each accent, 
with 50 utterances per speaker. Most of the utterances last about 
3~5 seconds each, forming about 16 hours’ speech data of the 
whole corpus. There is no overlap between training and test 
corpus. That is, all the 1,440 speakers are different. 

The speaker distribution of the multi-accent Mandarin 
corpus is listed in Table 1. 
 

Accent Channel Gender Training Corpus Test Corpus 

F 50 10 BJ 
M 50 10 
F 50 10 

EW 
M 50 10 
F 50 10 

BJ 

FL 
M 50 

300 

10 

60 

F 75 15 
SH 

M 75 15 
F 75 15 

SH 
JD 

M 75 

300 

15 

60 

F 150 30 
GD GD 

M 150 
300 

30 
60 

F 150 30 
TW TW 

M 150 
300 

30 
60 

ALL 1,200 240 
Table 1. Speaker distribution of the multi-accent Mandarin 
corpus. 

3. ACCENT IDNETIFICATION SYSTEM 

Since gender and accent are important factors of speaker 
variability, the probability density functions of distorted features 
caused by different gender and accent are different. As a result, 
we can use a set of GMMs to estimate the probability that the 
observed utterance comes from a particular gender and accent. 

In our work, M GMMs, M
kk 1}{ =Λ , are independently trained 

using the speech produced by the corresponding gender and 
accent. That is, model kΛ  is trained to maximize the log-

likelihood function 
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where the speech feature is denoted by x(t). T is the number of 
speech frames in the utterance and M is twice (two genders) the 
total number of accent types. The GMM parameters are 
estimated by the expectation maximization (EM) algorithm [7]. 
During identification, an utterance is fed to all the GMMs. The 
most likely gender and accent type is identified according to 
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4. EXPERIMENTS 

4.1. Experiments Setup 

As described in Section 2, there are 8 subsets (accent plus 
gender) in the training corpora. In each subset, 2 utterances per 
speaker, altogether 300 utterances per subset, are used to train 
the GMMs. Since the 300 utterances in a subset are from 150 
speakers with different ages, speaking rates and even recording 
channels, speaker variability caused by these factors is averaged. 
Thus we hope to represent effectively the specific gender and 
accent by this method. The speech data is pre-emphasized with 
H(z)=1-0.97z-1, windowed to 25-ms frames with 10-ms frame 
shift, and parameterized into 39 order MFCCs, consisting of 12 
cepstral coefficients, energy, and their first and second order 
differences. Cepstral mean subtraction is performed within each 
utterance to remove the effect of channels. When training 
GMMs, their parameters are initialized and reestimated once. 
Data preparation and training procedures are performed using 
the HTK 3.0 toolkit [8]. In the first experiment, we investigate 
the relationship between the number of components in GMM 
and the identification accuracy.  

50 utterances of each speaker are used for test. In the second 
experiment, we study how the number of utterances affects the 
performance of our method. 

4.2. Number of Components in GMM 

In this experiment, we examine the relationship between the 
number of components in GMMs and the identification 
accuracy. 

Since our objective is to classify the unknown utterances to 
a specific subset, and the eight subsets are labeled with gender 
and accent, our method can identify the speaker’s gender and 
accent at the same time. When calculating the error rate of 
gender, we just concern with speakers whose identified gender 
is different with the labeled one. Similarly, when calculating the 



error rate of accent, we just concern with speakers whose 
identified accent is error. 

Table 2 and Fig. 1 show the gender and accent identification 
error rate respectively, varying the number of components in 
GMMs. The experiment is based on 1 utterance per test speaker. 
The relative error reduction is calculated when regarding GMM 
with 8 components as the baseline. 
 

# of Components 8 16 32 64 
Error Rate (%) 8.5 4.5 3.4 3.0 

Rel. Error Reduction (%) - 47.1 60.0 64.7 
Table 2. Gender identification error rate with different number 
of components in GMM. 
 

Table 2 shows that the gender identification error rate 
decreases significantly when components increase from 8 to 32. 
However, only small improvement is gained by using 64 
components compared with 32 ones. It can be concluded that 
GMM with 32 components is capable of effectively modeling 
gender variability of speech signals. 
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Fig. 1: Accent identification error rate with different number of 
components. The horizontal axis is the number of components 
in GMMs. The left vertical axis is the identification error rate; 
the right vertical axis is the relative error reduction of “All”. 
 

Fig. 1 shows the similar trend with Table 2. It is clear that 
the number of components in GMMs greatly affects the accent 
identification performance. Different to the gender experiment, 
in accent, GMMs with 64 components still gain some 
improvement over 32 ones (Error rate decreases from 19.1% to 
16.8%). Since the accent variability in speech signals is more 
complicated and not as significant as gender, 64 components are 
better while describing the detail variances among accent types. 

However, it is well known that to train a GMM with more 
components is much more time-consuming and requires more 
training data to obtain reliable estimation of the parameters. 
Concerning the trade-off between accuracy and costs, using 
GMMs with 32 components is a good choice. 

4.3. Number of Utterances per Speaker 

Sometimes it is hard even for linguistic experts to tell a 
specific accent type given only one utterance. Thus making use 
of more than one utterance in accent identification is acceptable 
in most applications. We want to know how many utterances are 

sufficient to reliably classify accent types. In experiment, we 
randomly select N (N<=50) utterances for each test speaker and 
average their log-likelihoods in each GMM. The test speaker is 
classified into the subset with the largest averaged log-
likelihood. The random selection is repeated for 10 times. Thus 
2,400 tests are performed in each experiment. This will 
guarantee to achieve reliable results. According to Section 3.2, 
32 components for each GMM are used. 

Table 3 and Fig. 2 show the gender and accent identification 
error rate respectively, varying the number of utterances. When 
averaging the log-likelihoods of all 50 utterances of a speaker, it 
is no need to perform random selection. The relative error 
reduction is calculated when regarding 1 utterance as the 
baseline. 
 
# of Utterances 1 2 3 4 5 10 20 50 
Error Rate (%) 3.4 2.8 2.5 2.2 2.3 1.9 2.0 1.2 

Rel. Error 
Reduction (%) 

- 18 26 35 32 44 41 65 

Table 3. Gender identification error rate with different number 
of utterances. 
 

Table 3 shows that it is more reliable to tell a speaker’s 
gender by using more utterances. When the number of 
utterances increases from 1 to 4, the gender identification 
accuracy improves greatly. Still considerable improvement is 
observed when using more than 10 utterances. However, in 
some applications, it is not applicable to collect so much data 
just to identify the speaker’s gender. Also, the results of 3~5 
utterances are good enough in most situations. 
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Fig. 2: Accent identification error rate with different number of 
utterances. The horizontal axis is the number of utterances for 
averaging. The left vertical axis is the identification error rate; 
the right vertical axis is the relative error reduction of “All”. 
 

It is clear from Fig.2 that increasing the number of 
utterances improves identification performance. This is 
consistent with our idea that more utterances of a speaker, thus 
more information, help recognize his/her accent better. 
Considering the trade-off between accuracy and costs, using 
3~5 utterances is a good choice, with error rate 13.6%~13.2%. 

4.4. Discussions on Inter-Gender and Inter-Accent Results 

It can be noticed from Fig. 1 and Fig.2 that the accent 



identification results are different between male and female. In 
experiments we also discovered different pattern of 
identification accuracy among 4 accent types. In this subsection, 
we will try to give some explanations. 

We select one experiment in subsection 4.3 as an example 
to illustrate the two problems. Here GMMs are built with 32 
components. 4 utterances of each speaker are used to calculate 
the averaged log-likelihood to recognize his/her accent. The 
inter-gender result is listed in Table 4. Table 5 shows the accent 
identification confusion matrix. 
 
Error Rate (%) BJ SH GD TW All Accents 

Female 17.3 11.4 15.2 2.7 11.7 
Male 27.7 26.3 7.6 0.3 15.5 

Table 4. Inter-gender accent identification error rate. 
 

We can see from Table 4 that Beijing (BJ) and Shanghai 
(SH) female speakers are much better recognized than 
corresponding male speakers, which causes the overall better 
performance for female. This is consistent with speech 
recognition results. Experiments in [2] show better recognition 
accuracy for female than for male in Beijing and Shanghai, 
while reverse result for Guangdong and Taiwan. 
 

Testing Utterances From Recognized 
As BJ SH GD TW 
BJ   0.775    0.081    0.037    0.001  
SH   0.120    0.812    0.076    0.014  
GD   0.105    0.105    0.886    0.000   
TW   0.000    0.002    0.001    0.985  

Table 5. Accent identification confusion matrix. 
 

Table 5 shows clearly different performance among accents. 
We provide some discussions below. 
! Compared with Beijing and Taiwan, Shanghai and 

Guangdong are most likely to be recognized to each other, 
except to themselves. In fact, Shanghai and Guangdong both 
belong to southern language tree in phonology and share 
some common characteristics. For example, they do not 
differentiate front nasal and back nasal. 

! The excellent result of Taiwan speakers may lie in two 
reasons. Firstly, as Taiwan civilians communicate with the 
Mainland relatively infrequently and their language 
environment is unique, their speech style is relatively easy 
to be recognized. Secondly, limited by the recording 
condition, there is a certain portion of noise in the 
waveform of Taiwan corpus (both training and test), which 
makes them more distinctive. 

! The reason of relatively low accuracy of Beijing possibly 
lies in its corpus’s channel variations. It is shown in Table 1 
there are 3 channels in Beijing corpus. Greater variations 
lead to a more general model, which is not so specific for 
the accent and may degrade the performance. 

! Channel effect may be a considerable factor to the GMM 
based accent identification system. From Beijing, Shanghai 
and Guangdong, accuracy increases when the number of 
channels decreases. Further work is needed to solve this 
problem. 

5. CONCLUSION 

In this paper, we proposed a Gaussian mixture model (GMM) 
based Mandarin accent identification method. GMM method can 
avoid building model for phoneme or phoneme-class, which is 
not economic for many applications. Furthermore, GMM 
training is an unsupervised one: no transcriptions are needed, 
compared with the supervised HMM training. Other than the 
conventionally studied foreign accent, we explored the more 
challenging domestic accent identification problem. 4 typical 
Mandarin accent types are investigated. Experiments show that 
properly selected GMM parameter (number of components) can 
result in good identification performance. 

We also investigated how many utterances per speaker are 
sufficient to identify his/her accent reliably. Usually more 
utterances will guarantee better accuracy, while in many 
applications we cannot obtain so much data. Fortunately, our 
experiments show that 3~5 utterances are good enough to be 
used to recognize a speaker’s accent by the proposed method. 
With 4 test utterances, about 11.7% and 15.5% error rate in 
accent classification was achieved for female and male speakers, 
respectively. Finally, we showed the correlations among accents 
and provide some discussions. 

The accent identification system can be directly used to 
select accent-dependent model for speaker adaptation. Future 
work of its applications in speech recognition is undergoing.  
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