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ABSTRACT

In this paper, we describe a unified probabilistic framework
for statistical language modeling, latent maximum entropy
principle. The salient feature of this approach is that the
hidden causal hierarchical dependency structure can be en-
coded into the statistical model in a principled way by mix-
tures of exponential families with a rich expressive power.
We first show the problem formulation, solution, and cer-
tain convergence properties. We then discribe how to use
this machine learning technique to model various aspects
of natural language such as syntactic structure of sentence,
semantic information in document. Finally, we draw a con-
clusion and point out future research directions.

1. INTRODUCTION

Markov chain (n-gram) source models for natural lan-
guage were first explored by Shannon in his monumental
paper [19] which led to the birth of information theory. N-
gram language models have been widely used in current
speech recognition systems to help resolve acoustic ambi-
guities by placing higher probabilities on more likely word
strings. While Markov chains are efficient at encoding lo-
cal word interactions, it has been long argued that natu-
ral language has a deep structure (see for example [2, 17]),
and Markov chain is a completely inadequate model. How-
ever, very few approaches managed to propose a model that
can effectively exploit relevant syntactic structure [5] and
semantic information [1] of natural language and to out-
perform simple n-gram in perplexity. The difficulty lies
in the lack of a unified probabilistic framework to encode
language, which can simultaneously take into account the
lexical information inherent in Markov chain models, the
hierarchical syntactic tree structure in stochastic branch-
ing processes [5, 14], the semantic content in bag-of-words
categorical mixture log-linear models [1, 9], and so on.

The most commonly used technique for combining var-
ious statistical models is linear interpolation [5, 16]. Lin-
ear interpolation is simple, and easy to implement, and its
result is never worse than any of its components, but a
linear interpolated model makes suboptimal use of its com-
ponents and is generally inconsistent with its components,
and as the result, performance improvement is very limited.
Another approach is based on Jaynes’ maximum entropy
principle [10]. Compared with other approaches in statisti-
cal modeling, there are several advantages to this approach,
including no data fragmentation as in decision tree, no inde-
pendence assumption as in naive Bayes, and automatic fea-
ture weights determination. The major weakness of current
maximum entropy approach is that it can only deal with
explicit features. In natural language, there are hidden hi-
erarchical strcutures which we do not observe directly, such
as semantic information [1] or syntactic structure [5]. Is
it possible to incorporate the hidden hierarchical structure
information which we believe into maximum entropy prin-
ciple framework? A previously proposed direct approach
[12, 14, 18] is to use the component models’ output informa-
tion and formulate it as certain constraints. This approach
achieved some improvement in perplexity and word error
rate reductions.

Motivated by the need of establishing a unified proba-

bilistic framework for natural language modeling, we have
recently proposed a latent maximum entropy (LME) prin-
ciple. The LME principle is beyond Jaynes’ original max-
imum entropy (ME) principle as it can handle latent vari-
ables. In the next section, we first present the latent max-
imum entropy principle, its problem formulation, solution,
and certain convergence properties. We then show how
to use this new principle for statistical language modeling
by mixtures of exponential families with a rich expressive
power.

2. LATENT MAXIMUM ENTROPY
PRINCIPLE

Let X ∈ X , say natural language, be the complete-data
with density p(X) and Y ∈ Y, say words, sentences, docu-
ments, etc be the observed incomplete data, and Y = Y (X)
is a many-to-one mapping from X to Y. The missing
data can be semantic content at document level, syntactic
structure at sentence level etc., see Fig. 1 for illustration.
Let p(Y ) denote the density of Y and p(X|Y ) the condi-
tional density of X given Y . Then p(Y ) =

∑
X (Y )p(X),

where X (Y ) = {X : X ∈ X , Y (X) = Y }, and p(X) =
p(Y )p(X|Y ).
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Figure 1. Natural language, observed incomplete data are
words, sentences, documents, missing data are syntactic
structure at sentence level, semantic content at document
level, where dark nodes denote missing information.

The problem of maximum entropy principle with latent
variables is to select a model p∗ from a set of allowed prob-
ability distributions to maximize the entropy

H(p) = −
∑
X

p(X)logp(X) (1)

subject to

∑
X

p(X)fi(X) =
∑
y∈Y

p̃(y)
∑

X∈X(Y )

p(X|Y = y)fi(X),

i = 1, · · · , N (2)

where p̃(y) is the empirical distribution of a set of ob-
servable training samples y1, · · · , yC , and is thus given by

p̃(y) = C(y)
C

, C(y) =
∑C

i=1
δ(y, yi) is the occurrence count

of y among the training samples, fi(X), i = 1, · · · , N are a
set of features that correspond to weak learners in boost-
ing and to sufficient statistics in exponential models, and
p(X|Y = y) encodes the hierarchical dependency struc-
ture into the statistical model. Note that some features



are functions of observable data Y , say fj(X) = fj(Y ). In
such a case, the constraint is reduced to the common one,∑

Y ∈Y p(Y )fj(Y ) =
∑

y∈Y p̃(Y = y)fj(Y = y). There are

no constraints on latent variables, and the maxent solution
will assign equal probability on latent variables. If there
is no missing data, then the problem is reduced to Jaynes’
model. Thus (2) is a more general description than ME.

Note that due to the nonlinear mapping by p(X|Y ), eq.
(2) forms nonlinear constraints on p(X) and the feasible set
is no longer convex. Even though the objective function (1)
is concave, no unique optimal solution can be expected. In
fact, minima and saddle points may exist.

In order to solve this problem, we consider log-linear mod-
els with incomplete data, since without missing data and
higher-order term of p in eq. (2), the solution for p is a

log-linear model. Define pλ(X) = Z−1
λ e

∑
i
λifi(X)

. Then
pλ(Y ) =

∑
X∈X(Y )

pλ(X) and the loglikelihood function of

the observed data is

L(λ) = log
∏
y∈Y

pλ(y)p̃(y) =
∑
y∈Y

p̃(y)logpλ(y) (3)

Now we resort to the EM algorithm [8] to solve the max-
imization problem of eq. (3). Decompose L(λ) into two
parts, that is

L(λ) =
∑
y∈Y

p̃(y)logpλ(y) = Q(λ, λ′) −K(λ, λ′) (4)

where Q(λ,λ′) =
∑

y∈Y p̃(y)
∑

X∈X(y)
pλ′(X|y)logpλ(X) is

the conditional expected complete-data loglikelihood, and
K(λ, λ′) =

∑
y∈Y p̃(y)

∑
X∈X(y)

pλ′(X|y)logpλ(X|y) is the

conditional expected missing-data loglikelihood.
The EM algorithm maximizes L(λ) by iteratively max-

imizing Q(λ,λ′) over λ. The jth iteration λ(j) → λ(j+1)

of the EM algorithm is defined by an expectation, E step,
which computes Q(λ,λ(j)) as a function of λ, followed by

a maximization, M step, which finds λ = λ(j+1) to maxi-
mize Q(λ,λ(j)). Each iteration of EM increases L(λ), and
very generally, if EM converges to λ∗, then λ∗ is a local
maximum of L(λ) [8, 21].

For this particular log-linear model, we have

Q(λ, λ(j)) =
∑
y∈Y

p̃(y)
∑

X∈X(Y )

pλ(j) (X|Y = y)logpλ(X) (5)

Surprisingly, maximizing Q(λ,λ(j)) is equivalent to maxi-
mizing the dual function of the complete data maximum
entropy problem as follows:

maxpH(p) = −
∑
X

p(X)logp(X) (6)

s.t.
∑
X

p(X)fi(X) =
∑
y∈Y

p̃(y)
∑

X∈X(Y )

pλ(j) (X|Y = y)fi(X)

i = 1, · · · , N
This is because

Q(λ,λ(j)) = −log(Zλ) +

N∑
i=1

λi(
∑
y∈Y

p̃(y)

∑
X∈X(Y )

pλ(j)(X|Y = y)fi(X)

which is exactly the dual function of (6).
The generalized iteratiive scaling (GIS) [7] or improved

iterative scaling (IIS) [3, 6] algorithms can be used to max-
imize Q(λ, λ′). Usually only a few GIS (or IIS) steps are
needed for the M step.

Thus the proposed EM algorithm for maximum entropy
with latent variables (Latent-maxent) is
Latent-maxent:

E step: compute
∑

y∈Y p̃(y)
∑

X∈X(Y )
pλ(j)(X|Y = y)

fi(X), i = 1, · · · , N ;
M step: K iterations of full parallel update of parameter

values λi, i = 1, · · · , N by (GIS) or (IIS) algorithm.
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Figure 2. Latent-maxent, an EM procedure embedding an
iterative scaling loop, where A(λ(j+s/K), λ(j+(s−1)/K), λ(j))
is the auxiliary function in IIS, s denotes the index of one
cycle of full parallel update of λi, i = 1, · · · , N and K de-
notes the number of cycles of full parallel updates.

A natural interpretation of this iterative procedure is the
following: If the right hand side of eq. (2) is constant, then
the optimal soultion of pλ(X) is a log-linear model with pa-
rameters provided by GIS/IIS algorithms. Once pλ(X) is
obtained, we could calculate the values of the right hand
side of eq. (2). If this value matches the constant we as-
signed before, then by optimality condition, the extremum
of the entropy subject to the required constraints is reached;
otherwise, the EM procedure is iterated until meeting the
constraints.

The convergence proof for the proposed latent maxent
algorithm is quite similar to the GEM algorithm [21] and
is omitted here. For details, see [20]. Here we simply state
the result in the following theorem.

Theorem: The latent-maxent algorithm, an EM nested
by iterative scaling, monotonically increases the likelihood
function L(λ). All limit points of any latent-maxent se-

quence {λ(j), j ≥ 0} belong to the set

Γ =
{
λ ∈ �N :

∂L(λ)

∂λ
= 0

}
(7)

and in the set Γ, the entropy H(p∗(λ)) achieves (local) max-
imum, and L(λ) = Q(λ, λ) = −H(p∗(λ)),∀λ ∈ Γ.

3. LATENT MAXENT APPROACH FOR
STATISTICAL LANGUAGE MODELING

Natural language is a composite, hierarchically organized
code to represent messages. Simpler patterns at a lower
level are combined in a well-defined manner to form more
complex patterns at succeeding higher levels. The function
of such a hierarchical structure is to constrain the ways in
which the individual patterns at that level can be combined,
thus building redundancy into the source code and making
it robust to errors made by speakers. As a result, relatively
few primitive patterns can be combined in a multilevel hier-
archy according to a complex process to form a rich, robust
information-bearing code.

The latent maximum entropy principle as discussed above
can be used to describe natural language in a principled
way by mixtures of exponential families with a rich ex-
pressive power. In this section, we discuss how to apply



it to statistical language modeling. We first describe vari-
ous language models which aims at a specific linguistic phe-
nomenon. Then we describe how to formulate them into the
framework of latent maximum entropy principle.

3.1. Modeling Local Lexical Information
The commonly used n-gram model, or (n-1)th order

Markov chain model, is constructed by assuming all his-
tories with the same last n-1 words to belong to the same
equivalence class. The maximum likelihood estimate of an
n-gram probability given a training corpus is

p(w1 · · ·wn) =
C(w1 · · ·wn)

Cn
(8)

where C(w1 · · ·wn) is the occurrence count of the n-word
string w1 · · ·wn, and Cn is the count of total n-word strings
in the corpus.

3.2. Modeling Syntactic Structure
There are two approaches to model syntactic structure in

natural language. One approach uses the probability dis-
tribution of stochastic context-free grammars (SCFG) over
strings of words [14]. The other uses a parser to uncover
phrasal heads standing in an important relation to the cur-
rent word [4, 5]. For brevity, we only demonstrate here the
first approach.

Following [13], let G be a context-free grammar consisting
of a collection of rules (A → α), where each α is a string of
terminals and nonterminals. For each sentence S ∈ L(G),
the language of G, there is a corresponding set of parse
trees t, each of which has S = w1w2 · · ·wL as leaves. If we
observe only S, then for an ambiguous grammar, the actual
parse tree used to derive S is hidden.

Suppose we have a joint distribution p(S,T ), the prob-
ability of deriving S using the tree T . Then the marginal
distribution

p(S) =
∑

T

p(S,T ) =
∑

T

∏
A→α

p(A → α)C(A→α;T,S) (9)

gives a language model. In the equation above, p(S,T ) is
the complete data density and p(S) is the incomplete data
density. C(A → α; T, S) is the number of times that the
rule A → α appears in the parse tree T for the sentence
S. The probability parameters p(A → α) are normalized so
that

∑
α
p(A → α) = 1.

The model is simplified by making the Markovian as-
sumption that the probability with which a nonterminal
is rewritten as a string α depends only on the nontermi-
nal, and not on any surrounding context. This assumption
leads to an efficient training algorithm. For convenience,
we assume that the grammar is in Chomsky normal form.
Thus, each rule is either of the form A → BC or A → w.
By EM algorithm, the parameters p(A → α) can be esti-
mated iteratively and the E step can be accomplished by
inside-outside algorithm through dynamic programming in
a parse chart.

3.3. Modeling Semantic Information
A document can be viewed as a collection of semanti-

cally homogeneous sentences. With a huge amount of doc-
uments on hand, the task of latent semantic analysis (LSA)
in the context of information retrieval is to discover the com-
pact semantic representations of high-dimensional categor-
ical text data, which is beyond the lexical level of word oc-
currences, through the mapping of high-dimensional term-
frequency (count) vectors in the vector space representation
of documents to a lower dimensional representation in a so-
called latent semantic space. Semantic relations between
words and documents can then be easily defined in terms
of their proximity in the semantic space[1, 9].

Following [9], a generative model of word-document co-
occurrences by bag-of-words assumption is described as fol-
lows: (1) choose a document dn with probability p(dn), (2)

select a semantic class zk with probability p(zk|dn), (3) pick
a word wm with probability p(wm|zk). Since only pair of
(dn, wm) is being observed, as a result, the joint probability
model is a mixture of log-linear model with the expression

p(dn, wm) = p(dn)
∑K

k=1
p(wm|zk)p(zk|dn). Typically the

number of documents, words in the vocabulary, and latent
class variables is on the order of 100,000, 10,000 and hun-
dreds, respectively. Thus latent class variables function as
bottleneck variables to constrain word occurrences in docu-
ments. Illustrations of latent semantic analysis in terms of a
graphical model and demensionality reduction are depicted
in Figs. 3 and 4, respectively.
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Figure 3. Graphical representation of dependency of
words, documents, and semantic content, where semantic
nodes form a bottleneck, and dark nodes are not observable
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Figure 4. Dimensionality reduction by probabilistic latent
semantic analysis

By assuming that the joint probability of (dn, wm) is
a multinomial distribution, the likelihood function can be
written as

L =

N∑
n=1

M∑
m=1

C(dn, wm)log[p(dn)

K∑
k=1

p(wm|zk)p(zk|dn)] (10)

where C(dn, wm) is the count of word wm in document dn.
EM algorithm can be performed to estimate the parameters.

3.4. Modeling Various Aspects by LME

The various aspects of linguistic phenomena described
above can be encoded into a unified probabilistic model
by the latent maximum entropy principle. Define the com-
plete data as X = (S1, T1, · · · , Sd, Td, D, Z), where Si is a
sentence, Si = (Wi1Wi2 · · ·Wil), Wit ∈ V , Ti is a parse
tree for Si, Z is a semantic node, D is a document, and the
observed data are Y = (S1, · · · , Sd,D).

Explicit features such as Markov chain based n-grams can
be modeled directly [16]. For example, for trigram model,
we have

∑
X

p(X)δ(wiwjwk) (11)

=
∑

d

p̃(d)
∑

s

p̃(s|d)
∑

wiwjwk

p̃(wiwjwk|s)δ(wiwjwk)

Syntactic structure as described by SCFG can be encoded
by the constraints

∑
X

p(X)δ(A → α) (12)

=
∑

d

p̃(d)
∑

s

p̃(s|d)
∑

t

p(t|s)δ(A → α)



Semantic content as described by PLSA can be encoded by
the constraints∑

X

p(X)δ(d, n)δ(w,m) =
∑
d∈D

p̃(d)
∑

s

p̃(s|d) (13)

∑
w∈V

p̃(w|s)
∑

z∈X(w,d)

p(z|w,d)δ(z, i)δ(d, n)δ(w,m),

i = 1, · · · ,K, n = 1, · · · , N,m = 1, · · · ,M
The goal is to find p(X) which maximizes the entropy sub-
ject to the constraints (11-13).

w w w w w w w w w w w

d
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s s

Figure 5. A sample realization of the mixed chain/tree
/table graphical model, where the document has two sen-
tences with lengths 5 and 6, respectively.

By information theoretic arguments, it can be shown that
when each constraint is considered separately, the solution
of latent maxent will be reduced to the individual models
described in subsection (3.1-3.3).

The exponential form of the complete data density func-
tion is often called a Gibbsian field. For every Gibbsian
field, there is an equivalent Markovian field. The pro-
posed model is a rather complicated mixed chain/tree/table
graphical model (see Fig. 5 for illustration). Because of the
added lexical neighborhoods due to the n-gram, the distri-
bution is no longer context-free, and the calculation of the
right hand side of Eqn. (13) has to be performed by a vari-
ant of the inside-outside algorithm or Markov chain Monte
Carlo simulation. Since the size of the configuration space
is large, the feature expections may need to be calculated
by loopy belief propagation [15] or also by efficient Markov
chain Monte Carlo methods.

4. CONCLUSION AND RESEARCH
DIRECTIONS

We presented a latent maximum entropy principle which
is beyond Jaynes’ original maximum entropy principle.
LME provides a general statistical framework for incorpo-
rating arbitrary aspects of natural language into a paramet-
ric model. The parameters can be estimated in the sense of
maximum likelihood, interactions among various aspects of
language can be taken into account automatically and si-
multaneously, and the general model is reduced to a familiar
model when aiming at a specific linguistic phenomenon.

We are currently implementing the latent maxent model
using real text training data. Since the number of features
is large, model complexity control and automatic feature
selection is under investigation.
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