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ABSTRACT

There have been higher demands recently for Automatic
Speech Recognition (ASR) systems able to operate robustly
in acoustically noisy environments. This paper proposes a
method to effectively integrate audio and visual informa-
tion in audio-visual (bi-modal) ASR systems. Such integra-
tion inevitably necessitates modeling of the synchronization
of the audio and visual information. To address the time
lag and correlation problems in individual features between
speech and lip movements, we introduce a type of inte-
grated HMM modeling of audio-visual information based
on HMM composition. The proposed model can represent
state synchronicity not only within a phoneme but also be-
tween phonemes. Evaluation experiments show that the pro-
posed method improves the recognition accuracy for noisy
speech.

1. INTRODUCTION

The performance of ASR systems has been drastically im-
proved recently. However, it is well known that the per-
formance can be seriously degraded in acoustically noisy
environments. Audio-visual ASR [1, 2, 4] systems offer the
possibility of improving the conventional speech recogni-
tion performance by incorporating visual information, since
the speech recognition performance is always degraded in
acoustically noisy environments whereas visual information
is not.

Audio and visual phonetic features have different dura-
tions. In other words, there is loose synchronicity between
them, for instance, a speaker opens the mouth before mak-
ing an utterance, and closes it after making the utterance.
Furthermore, the time lag between the movement of the
mouth and the voice might be dependent on the speaker or
context.

As audio-visual integration methods for ASR systems,
early integration and late integration are well known [1, 2].
In the early integration scheme, a conventional HMM is
trained using audio-visual data. This method, however, can-
not sufficiently represent the loose synchronization between
the audio and visual information. Furthermore, the visual
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Fig. 1. Procedure Overview

features of the conventional HMM may end up relatively
poorly trained because of mis-alignments during the model
estimation caused by the segmentation of the audio features.
In the late integration scheme, the audio data and visual data
are processed separately to build two independnt HMMs
[1, 4]. This scheme assumes complete asynchronization be-
tween the audio and visual features. In addition, it can make
the best use of the audio and visual data because there is
a smaller bi-modal database than the typical database for
audio only. However, the audio and visual features are re-
garded as independent.

In this paper, in order to model the synchronization be-
tween audio and visual features, we propose a method of
state synchronous audio-visual integration based on HMM
composition. The proposed model can represent synchronic-
ity not only within a phoneme but also beyond phoneme
boundaries.

2. AUDIO-VISUAL INTEGRATION BASED ON
PRODUCT HMM

Figure 1 shows the outline of the acoustic model training
for ASR systems in this paper. Figure 2 shows the pro-
posed HMM topology. First, in order to create the audio
and visual phoneme HMMs independently, audio features
and visual features are extracted from audio data and visual
data, respectively. In general, the frame rate of audio fea-
tures is higher than that of visual features. Accordingly, the
extracted visual features are incorporated such that the au-
dio and visual features have the same frame rate. Second,
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Fig. 2. Product HMM

the audio and visual features are modeled individually into
two HMMs by the EM algorithm. Finally, an audio-visual
phoneme HMM is composed as the product of these two
HMMs based on HMM composition.

The output probability at state ij of the audio-visual
HMM is,

bij(Ot) = bA
i (OA

t )αA × bV
j (OV

t )αV (1)

which is defined as the product of the output probabilities of
the audio and visual streams. Here, bA

i (OA
t )αA is the out-

put probability of the audio feature vector at time instance
t in state i, bV

j (OV
t )αV is the output probability of the vi-

sual feature vector at time instance t in state j, and αA and
αV are the audio stream weight and visual stream weight,
respectively. In a similar manner, the transition probability
from state ij to state kl in the audio-visual HMM is defined
as follows,

pij,kl = pai,k
× pvj,l

(2)

where pai,k
is the transition probability from state i to state

k in the audio HMM, and pvj,l
is the transition probability

from state j to state l in the visual HMM. This composition
is performed for all phonemes.

In the method proposed by [4], a similar composition is
used for the audio and visual HMMs. However, because the
audio and visual HMMs are trained individually, the depen-
dencies between the audio and visual features are ignored.
This results in the following two problems.

1. The product HMMs can not represent the loose syn-
chronicity within phonemes.

2. The product HMMs force a strict synchronization on
every phoneme boundary.

This paper proposes a new approach to solve the two prob-
lems. First, we propose the re-estimation of the product
HMMs by using a small amount of audio-visual synchronous
adaptation data. Second, we propose a new structure for
the product HMMs. This new structure includes loose state
synchronicity beyond the phoneme boundary.
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Fig. 4. State Alignment by a Word Model

2.1. State Synchronous Modeling within a Phoneme

The first problem is from the inability of the conventional
product HMMs to represent loose state synchronicity within
a phoneme. This problem is caused by the fact that the tran-
sition probabilities and output probabilities are obtained by
the multiplication of probabilities from independent states
of audio and visual HMMs. We propose new product HMMs
whose parameters are re-estimated using audio-visual syn-
chronous adaptation data [3]. The advantages of performing
re-estimation are as follows.

• The re-estimation solves the state alignment problem.
An inconsistent state alignment can be caused by the
composition of states of two independent HMMs. These
two composed states are originally aligned to differ-
ent time periods based on the different HMMs.

• The re-estimation is able to introduce the loose state
synchronicity of the states of two modalities into the
product HMM.

The re-estimation procedure is carried out using a small
amount of audio-visual synchronous data. After the compo-
sition of two HMMs, the product HMMs can be re-estimated
based on the Baum-Welch algorithm for multi-stream HMMs.
Figure 5 shows results comparing audio HMMs, visual HMMs,
early integration, late integration, and product HMMs with
and without re-estimation [3]. The experimental conditions
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Fig. 6. Pseudo-biphone product HMMs

are the same as those in a later section except that the au-
dio HMMs are trained using clean speech data. The figure
shows that the product HMMs with re-estimation achieve
the best performance, while the product HMMs without re-
estimation are worse than those of the early and late inte-
gration schemes.

2.2. State Synchronous Modeling Beyond The Phoneme
Boundary

The second problem is that the conventional product HMMs
force a strict synchronization on every phoneme boundary.
This is because the speech organs normally move earlier
than the speech to be produced. Sometimes, the speech or-
gans are already articulated in the previous audio phoneme
utterance. Accordingly, we have to consider state synchronous
modeling beyond the phoneme boundary.

Figure 3 shows a structure of word HMMs designed to
investigate the asynchronicity on a phoneme boundary. The
word HMMs have the same number of core states exclud-
ing extra asynchronous states on the phoneme boundaries,
as indicated by the double circles in the figure. In the word

HMMs, the core states are the same as the phoneme HMMs
while the model parameters for the extra states are only re-
estimated using the word utterance. Figure 4 shows a case
of state alignment between input speech and states of word
HMMs. Here, one can see that the input speech is aligned
to the extra states, which represent state asynchronicity be-
yond the phoneme boundary. However, the word HMMs
can not be applied to large vocaburaly speech recognition.
It is necessary to represent this asynchronicity in the frame-
work of phoneme-based speech recognition.

Considering this fact, we propose new product HMMs
that include extra asynchronous states on phoneme bound-
aries as indicated in Fig. 6. The core states of the phoneme
HMMs are the same as those of context independent phoneme
product HMMs. In addition, the new product HMMs have
two extra HMM states aiming to work similarly to the word
HMMs. The first extra state is composed of the initial audio
state and final visual state of the preceding phoneme HMM.
The second extra state is composed of the initial visual state
and final audio state of the preceding phoneme HMM. Since
these extra states are dependent on the preceding phoneme,
they can only be re-estimated in a manner similar to the
biphone HMMs. Therefore, we call these HMM pseudo-
biphone product HMMs. The proposed HMMs can tolerate
one state asynchronicity beyond a phoneme boundary.

3. EVALUATION EXPERIMENTS

The audio signal is sampled at 12 kHz (down-sampled) and
analyzed with a frame length of 32 msec every 8 msec. The
audio features are 16-dimensional MFCC and 16-dimensional
delta MFCC. On the other hand, the visual image signal is
sampled at 30 Hz with 256 gray scale levels from RGB.
Then, the image level and location are normalized by a his-
togram and template matching. Next, the normalized im-
ages are analyzed by two-dimensional FFT to extract 6x6
log power 2-D spectra for audio-visual ASR. Finally, 35-
dimensional 2D log power spectra and their delta features
are extracted. For each modality, the basic coefficients and
the delta coefficients are collectively merged into one stream.
Since the frame rate of the video images is 1/30, we insert
the same images so as to synchronize the face image frame
rate to the audio speech frame rate. For the HMMs, we
use a two-mixture Gaussian distribution and assign three
states for the audio stream and two states for the visual
stream in the late integration HMMs and the baseline prod-
uct HMMs. In this research, we perform word recognition
evaluations using a bi-modal database [1]. We use 4740
words for HMM training and two sets of 200 words for test-
ing. These 200 words are different from the words used in
the training.

Figures 7-9 show word accuracies for acoustic SNR=15,
0, and -5dB. We compared the processed product HMMs
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Fig. 7 Word Accuracy (SNR=15dB)
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Fig. 8 Word Accuracy (SNR=0dB)

without re-estimation (Product-HMM(W/O Re-est.)), the pro-
posed product HMMs with re-estimation (Product-HMM(W
Re-est.)), the proposed pseudo-biphone product HMMs with-
out re-estimation (Pseudo-Biphon(W/O Re-est.)), and the
proposed pseudo-biphone product HMMs with re-estimation
(Pseudo-Biphon(W Re-est.)). White noise was used to re-
duce the acoustic SNR in this experiment. The audio HMMs
were trained using the SNR=15dB data. The results can be
summarized as follows:

• The re-estimation of the product HMMs is quite ef-
fective to improve the performance. The re-estimation
is able to introduce the loose state synchronicity of
the states of two modalities into the product HMMs.
The re-estimation also produces a consistent state align-
ment to the input multiple modalities.

• The state synchronous modeling beyond the phoneme
boundary results in significant improvements to the
product HMMs. This result indicates the importance
of considering the loose synchronicity of speech and
speech organs over the phoneme boundary.

• The optimal stream weights for the maximum perfor-
mance vary according to each method and acoustic
SNR. Further investigations are necessary to adjust
the optimal weights for the modalities.
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4. CONCLUSION

This paper proposes a new HMM structure to effectively
integrate audio and visual information in audio-visual (bi-
modal) systems. Our state synchronous modeling of audio-
visual information is based on the product HMM. The pro-
posed model can represent synchronicity not only within a
phoneme but also between phonemes. Evaluation experi-
ments show that the re-estimation of the model parameters
using audio-visual synchronous data further improves the
product HMMs. In addition, pseudo-biphone HMMs that
introduce two extra asynchronous states are shown to im-
prove the bimodal speech recognition accuracy. As future
work, we are now working on the optimal weighting of the
modalities according to the reliability in the environment.
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